Difference between revisions of "Linear and Time Invariant Systems/Conclusions from the Allocation Theorem"

From LNTwww
 
(152 intermediate revisions by 12 users not shown)
Line 1: Line 1:
+
 
 
{{Header
 
{{Header
|Untermenü=Beschreibung kausaler realisierbarer Systeme
+
|Untermenü=Description of Causal Realizable Systems
|Vorherige Seite=Lineare Verzerrungen
+
|Vorherige Seite=Linear_Distortions
|Nächste Seite=Laplace–Transformation und p–Übertragungsfunktion
+
|Nächste Seite=Laplace_Transform_and_p-Transfer_Function
 
}}
 
}}
  
==Real– und Imaginärteil einer kausalen Übertragungsfunktion (1)==
+
== # OVERVIEW OF THE THIRD MAIN CHAPTER # ==
Eine jede kausale Impulsantwort $h(t)$ kann als Summe eines geraden Anteils $h_g(t)$ und eines ungeraden Anteils $h_u(t)$ dargestellt werden, wobei gilt:
+
<br>
$$\begin{align*} h_{{\rm g}}(t)  & =  \frac{1}{2}\cdot \left[  h(t) + h(-t) \right]\hspace{0.05cm},\\ h_{{\rm u}}(t) & =  \frac{1}{2}\cdot \left[  h(t) - h(-t) \right] = h_{{\rm g}}(t) \cdot {\rm sign}(t)\hspace{0.05cm} \end{align*}$$.
+
In the first two chapters,&nbsp; filter functions with real-valued frequency responses were mostly considered for reasons of presentation so that the associated time function is symmetric about zero-time.&nbsp;
 +
 
 +
*However,&nbsp; the impulse response of a realizable system must always be causal,&nbsp; that is, &nbsp;$h(t)$&nbsp; must be identical to zero for &nbsp;$t < 0$.&nbsp;
 +
 +
*This strong asymmetry of the time function&nbsp; $h(t)$&nbsp; implies at the same time that  with exception of &nbsp;$H(f) = K$&nbsp; the frequency response &nbsp;$H(f)$&nbsp; of a realizable system is always complex-valued where there is a fixed relation between its real part and imaginary part.
 +
 
 +
*This third chapter provides a recapitulatory account of the description of causal realizable systems,&nbsp; which differ also in the mathematical methods from those commonly used with non-causal systems.
 +
 
 +
 
 +
In detail,&nbsp; the following is dealt with:
 +
 
 +
#The&nbsp; &raquo;Hilbert transform&laquo;,&nbsp; which states how real and imaginary parts of&nbsp; $H(f)$&nbsp; are related,
 +
#the&nbsp; &raquo;Laplace transform&laquo;,&nbsp; which yields another spectral function &nbsp;$H_{\rm L}(p)$&nbsp; for acausal &nbsp;$h(t)$,
 +
#the description of realizable systems by the&nbsp; &raquo;pole-zero plot&laquo;,&nbsp; as well as
 +
#the&nbsp; &raquo;inverse Laplace transform&laquo;&nbsp; using the&nbsp; function theory&nbsp; $($&raquo;residue theorem&laquo;$)$.
 +
 
 +
 
 +
For this chapter,&nbsp; we recommend two of our multimedia offerings:
 +
*the&nbsp; $($German language$)$&nbsp; learning video &nbsp;[[Rechnen_mit_komplexen_Zahlen_(Lernvideo)|"Rechnen mit komplexen Zahlen"]] &nbsp; &rArr; &nbsp; "Arithmetic operations involving complex numbers",
 +
 
 +
*the&nbsp; $($German language$)$&nbsp; interactive SWF applet &nbsp;[[Applets:Kausale_Systeme_-_Laplacetransformation|"Kausale Systeme - Laplacetransformation"]] &nbsp; &rArr; &nbsp; "Causal systems – Laplace transform".
 +
 
 +
 
 +
==Prerequisites for the entire third main chapter==
 +
<br>
 +
In the first two chapters,&nbsp; mostly real&nbsp; [[Linear_and_Time_Invariant_Systems/System_Description_in_Frequency_Domain#Frequency_response_–_Transfer_function|&raquo;transfer functions&laquo;]]&nbsp; &nbsp;$H(f)$&nbsp; were considered for which the associated impulse response &nbsp;$h(t)$&nbsp; is consequently always symmetric with respect to the reference time &nbsp;$t = 0$.&nbsp; Such transfer functions
 +
*are suitable to explain basic relationships in a simple way,
 +
   
 +
*but unfortunately are not realizable for reasons of causality.
 +
 
 +
 
 +
This becomes clear if the definition of the impulse response is considered:
 +
 
 +
{{BlaueBox|TEXT=   
 +
$\text{Definition:}$&nbsp;
 +
The&nbsp; &raquo;'''impulse response'''&laquo; &nbsp;$h(t)$&nbsp; is equal to the output signal &nbsp;$y(t)$&nbsp; of the system if an infinitely short impulse with an infinitely large amplitude is applied to the input at time &nbsp;$t = 0$&nbsp;: &nbsp; $x(t) = δ(t)$.&nbsp; Such an impulse is called a&nbsp; [[Signal_Representation/Special_Cases_of_Impulse_Signals#Dirac_delta_or_impulse|&raquo;Dirac delta impulse&laquo;]].}}
 +
 
 +
 
 +
It is obvious that no impulse response can be realized for which &nbsp;$h(t < 0) ≠ 0$&nbsp; holds.
 +
 
 +
{{BlaueBox|TEXT=   
 +
$\text{Definition:}$&nbsp;
 +
For a&nbsp; &raquo;'''causal system'''&laquo;&nbsp; the impulse response&nbsp; $h(t)$&nbsp; is identical to zero for all times&nbsp; $t < 0$.}}
 +
 
 +
 
 +
The only real transfer function that satisfies the causality condition&nbsp; &raquo;the output signal cannot start before the input signal&laquo;&nbsp; is:
 +
:$$H(f) = K \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\quad h(t) = K \cdot \delta(t).$$
 +
All other real-valued transfer functions&nbsp; $H(f)$&nbsp; describe non-causal systems and thus cannot be realized by an&nbsp; $($electrical$)$&nbsp; circuit network.  
  
