Difference between revisions of "Linear and Time Invariant Systems/Laplace Transform and p-Transfer Function"

From LNTwww
 
(19 intermediate revisions by 2 users not shown)
Line 11: Line 11:
 
[[File:EN_LZI_T_3_2_S1.png |right|frame| General (also non-causal) and causal system model|class=fit]]
 
[[File:EN_LZI_T_3_2_S1.png |right|frame| General (also non-causal) and causal system model|class=fit]]
  
For non-causal systems and signals, the  [[Signal_Representation/Fourier_Transform_and_Its_Inverse#The_first_Fourier_integral|first Fourier integral]]  must always be applied to describe the spectral behavior and the following is valid for the output spectrum:
+
For non-causal systems and signals, the  [[Signal_Representation/Fourier_Transform_and_Its_Inverse#The_first_Fourier_integral|»first Fourier integral«]]  must always be applied to describe the spectral behavior and the following is valid for the output spectrum:
 
:$$Y(f) = X(f) \cdot H(f) \hspace{0.05cm}.$$
 
:$$Y(f) = X(f) \cdot H(f) \hspace{0.05cm}.$$
The Fourier integral also continues to be valid for causal systems and signals, i.e. under the assumption
+
The Fourier integral also continues to be valid for causal systems and signals,  i.e. under the assumption
 
:$$x(t) = 0 \hspace{0.2cm}{\rm{for}} \hspace{0.2cm} t<0\hspace{0.05cm},\hspace{0.2cm} h(t) = 0 \hspace{0.2cm}{\rm{for}} \hspace{0.2cm} t<0 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} y(t) = 0 \hspace{0.2cm}{\rm{for}} \hspace{0.2cm} t<0 \hspace{0.05cm}.$$  
 
:$$x(t) = 0 \hspace{0.2cm}{\rm{for}} \hspace{0.2cm} t<0\hspace{0.05cm},\hspace{0.2cm} h(t) = 0 \hspace{0.2cm}{\rm{for}} \hspace{0.2cm} t<0 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} y(t) = 0 \hspace{0.2cm}{\rm{for}} \hspace{0.2cm} t<0 \hspace{0.05cm}.$$  
  
In this case, however, there are significant advantages in applying the Laplace transformation while taking into account certain restrictions:
+
In this case,&nbsp; however,&nbsp; there are significant advantages in applying the&nbsp; &raquo;Laplace transformation&laquo;&nbsp; while taking into account certain restrictions:
*The systems treated in this way are always realizable by a circuit.&nbsp; The developer is not tempted to offer unrealistic solutions.  
+
#The systems treated in this way are always realizable by a circuit.&nbsp; The developer is not tempted to offer unrealistic solutions.  
*The Laplace transform &nbsp;$X_{\rm L}(p)$&nbsp; is always a real function of the spectral variable &nbsp;$p$.&nbsp; The fact that this variable is derived from the multiplication of the physical angular frequency &nbsp;$ω = 2πf$&nbsp; by the imaginary unit &nbsp;$\rm j$&nbsp; according to &nbsp;$p = {\rm j} · 2πf$&nbsp; does not matter for the user.  
+
#The Laplace transform &nbsp;$X_{\rm L}(p)$&nbsp; is always a real function of the spectral variable &nbsp;$p$.&nbsp;  
*The implicit condition &nbsp;$x(t) = 0$&nbsp; for &nbsp;$t < 0$&nbsp; specifically allows for simpler analysis of transient <br>behavior after switching-on processes than with the Fourier integral.
+
#The fact that this variable is derived from the multiplication of the physical angular frequency &nbsp;$ω = 2πf$&nbsp; by the imaginary unit &nbsp;$\rm j$&nbsp; according to &nbsp;$p = {\rm j} · 2πf$&nbsp; does not matter for the user.  
 +
#The implicit condition &nbsp;$x(t) = 0$&nbsp; for &nbsp;$t < 0$&nbsp; specifically allows for simpler analysis of transient <br>behavior after switching-on processes than with the Fourier integral.
  
 
==Definition of the Laplace transformation==
 
==Definition of the Laplace transformation==
 
<br>
 
<br>
Starting from the&nbsp; [[Signal_Representation/Fourier_Transform_and_Its_Inverse#The_first_Fourier_integral|first Fourier integral]]
+
Starting from the&nbsp; [[Signal_Representation/Fourier_Transform_and_Its_Inverse#The_first_Fourier_integral|&raquo;first Fourier integral&laquo;]]
 
:$$X(f) =    \int_{-\infty}^{+\infty} { x(t) \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm e}^{-{\rm j}\hspace{0.05cm} 2\pi f t}}\hspace{0.1cm}{\rm d}t,$$
 
:$$X(f) =    \int_{-\infty}^{+\infty} { x(t) \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm e}^{-{\rm j}\hspace{0.05cm} 2\pi f t}}\hspace{0.1cm}{\rm d}t,$$
 
the Laplace transformation is obtained directly by using the formal substitution &nbsp;$p = {\rm j} · 2πf$&nbsp; for a causal time function&nbsp; $x(t) = 0 \ \ \ \text{for} \ \ \ t < 0.$  
 
the Laplace transformation is obtained directly by using the formal substitution &nbsp;$p = {\rm j} · 2πf$&nbsp; for a causal time function&nbsp; $x(t) = 0 \ \ \ \text{for} \ \ \ t < 0.$  
Line 29: Line 30:
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
 
$\text{Definition:}$&nbsp;  
 
$\text{Definition:}$&nbsp;  
The &nbsp; '''Laplace transform''' &nbsp; of a causal time function &nbsp;$x(t)$&nbsp; is:
+
The &nbsp; &raquo;'''Laplace transform'''&laquo;&nbsp; of a causal time function &nbsp;$x(t)$&nbsp; is:
 
:$$X_{\rm L}(p) =  \int_{0}^{\infty} { x(t) \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm e}^{-p t} }\hspace{0.1cm}{\rm d}t\hspace{0.05cm}, \hspace{0.3cm}{\rm briefly}\hspace{0.3cm} X_{\rm L}(p) \quad \bullet\!\!-\!\!\!-^{\hspace{-0.25cm}\rm L}\!\!\!-\!\!\circ\quad x(t)\hspace{0.05cm}.$$ }}
 
:$$X_{\rm L}(p) =  \int_{0}^{\infty} { x(t) \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm e}^{-p t} }\hspace{0.1cm}{\rm d}t\hspace{0.05cm}, \hspace{0.3cm}{\rm briefly}\hspace{0.3cm} X_{\rm L}(p) \quad \bullet\!\!-\!\!\!-^{\hspace{-0.25cm}\rm L}\!\!\!-\!\!\circ\quad x(t)\hspace{0.05cm}.$$ }}
  
Line 37: Line 38:
 
:$$X(f) =  X_{\rm L}(p) \Bigg |_{{\hspace{0.1cm} p\hspace{0.05cm}={\rm \hspace{0.05cm} j\hspace{0.05cm}2\pi \it f}}}.$$
 
:$$X(f) =  X_{\rm L}(p) \Bigg |_{{\hspace{0.1cm} p\hspace{0.05cm}={\rm \hspace{0.05cm} j\hspace{0.05cm}2\pi \it f}}}.$$
  
*However,&nbsp; if the signal &nbsp;$x(t)$&nbsp; has periodic components and thus the spectral function &nbsp;$X(f)$&nbsp; contains Dirac delta functions,&nbsp; then this equation is not applicable.  
+
#However,&nbsp; if the signal &nbsp;$x(t)$&nbsp; has periodic components and thus the spectral function &nbsp;$X(f)$&nbsp; contains Dirac delta functions,&nbsp; then this equation is not applicable.  
*In this case, &nbsp;$p = α + {\rm j} · 2πf$&nbsp; must be applied and then the limit &nbsp;$α → 0$&nbsp; must be formed.
+
#In this case, &nbsp;$p = α + {\rm j} · 2πf$&nbsp; must be applied and then the limit &nbsp;$α → 0$&nbsp; must be formed.
  