Hierbei ist die sogenannte Signum–Funktion verwendet:
+
{{BlaueBox|TEXT= 
$${\rm sign}(t) = \left\{ \begin{array}{c} -1 \\
+
$\text{In other words:}$ &nbsp; Except for the transfer function&nbsp; $H(f) = K,$&nbsp; '''any realistic transfer function is complex'''.
 +
*If&nbsp; $K=1$&nbsp; holds additionally,&nbsp; the transfer function is said to be&nbsp; &raquo;ideal&laquo;.&nbsp;
 +
 +
*Then,&nbsp; the output signal &nbsp;$y(t)$&nbsp; is identical to the input signal &nbsp;$x(t)$&nbsp; &ndash; even without attenuation or amplification.}}
 +
 
 +
==Real and imaginary part of a causal transfer function==
 +
<br>
 +
Any causal impulse response&nbsp; $h(t)$&nbsp; can be represented as the sum
 +
*of an even&nbsp; (German:&nbsp; "gerade" &nbsp; &rArr; &nbsp; "g")&nbsp; part&nbsp; $h_{\rm g}(t)$&nbsp;
 +
*and an odd&nbsp; (German:&nbsp; "ungerade" &nbsp; &rArr; &nbsp; "u")&nbsp; part&nbsp; $h_{\rm u}(t)$:
 +
 
 +
:$$\begin{align*} h_{ {\rm g}}(t)  & =  {1}/{2}\cdot \big[  h(t) + h(-t) \big]\hspace{0.05cm},\\ h_{ {\rm u}}(t) & =  {1}/{2}\cdot \big[  h(t) - h(-t) \big] = h_{ {\rm g}}(t) \cdot {\rm sign}(t)\hspace{0.05cm} .\end{align*}$$
 +
 
 +
Here,&nbsp; the so-called&nbsp; [https://en.wikipedia.org/wiki/Sign_function &raquo;sign function&laquo;]&nbsp; is used:
 +
:$${\rm sign}(t) = \left\{ \begin{array}{c} -1 \\
 
  +1 \\  \end{array} \right.\quad \quad
 
  +1 \\  \end{array} \right.\quad \quad
\begin{array}{c}  {\rm{f\ddot{u}r}}  \\ {\rm{f\ddot{u}r}}
+
\begin{array}{c}  {\rm{for}}  \\ {\rm{for}}
 
\\    \end{array}\begin{array}{*{20}c}
 
\\    \end{array}\begin{array}{*{20}c}
 
{  t  < 0,}  \\
 
{  t  < 0,}  \\
Line 19: Line 80:
 
\end{array}$$
 
\end{array}$$
  
{{Beispiel}}
+
 
Die Grafik zeigt diese Aufspaltung für eine kausale exponentiell abfallende Impulsantwort
+
{{GraueBox|TEXT= 
$$h(t) = \left\{ \begin{array}{c} 0 \\
+
$\text{Example 1:}$&nbsp;
  0.5/T  \\ 1/T \cdot {\rm e}^{-t/T} \end{array} \right.\quad \quad
+
The graph shows this splitting for a causal exponentially decreasing impulse response of a low-pass filter of first-order corresponding to&nbsp; [[Aufgaben:Exercise_1.3Z:_Exponentially_Decreasing_Impulse_Response|$\text{Exercise 1.3Z}$]]:
\begin{array}{c}  {\rm{f\ddot{u}r}}  \\ {\rm{f\ddot{u}r}}
+
[[File: P_ID1750__LZI_T_3_1_S2a_neu.png |right|frame| Splitting of the impulse response into an even part and an odd part|class=fit]]
\\  {\rm{f\ddot{u}r}}  \end{array}\begin{array}{*{20}c}
+
:$$h(t) = \left\{ \begin{array}{c} 0 \\
 +
  0.5/T  \\ 1/T \cdot {\rm e}^{-t/T} \end{array} \right.\quad  
 +
\begin{array}{c}  {\rm{for} }  \\ {\rm{for} }
 +
\\  {\rm{for} }  \end{array}\begin{array}{*{20}c}
 
{  t  < 0\hspace{0.05cm},}  \\
 
{  t  < 0\hspace{0.05cm},}  \\
 
{ t  = 0\hspace{0.05cm},}  \\{ t  > 0\hspace{0.05cm}.}
 
{ t  = 0\hspace{0.05cm},}  \\{ t  > 0\hspace{0.05cm}.}
 +
 
\end{array}$$
 
\end{array}$$
  
eines Tiefpasses erster Ordnung entsprechend Aufgabe Z1.3.  
+
It can be seen that
 +
*$h_{\rm g}(t) = h_{\rm u}(t) = h(t)/2$&nbsp; holds for positive times,
 +
 +
*$h_{\rm g}(t)$&nbsp; and &nbsp;$h_{\rm u}(t)$&nbsp; differ only by the sign for negative times,
 +
 +
*$h(t) = h_{\rm g}(t) + h_{\rm u}(t)$&nbsp; holds for all times, also at time &nbsp;$t = 0$&nbsp; $($marked by circles$)$. }}
 +
 
  
[[File: P_ID1750__LZI_T_3_1_S2a_neu.png |500px | Aufteilung der Impulsantwort in einen geraden und einen ungeraden Anteil]]
+
Let us now consider the same issue in the spectral domain.&nbsp; According to the&nbsp; [[Signal_Representation/Fourier_Transform_Theorems#Assignment_Theorem|&raquo;'''Assignment Theorem'''&laquo;]]&nbsp; the following holds for the complex transfer function: &nbsp;
 +
:$$H(f) = {\rm Re} \left\{ H(f) \right \} + {\rm j} \cdot {\rm Im} \left\{ H(f) \right \}
 +
,$$
 +
where the following assignment is valid:
  
Man erkennt:  
+
:$${\rm Re} \left\{ H(f) \right \} \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\quad h_{ {\rm g}}(t)\hspace{0.05cm},$$
*Für positive Zeiten gilt $h_g(t) = h_u(t) = h(t)/2$.
 
*Für negative Zeiten unterscheiden sich $h_g(t)$ und $h_u(t)$ nur durch das Vorzeichen.  
 
*Für alle Zeiten gilt $h(t) = h_g(t) + h_u(t)$, auch zum Zeitpunkt $t$ = 0 (durch Kreise markiert).
 
{{end}}
 
  
==Real– und Imaginärteil einer kausalen Übertragungsfunktion (2)==
+
:$${\rm j} \cdot {\rm Im} \left\{ H(f) \right\}  \quad  \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\quad h_{ {\rm u}}(t)\hspace{0.05cm}.$$
Betrachten wir nun den gleichen Sachverhalt im Spektralbereich. Nach dem Zuordnungssatz  gilt für die komplexe Übertragungsfunktion:
 
$$H(f) = {\rm Re} \left\{ H(f) \right \} + {\rm j} \cdot {\rm Im} \left\{ H(f) \right \}
 
  \hspace{0.05cm},\hspace{5cm}$$
 
  
$${\rm Re} \left\{ H(f) \right \} & \quad \hspace{- 0.6cm} \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\quad h_{{\rm g}}(t)\hspace{0.05cm},\\ {\rm j} \cdot {\rm Im} \left\{ H(f) \right\} & \quad &  \hspace{- 0.6cm} \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\quad h_{{\rm u}}(t)\hspace{0.05cm}.$$
+
First,&nbsp; this relationship between real part and imaginary part of &nbsp;$H(f)$&nbsp; shall be worked out using another example.
Zunächst soll an einem Beispiel der Zusammenhang zwischen Real– und Imaginärteil des Frequenzgangs $H(f)$ herausgearbeitet werden.
 