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
 
$\text{Example 1:}$&nbsp;  
 
$\text{Example 1:}$&nbsp;  
We assume the unilaterally and exponentially decreasing time function corresponding to the&nbsp; [[Linear_and_Time_Invariant_Systems/Conclusions_from_the_Allocation_Theorem#Real_and_imaginary_part_of_a_causal_transfer_function|sketch]]&nbsp; in&nbsp; $\text{Example 1}$&nbsp; of the chapter&nbsp; "Conclusions from the Allocation Theorem":
+
We assume the unilaterally and exponentially decreasing signal corresponding to&nbsp; [[Linear_and_Time_Invariant_Systems/Conclusions_from_the_Allocation_Theorem#Real_and_imaginary_part_of_a_causal_transfer_function|$\text{Example 1}$]]&nbsp; of chapter&nbsp; &raquo;Conclusions from the Allocation Theorem&laquo;:
 
:$$x(t) = \left\{ \begin{array}{c} 0 \\ 0.5  \\ {\rm e}^{-t/T} \end{array} \right.\quad \quad \begin{array}{c}  {\rm{for} }  \\ {\rm{for} } \\  {\rm{for} }  \end{array}\begin{array}{*{20}c}{  t  < 0\hspace{0.05cm},}  \\ { t  = 0\hspace{0.05cm},}  \\{ t  > 0\hspace{0.05cm}.} \end{array}$$
 
:$$x(t) = \left\{ \begin{array}{c} 0 \\ 0.5  \\ {\rm e}^{-t/T} \end{array} \right.\quad \quad \begin{array}{c}  {\rm{for} }  \\ {\rm{for} } \\  {\rm{for} }  \end{array}\begin{array}{*{20}c}{  t  < 0\hspace{0.05cm},}  \\ { t  = 0\hspace{0.05cm},}  \\{ t  > 0\hspace{0.05cm}.} \end{array}$$
Thus,&nbsp; the Laplace transform is:
+
*Thus,&nbsp; the Laplace transform is:
 
:$$X_{\rm L}(p) =    \int_{0}^{\infty}  {\rm e}^{-t/T} \cdot  {\rm e}^{-pt} \hspace{0.1cm}{\rm d}t= \frac {1}{p + 1/T} \cdot {{\rm e}^{-(p+1/T) \hspace{0.08cm}\cdot \hspace{0.08cm}t}}\hspace{0.15cm}\Bigg \vert_{t \hspace{0.05cm}=\hspace{0.05cm} 0}^{\infty}= \frac {1}{p + 1/T} \hspace{0.05cm} .$$
 
:$$X_{\rm L}(p) =    \int_{0}^{\infty}  {\rm e}^{-t/T} \cdot  {\rm e}^{-pt} \hspace{0.1cm}{\rm d}t= \frac {1}{p + 1/T} \cdot {{\rm e}^{-(p+1/T) \hspace{0.08cm}\cdot \hspace{0.08cm}t}}\hspace{0.15cm}\Bigg \vert_{t \hspace{0.05cm}=\hspace{0.05cm} 0}^{\infty}= \frac {1}{p + 1/T} \hspace{0.05cm} .$$
Considering &nbsp;$p = {\rm j} · 2πf$,&nbsp; the conventional spectral function with respect to $f$&nbsp; is obtained:
+
*Considering &nbsp;$p = {\rm j} · 2πf$,&nbsp; the conventional spectral function with respect to $f$&nbsp; is obtained:
 
:$$X(f) =    \frac {1}{{\rm j \cdot 2\pi \it f} + 1/T} = \frac {T}{1+{\rm j \cdot 2\pi \it fT}} \hspace{0.05cm} .$$
 