{{Beispiel}}
 
Wir gehen wieder von einem Tiefpass erster Ordnung aus:
 
$$H(f) = \frac{1}{1+{\rm j}\cdot f/f_{\rm G}} = \frac{1}{1+(f/f_{\rm G})^2}- {\rm j} \cdot \frac{f/f_{\rm G}}{1+(f/f_{\rm G})^2} \hspace{0.05cm}.$$
 
Hierbei gibt $f_G$ die 3dB–Grenzfrequenz an, bei der $|H(f)|^2$ auf die Hälfte seines Maximums (bei $f =$ 0) abgesunken ist. Die dazugehörige Impulsantwort  $h(t)$ wurde bereits auf der letzten Seite dargestellt, wobei $f_G = 1/(2πT)$ zu setzen ist.
 
  
[[File:P_ID1754__LZI_T_3_1_S2b_neu.png|400px|Frequenzgang eines Tiefpasses erster Ordnung (Real– und Imaginärteil)]]
+
{{GraueBox|TEXT= 
 +
$\text{Example 2:}$&nbsp;
 +
A low-pass filter of first-order is assumed and the following holds for its transfer function:
 +
:$$H(f) = \frac{1}{1+{\rm j}\cdot f/f_{\rm G} } = \frac{1}{1+(f/f_{\rm G})^2}- {\rm j} \cdot \frac{f/f_{\rm G} }{1+(f/f_{\rm G})^2} \hspace{0.05cm}.$$
 +
[[File:P_ID1754__LZI_T_3_1_S2b_neu.png|right|frame|Frequency response of a first-order low-pass filter |class=fit]]
 +
Here,&nbsp; $f_{\rm G}$&nbsp; represents the&nbsp; $\rm 3\hspace{0.05cm}dB$&nbsp; cut-off frequency at which&nbsp; $\vert H(f)\vert^2$&nbsp; has decreased to half of its maximum&nbsp; $($at&nbsp; $f = 0)$.&nbsp; The corresponding impulse response&nbsp;  $h(t)$&nbsp; has already been shown in&nbsp; $\text{Example 1}$&nbsp; for&nbsp;  $f_{\rm G} = 1/(2πT)$.
  
Die Grafik zeigt den Realteil (blau) und den Imaginärteil (rot) von $H(f)$. Zusätzlich ist grün–gestrichelt der Betrag dargestellt. Nachdem die beiden Zeitfunktionen $h_g(t)$ und $h_u(t)$ über die Signumfunktion zusammenhängen, sind auch Re{ $H(f)$} und Im{ $H(f)$} fest miteinander verknüpft. Der Zusammenhang ist dabei durch die Hilbert–Transformation gegeben, die nachfolgend beschrieben wird.
+
&rArr; &nbsp; The graph shows the real part&nbsp; $($blue$)$&nbsp; and the imaginary part&nbsp; $($red$)$&nbsp; of&nbsp; $H(f)$.&nbsp;  In addition,&nbsp; the magnitude is shown dashed in green.  
{{end}}
 
  
==Hilbert–Transformation==
+
Since the time functions &nbsp;$h_{\rm g}(t)$&nbsp; and &nbsp;$h_{\rm u}(t)$&nbsp; are related by the sign function,&nbsp; there also exists a fixed relationship
Wir betrachten hier ganz allgemein zwei Zeitfunktionen $u(t)$ und $w(t) = sign(t) · u(t)$. Die dazugehörigen Spektralfunktionen sind $U(f)$ und $j · W(f)$. Mit der Fourierkorrespondenz
+
* between the real part &nbsp; &rArr; &nbsp; ${\rm Re} \{H(f)\}$&nbsp;
$${\rm sign}(t) \quad \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\quad \frac{1}{{\rm j} \, \pi f }$$
+
erhält man nach Ausschreiben des Faltungsintegrals  mit der Integrationsvariablen $ν$:
+
* and the imaginary part &nbsp; &rArr; &nbsp;${\rm Im} \{H(f)\}$&nbsp;
$${\rm j} \cdot W(f) =  \frac{1}{{\rm j} \, \pi f }\, \star \, U(f) \quad \Rightarrow \quad W(f) = -\frac{1}{\pi }\int\limits_{-\infty}^{+\infty} { \frac{U(\nu)}{f - \nu}}\hspace{0.1cm}{\rm d}\nu \hspace{0.05cm}.$$
 
Da aber gleichzeitig auch $u(t) = sign(t) · w(t)$ zutrifft, gilt in gleicher Weise:
 
$$U(f) =  \frac{1}{{\rm j} \, \pi f }\, \star \, {\rm j} \cdot W(f) \quad \Rightarrow \quad U(f) = \frac{1}{\pi }\int\limits_{-\infty}^{+\infty} { \frac{W(\nu)}{f - \nu}}\hspace{0.1cm}{\rm d}\nu \hspace{0.05cm}.$$
 
  
  
Man benennt diese ''Integraltransformation'' nach ihrem Entdecker David Hilbert.  Beide Varianten der Hilbert–Transformation werden im weiteren Verlauf mit folgenden Kurzzeichen gekennzeichnet:
+
of the transfer function&nbsp; ${\cal H} \{H(f)\}$  &nbsp; &rArr; &nbsp; &raquo;'''Hilbert transform'''&laquo;.
$$W(f)  \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad U(f) \hspace{0.2cm}{\rm bzw.}\hspace{0.2cm}W(f)= {\cal H}\left\{U(f) \right \}\hspace{0.05cm}.$$
+
Zur Berechnung des durch die Pfeilspitze markierten Spektrums – hier $U(f)$ – wird von den beiden ansonsten identischen Gleichungen diejenige mit positivem Vorzeichen genommen. Das durch den Kreis markierte Spektrum – hier $W(f)$ – ergibt sich dagegen aus der Gleichung mit negativem Vorzeichen.  
+
This is described below.}}
  
Bei doppelter Anwendung der Hilbert–Transformation erhält man wieder die ursprüngliche Funktion mit Vorzeichenwechsel, bei vierfacher Anwendung die ursprüngliche Funktion inklusive dem Vorzeichen:
+
==Hilbert transform==
$${\cal H}\left\{ {\cal H}\left\{ U(f) \right \} \right \} = -U(f), \hspace{0.2cm}  {\cal H}\left\{ {\cal H}\left\{ {\cal H}\left\{ {\cal H}\left\{ U(f) \right \} \right \} \right \} \right \}= U(f)\hspace{0.05cm}.$$
+
<br>
{{Beispiel}}
+
Here,&nbsp; two time functions&nbsp; $u(t)$&nbsp; and&nbsp; $w(t) = \sign(t) · u(t)$&nbsp; are considered in the most general sense:
In [Mar94] findet man die folgende Hilbert–Korrespondenz:
+
*The associated spectral functions are denoted by&nbsp; $U(f)$&nbsp; and&nbsp; ${\rm j} · W(f)$.
$$\frac{1}{1+x^2}  \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad \frac{x}{1+x^2}\hspace{0.05cm}.$$
+
Hierbei steht $x$ stellvertretend für eine geeignet normierte Zeit– oder Frequenzvariable. Benutzen wir beispielsweise $x = f/f_G$ als normierte Frequenzvariable, so erhält man daraus die Korrespondenz:
+
*That is: &nbsp; In this section&nbsp; ${w(t) \, \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet \, {\rm j}  \cdot W(f) }$&nbsp; is valid and not the usual Fourier correspondence&nbsp; ${w(t) \, \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet \, W(f)}.$
$$\frac{1}{1+(f/f_{\rm G})^2}  \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad \frac{f/f_{\rm G}}{1+(f/f_{\rm G})^2}\hspace{0.05cm}.$$
 
Ausgehend von der Gleichung
 
$${\rm Im} \left\{ H(f) \right \}  \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad {\rm Re} \left\{ H(f) \right \}$$
 
wird somit das auf der letzten Seite gefundene Ergebnis bestätigt:
 
$${\rm Im} \left\{ H(f) \right \}  = \frac{-f/f_{\rm G}}{1+(f/f_{\rm  G})^2}\hspace{0.05cm}.$$
 
{{end}}
 
  
==Einige Paare von Hilbert–Korrespondenzen==
 
  
Zur Herleitung von Hilbert–Korrespondenzen geht man sehr pragmatisch vor, nämlich wie folgt:
+
Using the correspondence &nbsp; ${\rm sign}(t) \,  \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet \, {1}/({{\rm j} \, \pi f })$ &nbsp; the following is obtained after writing the [[Signal_Representation/The_Convolution_Theorem_and_Operation#Convolution_in_the_time domain|&raquo;convolution integral&laquo;]] out in full with the integration variable&nbsp; $ν$ :
*Man berechnet die Laplace–Transformierte  $Y_L(p)$ einer Zeitfunktion $y(t)$, wie im Kapitel 3.2 beschrieben. Diese ist somit bereits implizit kausal.
+
:$${\rm j} \cdot W(f) =  \frac{1}{{\rm j} \, \pi f }\, \star \, U(f) \quad \Rightarrow \quad W(f) = -\frac{1}{\pi }\int\limits_{-\infty}^{+\infty} { \frac{U(\nu)}{f - \nu}}\hspace{0.1cm}{\rm d}\nu \hspace{0.05cm}.$$
*Anschließend wandelt man die Spektralfunktion $Y_L(p)$ in das zugehörige Fourierspektrum $Y(f)$ um und spaltet dieses in Real– und Imaginärteil auf. Dazu ersetzt man $p$ durch $j2πf.$  
+
However,&nbsp; since at the same time  also holds &nbsp; $u(t) = \sign(t) · w(t)$,&nbsp; the following is valid in the same way:
*Re{ $Y(f)$} und Im{ $Y(f)$} sind somit ein Paar von Hilbert–Transformierten.  
+
:$$U(f) =  \frac{1}{{\rm j} \, \pi f }\, \star \, {\rm j} \cdot W(f) \quad \Rightarrow \quad U(f) = \frac{1}{\pi }\int\limits_{-\infty}^{+\infty} { \frac{W(\nu)}{f - \nu}}\hspace{0.1cm}{\rm d}\nu \hspace{0.05cm}.$$
*Man ersetzt die Frequenzvariable $f$ durch $x$ sowie Re{ $Y(f)$} ⇒ $g(x)$ bzw. Im{ $Y(f)$} ⇒ H{ $g(x)$}.  
 
*Die neue Variable $x$ kann sowohl eine geeignet normierte Frequenz oder auch eine normierte Zeit beschreiben. Somit ist die Hilbert–Transformation auf verschiedene Probleme anwendbar.
 
  
[[File:P_ID1752__LZI_T_3_1_S4_neu.png|600px|Tabelle mit Hilbert–Korrespondenzen]]
+
These&nbsp; &raquo;integral transformations&laquo;&nbsp; are named after their discoverer&nbsp; [https://en.wikipedia.org/wiki/David_Hilbert $\text{David Hilbert}$]
  
Die Tabelle zeigt einige solcher Hilbertpaare. Auf die Vorzeichen wurde verzichtet, so dass beide Richtungen gültig sind. Gilt beispielsweise H{$g(x)$} $= f(x)$, so folgt daraus auch H{$f(x)$} $= –g(x)$:
+
{{BlaueBox|TEXT= 
$${\cal H}\left \{ \cos(x) \right\} = \sin(x)\hspace{0.3cm}\Rightarrow \hspace{0.3cm} {\cal H}\left \{ \sin(x) \right\} = -\cos(x)\hspace{0.05cm}.$$
+
$\text{Definitions:}$&nbsp; Both variants of the&nbsp; &raquo;'''Hilbert transformation'''&laquo;&nbsp; will be denoted by the following abbreviations in the further course:
 +
:$$W(f) \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad U(f) \hspace{0.8cm}{\rm or}\hspace{0.8cm}W(f)= {\cal H}\left\{U(f) \right \}\hspace{0.05cm}.$$
 +
*To calculate the spectrum marked by the arrowhead&nbsp; –&nbsp; here &nbsp;$U(f)$ &nbsp; –&nbsp; the equation with the positive sign is taken from the two otherwise identical upper equations:
 +
:$$U(f) = \frac{1}{\pi }\int\limits_{-\infty}^{+\infty} { \frac{W(\nu)}{f - \nu} }\hspace{0.1cm}{\rm d}\nu \hspace{0.05cm}.$$
 +
*The spectrum marked by the circle&nbsp; –&nbsp; here &nbsp;$W(f)$ &nbsp; –&nbsp; arises as a result from the equation with the negative sign:
 +
:$$
 +
W(f) = -\frac{1}{\pi }\int\limits_{-\infty}^{+\infty} { \frac{U(\nu)}{f - \nu} }\hspace{0.1cm}{\rm d}\nu \hspace{0.05cm}.$$}}
  
==Dämpfung und Phase von Minimum–Phasen–Systemen==
 
Eine wichtige Anwendung der Hilbert–Transformation stellt der Zusammenhang zwischen Dämpfung und Phase bei den sogenannten Minimum–Phasen–Systemen dar. Im Vorgriff auf das Kapitel 3.2  sei erwähnt, dass diese Systeme in der rechten $p$–Halbebene weder Pole noch Nullstellen aufweisen dürfen.
 