:$$X(f) =    \frac {1}{{\rm j \cdot 2\pi \it f} + 1/T} = \frac {T}{1+{\rm j \cdot 2\pi \it fT}} \hspace{0.05cm} .$$
In contrast,&nbsp; if we consider the frequency response of a low-pass filter of first-order whose impulse response &nbsp;$h(t)$&nbsp; differs from the above time function by the factor &nbsp;$1/T$,&nbsp; then the following holds for the Laplace transform and the Fourier transform,&nbsp; respectively:
+
*In contrast,&nbsp; if we consider the frequency response of a low-pass filter of first-order whose impulse response &nbsp;$h(t)$&nbsp; differs from the above time function by the factor &nbsp;$1/T$,&nbsp; then the following holds for the Laplace transform and the Fourier transform,&nbsp; respectively:
 
:$$H_{\rm L}(p)= \frac {1/T}{p + 1/T}= \frac {1}{1 + p \cdot T} \hspace{0.05cm} , \hspace{0.8cm}H(f) =    \frac {1}{1+{\rm j \cdot 2\pi \it fT} } =    \frac {1}{1+{\rm j} \cdot f/f_{\rm G} }  \hspace{0.05cm} .$$
 
:$$H_{\rm L}(p)= \frac {1/T}{p + 1/T}= \frac {1}{1 + p \cdot T} \hspace{0.05cm} , \hspace{0.8cm}H(f) =    \frac {1}{1+{\rm j \cdot 2\pi \it fT} } =    \frac {1}{1+{\rm j} \cdot f/f_{\rm G} }  \hspace{0.05cm} .$$
In this equation,&nbsp; the 3dB cut-off frequency&nbsp; $($German:&nbsp; "Grenzfrequenz" &nbsp; &rArr; &nbsp; "G"$)$ &nbsp;$f_{\rm G} = 1/(2πT)$&nbsp; is used instead of the parameter &nbsp;$T$.}}  
+
*In this equation,&nbsp; the&nbsp; &raquo;3 dB cut-off frequency&laquo;&nbsp; $f_{\rm G} = 1/(2πT)$ &nbsp; $($German:&nbsp; "Grenzfrequenz" &nbsp; &rArr; &nbsp; subscript&nbsp;  "G"$)$ is used instead of the parameter &nbsp;$T$.}}  
  
 
==Some important Laplace correspondences==
 
==Some important Laplace correspondences==
 
<br>
 
<br>
Some important Laplace correspondences are compiled subsequently.&nbsp; All time signals &nbsp;$x(t)$&nbsp; considered here are assumed to be dimensionless.&nbsp; For this reason, &nbsp;$X_{\rm L}(p)$&nbsp; then always has the unit&nbsp; "second"&nbsp; as an integral over time.
+
Some important Laplace correspondences are compiled subsequently.&nbsp; All time signals &nbsp;$x(t)$&nbsp; considered here are assumed to be dimensionless.&nbsp; For this reason, &nbsp;$X_{\rm L}(p)$&nbsp; then always has the unit&nbsp; &raquo;second&laquo;&nbsp; as an integral over time.
  
[[File:EN_LZI_T_3_2_S3.png |right|frame| Table with some Laplace transforms|class=fit]]
+
[[File:EN_LZI_T_3_2_S3_v2.png |right|frame| Table with some Laplace transforms|class=fit]]
  
*The Laplace transform of the&nbsp; [[Signal_Representation/Special_Cases_of_Impulse_Signals#Dirac_delta_or_impulse|Dirac delta function]]&nbsp; $δ(t)$&nbsp; is &nbsp;$X_{\rm L}(p) = 1$&nbsp;  $($diagram $\rm A)$.&nbsp; &nbsp;$X_{\rm L}(p) = 1/p$&nbsp; is obtained for the unit step function &nbsp;$γ(t)$&nbsp;  $($diagram $\rm B)$&nbsp; by applying the&nbsp; [[Signal_Representation/Fourier_Transform_Laws#Integration_Theorem|integration theorem]].&nbsp; From this the Laplace transform of the linearly increasing function &nbsp;$x(t) = t/T$&nbsp; for &nbsp;$t > 0$&nbsp; is obtained by multiplication by &nbsp;$1/(pT)$&nbsp; $($diagram $\rm C)$.  
+
#The Laplace transform of the&nbsp; [[Signal_Representation/Special_Cases_of_Impulse_Signals#Dirac_delta_or_impulse|&raquo;Dirac delta function&laquo;]]&nbsp; $δ(t)$&nbsp; is &nbsp;$X_{\rm L}(p) = 1$&nbsp;  $($diagram $\rm A)$.&nbsp;  
 
+
#$X_{\rm L}(p) = 1/p$&nbsp; is obtained for the&nbsp; &raquo;unit jump function&laquo; &nbsp;$γ(t)$&nbsp;  $($diagram $\rm B)$&nbsp; by applying the&nbsp; [[Signal_Representation/Fourier_Transform_Laws#Integration_Theorem|&raquo;integration theorem&laquo;]].&nbsp;  
*The&nbsp; [[Signal_Representation/Special_Cases_of_Impulse_Signals#Rectangular_pulse|rectangular function]]&nbsp; can be generated from the subtraction of two step functions &nbsp;$γ(t)$&nbsp; and &nbsp;$γ(t – T)$&nbsp; separated by &nbsp;$T$&nbsp; so that the Laplace transform &nbsp;$X_{\rm L}(p) = (1 – {\rm e}^{–pT})/p$&nbsp; is obtained according to the&nbsp; [[Signal_Representation/Fourier_Transform_Theorems#Shifting_Theorem|shifting theorem]] &nbsp;$($diagram $\rm D)$.&nbsp; By integration the ramp function or after multiplication by &nbsp;$1/(pT)$&nbsp; its Laplace transform&nbsp; is obtained from it $($diagram $\rm E)$.
+
#From this the Laplace transform of the&nbsp; &raquo;linearly increasing function&laquo; &nbsp;$x(t) = t/T$&nbsp; for &nbsp;$t > 0$&nbsp; is obtained by multiplication by &nbsp;$1/(pT)$&nbsp; $($diagram $\rm C)$.  
 
+
#The&nbsp; [[Signal_Representation/Special_Cases_of_Impulse_Signals#Rectangular_pulse|&raquo;rectangular function&laquo;]]&nbsp; can be generated by subtraction of two jump functions &nbsp;$γ(t)$&nbsp; and &nbsp;$γ(t – T)$&nbsp; separated by &nbsp;$T$&nbsp; so that the Laplace transform &nbsp;$X_{\rm L}(p) = (1 – {\rm e}^{–pT})/p$&nbsp; is obtained according to the&nbsp; [[Signal_Representation/Fourier_Transform_Theorems#Shifting_Theorem|&raquo;shifting theorem&laquo;]] &nbsp;$($diagram $\rm D)$.
*The exponential function&nbsp; $($diagram $\rm F)$ has already been considered on the&nbsp; [[Linear_and_Time_Invariant_Systems/Laplace_Transform_and_p-Transfer_Function#Definition_of_the_Laplace_transformation|last page]]&nbsp;.&nbsp; Considering the factor &nbsp;$1/T$,&nbsp; this is at the same time the impulse response of a low-pass filter of first-order. The &nbsp;$p$–spectral function of a low-pass filter of second-order with the time function&nbsp; $x(t) = t/T · {\rm e}^{–t/T}$ (diagram&nbsp; $\rm G$)&nbsp; is obtained by squaring.  
+
#By integration the&nbsp; &raquo;ramp function&laquo;&nbsp; or after multiplication by &nbsp;$1/(pT)$&nbsp; its Laplace transform&nbsp; is obtained from it $($diagram $\rm E)$.
 