  
Allgemein gilt für die Übertragungsfunktion $H(f)$ mit dem komplexen Übertragungsmaß $g(f)$ sowie der Dämpfungsfunktion $a(f)$ und der Phasenfunktion $b(f)$:
+
Applying the Hilbert transformation twice yields the original function with a change of sign,&nbsp; and applying it four times yields the original function including the correct sign:  
$$H(f) = {\rm e}^{-g(f)} = {\rm e}^{-a(f)\hspace{0.05cm}- \hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}b(f)\hspace{0.3cm}\Rightarrow \hspace{0.3cm} g(f) = a(f)+ {\rm j} \cdot b(f)\hspace{0.05cm}.$$
+
:$${\cal H}\left\{ {\cal H}\left\{ U(f) \right \} \right \} = -U(f),$$
Bei den Minimum–Phasen–Systemen gilt nun aber nicht nur wie bei allen realisierbaren Systemen die Hilbert–Transformation bezüglich Imaginär– und Realteil,
+
:$${\cal H}\left\{ {\cal H}\left\{ {\cal H}\left\{ {\cal H}\left\{ U(f) \right \} \right \} \right \} \right \}= U(f)\hspace{0.05cm}.$$
$${\rm Im} \left\{ H(f) \right \} \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad {\rm Re} \left\{ H(f) \right \}\hspace{0.05cm},$$
 
sondern zusätzlich auch noch die Hilbert–Korrespondenz zwischen Phasen– und Dämpfungsfunktion:
 
$$b(f)  \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad a(f)\hspace{0.05cm}.$$
 
{{Beispiel}}
 
Ein Tiefpass besitze im Durchlassbereich, also für $|f| < f_G$, den Frequenzgang $H(f) =$ 1 ⇒  $a(f) =$ 0 Np, während für größere Frequenzen die Dämpfungsfunktion $a(f)$ den konstanten Wert $a_S$ (in Neper) besitzt. In diesem Sperrbereich ist $H(f) = exp(–a_S)$ zwar sehr klein, aber nicht 0.
 
  
[File:P_ID1753__LZI_T_3_1_S5_neu.png|600px|Dämpfung und Phase eines beispielhaften Minimum–Phasen–Tiefpasses]]
+
{{GraueBox|TEXT= 
 +
$\text{Example 3:}$&nbsp;
 +
In&nbsp; [Mar94]<ref name ='Mar94'>Marko, H.:&nbsp; Methoden der Systemtheorie.&nbsp; 3. Auflage. Berlin – Heidelberg: Springer, 1994.</ref>&nbsp; the following Hilbert correspondence can be found:
 +
:$$\frac{1}{1+x^2}  \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad \frac{x}{1+x^2}\hspace{0.05cm}.$$
 +
*Here, &nbsp;$x$&nbsp; is representative of a suitably normalized time or frequency variable.  
  
Soll der Tiefpass kausal und damit realisierbar sein, so muss die Phasenfunktion $b(f)$ gleich der Hilbert–Transformierten der Dämpfung $a(f)$ sein. Da die Hilbert–Transformierte einer Konstanten 0 ist, kann in gleicher Weise von der Funktion $a(f) – a_S$ ausgegangen werden. Diese in der Grafik gestrichelt eingezeichnete Funktion ist zwischen $±f_G$ (negativ) rechteckförmig. Entsprechend der Tabelle  auf der letzten Seite gilt deshalb:
+
*For example,&nbsp; if we use &nbsp;$x = f/f_{\rm G}$&nbsp; as a normalized frequency variable,&nbsp; then we obtain the correspondence:
$$b(f)  = \frac{a_{\rm S}}{\pi} \cdot {\rm ln}\hspace{0.1cm}\left|\frac{f+f_{\rm G}}{f-f_{\rm  G}}\right|\hspace{0.05cm}.$$
+
:$$\frac{1}{1+(f/f_{\rm G})^2}  \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad \frac{f/f_{\rm G} }{1+(f/f_{\rm G})^2}\hspace{0.05cm}.$$
Jeder andere Phasenverlauf würde dagegen zu einer akausalen Impulsantwort führen.
+
Based on the equation
{{end}}
+
:$${\rm Im} \left\{ H(f) \right \} \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad {\rm Re} \left\{ H(f) \right \}$$
 +
the result found in&nbsp; [[Linear_and_Time_Invariant_Systems/Conclusions_from_the_Allocation_Theorem#Real_and_imaginary_part_of_a_causal_transfer_function|$\text{Example 2}$]]&nbsp; is thus confirmed:
 +
:$${\rm Im} \left\{ H(f) \right \}   = \frac{-f/f_{\rm G} }{1+(f/f_{\rm  G})^2}\hspace{0.05cm}.$$}}
  
 +
==Some pairs of Hilbert correspondences==
 +
<br>
 +
A very pragmatic way is followed to derive Hilbert correspondences,&nbsp; namely as follows:
 +
 +
*The &nbsp;[[Linear_and_Time_Invariant_Systems/Laplace_Transform_and_p-Transfer_Function#Definition of the Laplace transformation|&raquo;Laplace transform&laquo;]]&nbsp;  $Y_{\rm L}(p)$&nbsp; of function &nbsp;$y(t)$ is computed as described in chapter&nbsp; [[Linear_and_Time_Invariant_Systems/Laplace_Transform_and_p-Transfer_Function|&raquo;Laplace Transform and p-Transfer Function&laquo;]].&nbsp; This is already implicitly causal.
 +
 +
*$Y_{\rm L}(p)$&nbsp; is converted into the associated Fourier spectrum &nbsp;$Y(f)$&nbsp; which is split into real and imaginary part.&nbsp; To do this,&nbsp; the variable &nbsp;$p$&nbsp; is replaced by &nbsp;${\rm j \cdot 2}πf.$
  
 +
[[File:EN_LZI_T_3_1_S4.png|right|frame|Table with Hilbert correspondences|class=fit]]
  
  
 +
The real and imaginary parts &ndash; so &nbsp;${\rm Re} \{Y(f)\}$&nbsp; and &nbsp;${\rm Im} \{Y(f)\}$ &ndash; are thus a pair of Hilbert transforms. Furthermore,
 +
#&nbsp; the frequency variable &nbsp;$f$&nbsp; is substituted by &nbsp;$x$,
 +
#&nbsp;  the real part&nbsp; ${\rm Re} \{Y(f)\}$&nbsp; by &nbsp;$g(x)$,&nbsp; and
 +
#&nbsp;  the imaginary part&nbsp; ${\rm Im} \{Y(f)\}$&nbsp; by  &nbsp;${\cal H} \{g(x)\}$.
  