+
#The&nbsp; &raquo;exponential function&laquo;&nbsp; $($diagram $\rm F)$&nbsp; has already been considered in the&nbsp; [[Linear_and_Time_Invariant_Systems/Laplace_Transform_and_p-Transfer_Function#Definition_of_the_Laplace_transformation|&raquo;last section&laquo;]]&nbsp;.&nbsp; Considering the factor &nbsp;$1/T$,&nbsp; this is at the same time the impulse response of a low-pass filter of first-order.  
*In addition to the causal &nbsp;$\rm si$–function&nbsp;  $($diagram $\rm H)$,&nbsp; the Laplace transforms of the causal cosine and sine functions&nbsp; $($diagrams&nbsp; $\rm I$&nbsp;  and&nbsp; $\rm J)$,&nbsp; which result in &nbsp;$p/(p^2 + ω_0^2)$&nbsp; and &nbsp;$ω_0/(p^2 + ω_0^2)$&nbsp; resp., are also given in the table. Here, &nbsp;$ω_0 = 2πf_0 = 2π/T$&nbsp; denotes the so-called angular frequency.
+
#The Laplace transform of a second-order low-pass &nbsp; &rArr; &nbsp; function $x(t) = t/T · {\rm e}^{–t/T}$ &nbsp; is obtained by squaring&nbsp; $($diagram&nbsp; $\rm G)$.  
 +
#In addition to the causal &nbsp;$\rm sinc$–function&nbsp;  $($diagram $\rm H)$,&nbsp; the Laplace transforms of the&nbsp; &raquo;causal cosine and sine functions&laquo;&nbsp; $($diagrams&nbsp; $\rm I$&nbsp;  and&nbsp; $\rm J)$,&nbsp; which result in &nbsp;$p/(p^2 + ω_0^2)$&nbsp; resp. &nbsp;$ω_0/(p^2 + ω_0^2)$&nbsp; are also given in the table.  
 +
#Here, &nbsp;$ω_0 = 2πf_0 = 2π/T$&nbsp; denotes the&nbsp; &raquo;angular frequency&laquo;.
  
  
Line 73: Line 76:
 
==Pole-zero representation of circuits==
 
==Pole-zero representation of circuits==
 
<br>
 
<br>
Any&nbsp; [[Linear_and_Time_Invariant_Systems/System_Description_in_Frequency_Domain#Prerequisites_for_the_application_of_Systems_Theory|linear time-invariant system]]&nbsp; $\rm (LTI)$&nbsp; which can be realized by a circuit of discrete time-constant components such as  
+
Any&nbsp; [[Linear_and_Time_Invariant_Systems/System_Description_in_Frequency_Domain#Prerequisites_for_the_application_of_Systems_Theory|&raquo;linear time-invariant system&laquo;]]&nbsp; $\rm (LTI)$&nbsp; which can be realized by a circuit of discrete time-constant components such as  
 
*resistances&nbsp; $(R)$,  
 
*resistances&nbsp; $(R)$,  
 
*capacitances&nbsp; $(C)$,  
 
*capacitances&nbsp; $(C)$,  
Line 80: Line 83:
  
  
has a fractional-rational&nbsp; '''$p$–transfer function''':
+
have a fractional-rational&nbsp; &raquo;'''$p$–transfer function'''&laquo;:
 
:$$H_{\rm L}(p)= \frac {A_Z \cdot p^Z +\text{...}  + A_2 \cdot p^2 + A_1 \cdot p + A_0} {B_N \cdot p^N +\text{...} \ + B_2 \cdot p^2 + B_1 \cdot p + B_0}= \frac {Z(p)}{N(p)} \hspace{0.05cm} .$$
 
:$$H_{\rm L}(p)= \frac {A_Z \cdot p^Z +\text{...}  + A_2 \cdot p^2 + A_1 \cdot p + A_0} {B_N \cdot p^N +\text{...} \ + B_2 \cdot p^2 + B_1 \cdot p + B_0}= \frac {Z(p)}{N(p)} \hspace{0.05cm} .$$
  
 
All coefficients of the numerator &nbsp; &rArr; &nbsp; $A_Z, \text{...} \ , A_0$&nbsp; and of the denominator &nbsp; &rArr; &nbsp; $B_N, \text{...} , B_0$&nbsp; are real.&nbsp; Furthermore:  
 
All coefficients of the numerator &nbsp; &rArr; &nbsp; $A_Z, \text{...} \ , A_0$&nbsp; and of the denominator &nbsp; &rArr; &nbsp; $B_N, \text{...} , B_0$&nbsp; are real.&nbsp; Furthermore:  
*$Z$&nbsp; denotes the degree of the numerator polynomial&nbsp; $Z(p)$,  
+
#$Z$&nbsp; denotes the degree of the numerator polynomial&nbsp; $Z(p)$,  
*$N$&nbsp; denotes the degree of the denominator polynomial&nbsp; $N(p)$.  
+
#$N$&nbsp; denotes the degree of the denominator polynomial&nbsp; $N(p)$.  
  