  
   
+
The new variable &nbsp;$x$&nbsp; can describe both
 +
*a&nbsp; $($suitably$)$&nbsp; normalized frequency
 +
 
 +
*or a&nbsp; $($suitably$)$&nbsp; normalized time.
 +
 
 +
 
 +
Hence,&nbsp; the&nbsp; [[Signal_Representation/Analytical_Signal_and_Its_Spectral_Function#Representation with Hilbert transform|&raquo;Hilbert transformation&laquo;]]&nbsp; is applicable to various problems.&nbsp; The table shows some of such Hilbert pairs. The signs have been omitted so that both directions are valid.
 +
<br clear=all>
 +
{{GraueBox|TEXT=  
 +
$\text{Example 4:}$&nbsp; For example,&nbsp; if &nbsp;${\cal H} \{g(x)\} = f(x)$&nbsp; holds,&nbsp; then from this it also follows that &nbsp;
 +
:$${\cal H} \{f(x)\} = \, –g(x).$$
 +
 
 +
In particular,&nbsp; it also holds:
 +
:$${\cal H}\left \{ \cos(x) \right\} = \sin(x)\hspace{0.3cm}\Rightarrow \hspace{0.3cm}  {\cal H}\left \{ \sin(x) \right\} = -\cos(x)\hspace{0.05cm}.$$}}
 +
 
 +
==Attenuation and phase of minimum-phase systems==
 +
<br>
 +
An important application of the Hilbert transformation is the relationship between attenuation and phase in so-called&nbsp; &raquo;'''minimum-phase systems'''&laquo;.&nbsp;
 +
 
 +
:In anticipation of the following chapter &nbsp;[[Linear_and_Time_Invariant_Systems/Laplace_Transform_and_p-Transfer_Function|&raquo;Laplace Transform and p-Transfer Function&laquo;]],&nbsp; it should be mentioned that these systems may have neither poles nor zeros in the right&nbsp; $p$–half plane.
 +
 
 +
In general,&nbsp; the following holds for the transfer function &nbsp;$H(f)$&nbsp; with
 +
# the &nbsp;[[Linear_and_Time_Invariant_Systems/Some_Results_from_Transmission_Line_Theory#Equivalent circuit diagram of a short transmission line section|&raquo;complex transmission function&laquo;]]&nbsp; $g(f)$&nbsp;
 +
#the attenuation function &nbsp;$a(f)$&nbsp; and
 +
# the phase function &nbsp;$b(f)$:
 +
::$$H(f) = {\rm e}^{-g(f)} = {\rm e}^{-a(f)\hspace{0.05cm}- \hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}b(f)}  \hspace{0.3cm}\Rightarrow \hspace{0.3cm}  g(f) = a(f)+ {\rm j} \cdot b(f)\hspace{0.05cm}.$$
 +
Now in the case of minimum-phase systems,&nbsp; the Hilbert transformation does not only  hold
 +
*regarding imaginary and real part as it does for all realizable systems:
 +
:$${\rm Im} \left\{ H(f) \right \}  \, \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow \, {\rm Re} \left\{ H(f) \right \}\hspace{0.01cm},$$
 +
*but additionally also the Hilbert correspondence between the phase and attenuation functions is valid:
 +
:$$b(f)  \, \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow \, a(f)\hspace{0.05cm}.$$
 +
 
 +
{{GraueBox|TEXT= 
 +
$\text{Example 5:}$ &nbsp;
 +
A low-pass filter has the frequency response &nbsp;$H(f) = 1$ &nbsp; ⇒  &nbsp; $a(f) =0$&nbsp; Np in the&nbsp; &raquo;pass band&laquo; &nbsp; &rArr; &nbsp; &nbsp;$\vert f \vert < f_{\rm G}$,&nbsp; while for higher frequencies the attenuation function &nbsp;$a(f)$&nbsp; has the constant value &nbsp;$a_{\rm S}$&nbsp; $($in Neper$)$.
 +
[[File:P_ID1753__LZI_T_3_1_S5_neu.png|right|frame|Attenuation and phase functions of an exemplary minimum-phase low-pass filter|class=fit]]
 +
 
 +
#In this&nbsp; &raquo;stop band&laquo;&nbsp; &rArr; &nbsp; &nbsp;$\vert f \vert > f_{\rm G}$,&nbsp; the frequency response &nbsp;$H(f) = {\rm e}^{–a_{\rm S} }$&nbsp; is very small but not zero.
 +
#If the low-pass filter is to be causal and thus realizable, then the phase function &nbsp;$b(f)$&nbsp; must be equal to the Hilbert transform of the attenuation &nbsp;$a(f)$&nbsp;.
 +
#Since the Hilbert transform of a constant is zero, the function &nbsp;$a(f) - a_{\rm S}$&nbsp; can be assumed in the same way.
 +
#This function shown dashed in the graph is&nbsp;  $($negative$)$&nbsp; rectangular between &nbsp;$±f_{\rm G}$.&nbsp; According to the &nbsp;[[Linear_and_Time_Invariant_Systems/Conclusions_from_the_Allocation_Theorem#Some pairs of Hilbert correspondences|$\text{table}$]]&nbsp; in the last section the following thus holds:
 +
::$$b(f)  = {a_{\rm S} }/{\pi} \cdot {\rm ln}\hspace{0.1cm}\left\vert \frac{f+f_{\rm G} }{f-f_{\rm  G} }\right \vert \hspace{0.05cm}.$$
 +
 
 +
$\text{Note:}$&nbsp;
 +
In contrast,&nbsp; any other phase response would result in a non-causal impulse response.}}
  
 +
==Exercises for the chapter==
  
 +
[[Aufgaben:Exercise_3.1:_Causality_Considerations|Exercise 3.1: Causality Considerations]]
  
 +
[[Aufgaben:Exercise_3.1Z:_Hilbert_Transform|Exercise 3.1Z: Hilbert Transform]]
  
  
 +
==References==
 +
<references/>
  
 
{{Display}}
 
{{Display}}

Latest revision as of 19:21, 15 November 2023

# OVERVIEW OF THE THIRD MAIN CHAPTER #


In the first two chapters,  filter functions with real-valued frequency responses were mostly considered for reasons of presentation so that the associated time function is symmetric about zero-time. 

  • However,  the impulse response of a realizable system must always be causal,  that is,  $h(t)$  must be identical to zero for  $t < 0$. 
  • This strong asymmetry of the time function  $h(t)$  implies at the same time that with exception of  $H(f) = K$  the frequency response  $H(f)$  of a realizable system is always complex-valued where there is a fixed relation between its real part and imaginary part.
  • This third chapter provides a recapitulatory account of the description of causal realizable systems,  which differ also in the mathematical methods from those commonly used with non-causal systems.


In detail,  the following is dealt with:

  1. The  »Hilbert transform«,  which states how real and imaginary parts of  $H(f)$  are related,
  2. the  »Laplace transform«,  which yields another spectral function  $H_{\rm L}(p)$  for acausal  $h(t)$,
  3. the description of realizable systems by the  »pole-zero plot«,  as well as
  4. the  »inverse Laplace transform«  using the  function theory  $($»residue theorem«$)$.


For this chapter,  we recommend two of our multimedia offerings:


Prerequisites for the entire third main chapter


In the first two chapters,  mostly real  »transfer functions«   $H(f)$  were considered for which the associated impulse response  $h(t)$  is consequently always symmetric with respect to the reference time  $t = 0$.  Such transfer functions

  • are suitable to explain basic relationships in a simple way,
  • but unfortunately are not realizable for reasons of causality.


This becomes clear if the definition of the impulse response is considered:

$\text{Definition:}$  The  »impulse response«  $h(t)$  is equal to the output signal  $y(t)$  of the system if an infinitely short impulse with an infinitely large amplitude is applied to the input at time  $t = 0$ :   $x(t) = δ(t)$.  Such an impulse is called a  »Dirac delta impulse«.


It is obvious that no impulse response can be realized for which  $h(t < 0) ≠ 0$  holds.

$\text{Definition:}$  For a  »causal system«  the impulse response  $h(t)$  is identical to zero for all times  $t < 0$.


The only real transfer function that satisfies the causality condition  »the output signal cannot start before the input signal«  is:

$$H(f) = K \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\quad h(t) = K \cdot \delta(t).$$

All other real-valued transfer functions  $H(f)$  describe non-causal systems and thus cannot be realized by an  $($electrical$)$  circuit network.

$\text{In other words:}$   Except for the transfer function  $H(f) = K,$  any realistic transfer function is complex.

  • If  $K=1$  holds additionally,  the transfer function is said to be  »ideal«. 
  • Then,  the output signal  $y(t)$  is identical to the input signal  $x(t)$  – even without attenuation or amplification.

Real and imaginary part of a causal transfer function


Any causal impulse response  $h(t)$  can be represented as the sum

  • of an even  (German:  "gerade"   ⇒   "g")  part  $h_{\rm g}(t)$ 
  • and an odd  (German:  "ungerade"   ⇒   "u")  part  $h_{\rm u}(t)$:
$$\begin{align*} h_{ {\rm g}}(t) & = {1}/{2}\cdot \big[ h(t) + h(-t) \big]\hspace{0.05cm},\\ h_{ {\rm u}}(t) & = {1}/{2}\cdot \big[ h(t) - h(-t) \big] = h_{ {\rm g}}(t) \cdot {\rm sign}(t)\hspace{0.05cm} .\end{align*}$$

Here,  the so-called  »sign function«  is used:

$${\rm sign}(t) = \left\{ \begin{array}{c} -1 \\ +1 \\ \end{array} \right.\quad \quad \begin{array}{c} {\rm{for}} \\ {\rm{for}} \\ \end{array}\begin{array}{*{20}c} { t < 0,} \\ { t > 0.} \\ \end{array}$$


$\text{Example 1:}$  The graph shows this splitting for a causal exponentially decreasing impulse response of a low-pass filter of first-order corresponding to  $\text{Exercise 1.3Z}$:

Splitting of the impulse response into an even part and an odd part
$$h(t) = \left\{ \begin{array}{c} 0 \\ 0.5/T \\ 1/T \cdot {\rm e}^{-t/T} \end{array} \right.\quad \begin{array}{c} {\rm{for} } \\ {\rm{for} } \\ {\rm{for} } \end{array}\begin{array}{*{20}c} { t < 0\hspace{0.05cm},} \\ { t = 0\hspace{0.05cm},} \\{ t > 0\hspace{0.05cm}.} \end{array}$$

It can be seen that

  • $h_{\rm g}(t) = h_{\rm u}(t) = h(t)/2$  holds for positive times,
  • $h_{\rm g}(t)$  and  $h_{\rm u}(t)$  differ only by the sign for negative times,
  • $h(t) = h_{\rm g}(t) + h_{\rm u}(t)$  holds for all times, also at time  $t = 0$  $($marked by circles$)$.


Let us now consider the same issue in the spectral domain.  According to the  »Assignment Theorem«  the following holds for the complex transfer function:  

$$H(f) = {\rm Re} \left\{ H(f) \right \} + {\rm j} \cdot {\rm Im} \left\{ H(f) \right \} ,$$

where the following assignment is valid:

$${\rm Re} \left\{ H(f) \right \} \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\quad h_{ {\rm g}}(t)\hspace{0.05cm},$$
$${\rm j} \cdot {\rm Im} \left\{ H(f) \right\} \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\quad h_{ {\rm u}}(t)\hspace{0.05cm}.$$

First,  this relationship between real part and imaginary part of  $H(f)$  shall be worked out using another example.

$\text{Example 2:}$  A low-pass filter of first-order is assumed and the following holds for its transfer function:

$$H(f) = \frac{1}{1+{\rm j}\cdot f/f_{\rm G} } = \frac{1}{1+(f/f_{\rm G})^2}- {\rm j} \cdot \frac{f/f_{\rm G} }{1+(f/f_{\rm G})^2} \hspace{0.05cm}.$$
Frequency response of a first-order low-pass filter

Here,  $f_{\rm G}$  represents the  $\rm 3\hspace{0.05cm}dB$  cut-off frequency at which  $\vert H(f)\vert^2$  has decreased to half of its maximum  $($at  $f = 0)$.  The corresponding impulse response  $h(t)$  has already been shown in  $\text{Example 1}$  for  $f_{\rm G} = 1/(2πT)$.

⇒   The graph shows the real part  $($blue$)$  and the imaginary part  $($red$)$  of  $H(f)$.  In addition,  the magnitude is shown dashed in green.

Since the time functions  $h_{\rm g}(t)$  and  $h_{\rm u}(t)$  are related by the sign function,  there also exists a fixed relationship

  • between the real part   ⇒   ${\rm Re} \{H(f)\}$ 
  • and the imaginary part   ⇒  ${\rm Im} \{H(f)\}$ 


of the transfer function  ${\cal H} \{H(f)\}$   ⇒   »Hilbert transform«.

This is described below.

Hilbert transform


Here,  two time functions  $u(t)$  and  $w(t) = \sign(t) · u(t)$  are considered in the most general sense:

  • The associated spectral functions are denoted by  $U(f)$  and  ${\rm j} · W(f)$.
  • That is:   In this section  ${w(t) \, \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet \, {\rm j} \cdot W(f) }$  is valid and not the usual Fourier correspondence  ${w(t) \, \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet \, W(f)}.$


Using the correspondence   ${\rm sign}(t) \, \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet \, {1}/({{\rm j} \, \pi f })$   the following is obtained after writing the »convolution integral« out in full with the integration variable  $ν$ :

$${\rm j} \cdot W(f) = \frac{1}{{\rm j} \, \pi f }\, \star \, U(f) \quad \Rightarrow \quad W(f) = -\frac{1}{\pi }\int\limits_{-\infty}^{+\infty} { \frac{U(\nu)}{f - \nu}}\hspace{0.1cm}{\rm d}\nu \hspace{0.05cm}.$$

However,  since at the same time also holds   $u(t) = \sign(t) · w(t)$,  the following is valid in the same way:

$$U(f) = \frac{1}{{\rm j} \, \pi f }\, \star \, {\rm j} \cdot W(f) \quad \Rightarrow \quad U(f) = \frac{1}{\pi }\int\limits_{-\infty}^{+\infty} { \frac{W(\nu)}{f - \nu}}\hspace{0.1cm}{\rm d}\nu \hspace{0.05cm}.$$

These  »integral transformations«  are named after their discoverer  $\text{David Hilbert}$.

$\text{Definitions:}$  Both variants of the  »Hilbert transformation«  will be denoted by the following abbreviations in the further course:

$$W(f) \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad U(f) \hspace{0.8cm}{\rm or}\hspace{0.8cm}W(f)= {\cal H}\left\{U(f) \right \}\hspace{0.05cm}.$$
  • To calculate the spectrum marked by the arrowhead  –  here  $U(f)$   –  the equation with the positive sign is taken from the two otherwise identical upper equations:
$$U(f) = \frac{1}{\pi }\int\limits_{-\infty}^{+\infty} { \frac{W(\nu)}{f - \nu} }\hspace{0.1cm}{\rm d}\nu \hspace{0.05cm}.$$
  • The spectrum marked by the circle  –  here  $W(f)$   –  arises as a result from the equation with the negative sign:
$$ W(f) = -\frac{1}{\pi }\int\limits_{-\infty}^{+\infty} { \frac{U(\nu)}{f - \nu} }\hspace{0.1cm}{\rm d}\nu \hspace{0.05cm}.$$


Applying the Hilbert transformation twice yields the original function with a change of sign,  and applying it four times yields the original function including the correct sign:

$${\cal H}\left\{ {\cal H}\left\{ U(f) \right \} \right \} = -U(f),$$
$${\cal H}\left\{ {\cal H}\left\{ {\cal H}\left\{ {\cal H}\left\{ U(f) \right \} \right \} \right \} \right \}= U(f)\hspace{0.05cm}.$$

$\text{Example 3:}$  In  [Mar94][1]  the following Hilbert correspondence can be found:

$$\frac{1}{1+x^2} \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad \frac{x}{1+x^2}\hspace{0.05cm}.$$
  • Here,  $x$  is representative of a suitably normalized time or frequency variable.
  • For example,  if we use  $x = f/f_{\rm G}$  as a normalized frequency variable,  then we obtain the correspondence:
$$\frac{1}{1+(f/f_{\rm G})^2} \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad \frac{f/f_{\rm G} }{1+(f/f_{\rm G})^2}\hspace{0.05cm}.$$

Based on the equation

$${\rm Im} \left\{ H(f) \right \} \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad {\rm Re} \left\{ H(f) \right \}$$

the result found in  $\text{Example 2}$  is thus confirmed:

$${\rm Im} \left\{ H(f) \right \} = \frac{-f/f_{\rm G} }{1+(f/f_{\rm G})^2}\hspace{0.05cm}.$$

Some pairs of Hilbert correspondences


A very pragmatic way is followed to derive Hilbert correspondences,  namely as follows:

  • $Y_{\rm L}(p)$  is converted into the associated Fourier spectrum  $Y(f)$  which is split into real and imaginary part.  To do this,  the variable  $p$  is replaced by  ${\rm j \cdot 2}πf.$
Table with Hilbert correspondences


The real and imaginary parts – so  ${\rm Re} \{Y(f)\}$  and  ${\rm Im} \{Y(f)\}$ – are thus a pair of Hilbert transforms. Furthermore,

  1.   the frequency variable  $f$  is substituted by  $x$,
  2.   the real part  ${\rm Re} \{Y(f)\}$  by  $g(x)$,  and
  3.   the imaginary part  ${\rm Im} \{Y(f)\}$  by  ${\cal H} \{g(x)\}$.


The new variable  $x$  can describe both

  • a  $($suitably$)$  normalized frequency
  • or a  $($suitably$)$  normalized time.


Hence,  the  »Hilbert transformation«  is applicable to various problems.  The table shows some of such Hilbert pairs. The signs have been omitted so that both directions are valid.

$\text{Example 4:}$  For example,  if  ${\cal H} \{g(x)\} = f(x)$  holds,  then from this it also follows that  

$${\cal H} \{f(x)\} = \, –g(x).$$

In particular,  it also holds:

$${\cal H}\left \{ \cos(x) \right\} = \sin(x)\hspace{0.3cm}\Rightarrow \hspace{0.3cm} {\cal H}\left \{ \sin(x) \right\} = -\cos(x)\hspace{0.05cm}.$$

Attenuation and phase of minimum-phase systems


An important application of the Hilbert transformation is the relationship between attenuation and phase in so-called  »minimum-phase systems«. 

In anticipation of the following chapter  »Laplace Transform and p-Transfer Function«,  it should be mentioned that these systems may have neither poles nor zeros in the right  $p$–half plane.

In general,  the following holds for the transfer function  $H(f)$  with

  1. the  »complex transmission function«  $g(f)$ 
  2. the attenuation function  $a(f)$  and
  3. the phase function  $b(f)$:
$$H(f) = {\rm e}^{-g(f)} = {\rm e}^{-a(f)\hspace{0.05cm}- \hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}b(f)} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} g(f) = a(f)+ {\rm j} \cdot b(f)\hspace{0.05cm}.$$

Now in the case of minimum-phase systems,  the Hilbert transformation does not only hold

  • regarding imaginary and real part as it does for all realizable systems:
$${\rm Im} \left\{ H(f) \right \} \, \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow \, {\rm Re} \left\{ H(f) \right \}\hspace{0.01cm},$$
  • but additionally also the Hilbert correspondence between the phase and attenuation functions is valid:
$$b(f) \, \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow \, a(f)\hspace{0.05cm}.$$

$\text{Example 5:}$   A low-pass filter has the frequency response  $H(f) = 1$   ⇒   $a(f) =0$  Np in the  »pass band«   ⇒    $\vert f \vert < f_{\rm G}$,  while for higher frequencies the attenuation function  $a(f)$  has the constant value  $a_{\rm S}$  $($in Neper$)$.

Attenuation and phase functions of an exemplary minimum-phase low-pass filter
  1. In this  »stop band«  ⇒    $\vert f \vert > f_{\rm G}$,  the frequency response  $H(f) = {\rm e}^{–a_{\rm S} }$  is very small but not zero.
  2. If the low-pass filter is to be causal and thus realizable, then the phase function  $b(f)$  must be equal to the Hilbert transform of the attenuation  $a(f)$ .
  3. Since the Hilbert transform of a constant is zero, the function  $a(f) - a_{\rm S}$  can be assumed in the same way.
  4. This function shown dashed in the graph is  $($negative$)$  rectangular between  $±f_{\rm G}$.  According to the  $\text{table}$  in the last section the following thus holds:
$$b(f) = {a_{\rm S} }/{\pi} \cdot {\rm ln}\hspace{0.1cm}\left\vert \frac{f+f_{\rm G} }{f-f_{\rm G} }\right \vert \hspace{0.05cm}.$$

$\text{Note:}$  In contrast,  any other phase response would result in a non-causal impulse response.

Exercises for the chapter

Exercise 3.1: Causality Considerations

Exercise 3.1Z: Hilbert Transform


References

  1. Marko, H.:  Methoden der Systemtheorie.  3. Auflage. Berlin – Heidelberg: Springer, 1994.