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
 
$\text{Equivalent pole-zero representation:}$  &nbsp;  
 
$\text{Equivalent pole-zero representation:}$  &nbsp;  
The following can be formulated for the&nbsp;  $p$–transfer function, too:
+
The following can be formulated for the&nbsp;  &raquo;'''$p$–transfer function&laquo;''',&nbsp; too:
 
:$$H_{\rm L}(p)= K \cdot \frac {\prod\limits_{i=1}^Z p - p_{\rm o i} } {\prod\limits_{i=1}^N p - p_{\rm x i} }= K \cdot \frac {(p - p_{\rm o 1})(p - p_{\rm o 2})\cdot \text{...} \ \cdot (p - p_{ {\rm o} \hspace{-0.03cm} Z})} {(p - p_{\rm x 1})(p - p_{\rm x 2})\cdot \text{...}  \cdot (p - p_{ {\rm x} \hspace{-0.03cm} N})} \hspace{0.05cm} .$$
 
:$$H_{\rm L}(p)= K \cdot \frac {\prod\limits_{i=1}^Z p - p_{\rm o i} } {\prod\limits_{i=1}^N p - p_{\rm x i} }= K \cdot \frac {(p - p_{\rm o 1})(p - p_{\rm o 2})\cdot \text{...} \ \cdot (p - p_{ {\rm o} \hspace{-0.03cm} Z})} {(p - p_{\rm x 1})(p - p_{\rm x 2})\cdot \text{...}  \cdot (p - p_{ {\rm x} \hspace{-0.03cm} N})} \hspace{0.05cm} .$$
  
The&nbsp; $Z + N + 1$&nbsp; parameters signify:  
+
The&nbsp; $Z + N + 1$&nbsp; parameters signify:
*$K = A_Z/B_N$&nbsp; is a constant factor. &nbsp; If &nbsp;$Z = N$&nbsp; holds,&nbsp; then this is dimensionless.  
+
#$K = A_Z/B_N$&nbsp; is a constant factor. &nbsp; If &nbsp;$Z = N$,&nbsp; this is dimensionless.
*The solutions of the equation &nbsp;$Z(p) = 0$&nbsp; result in the&nbsp; $Z$&nbsp; "zeros" &nbsp;$p_{\rm o1},\text{...} \ , p_{\rm oZ}$&nbsp; of&nbsp; $H_{\rm L}(p)$.  
+
#The solutions of the equation &nbsp;$Z(p) = 0$&nbsp; result in the&nbsp; $Z$&nbsp; &raquo;zeros&laquo; &nbsp;$p_{\rm o1},\text{...} \ , p_{\rm oZ}$&nbsp; of&nbsp; $H_{\rm L}(p)$.  
*The zeros of the denominator polynomial &nbsp;$N(p)$&nbsp; yield the &nbsp;$N$&nbsp; pole locations&nbsp; (or&nbsp; "poles"&nbsp; for short). }}
+
#The zeros of the denominator polynomial &nbsp;$N(p)$&nbsp; yield the &nbsp;$N$&nbsp; pole locations&nbsp; $($or&nbsp; &raquo;poles&laquo;&nbsp; for short$)$. }}
  
  
 
The transformation is unique.&nbsp; This can be seen from the fact that the &nbsp;$p$–transfer function is also determined only by &nbsp;$Z + N + 1$&nbsp; free parameters according to the first equation since one of the coefficients &nbsp;$A_Z, \text{...} \ , A_0, B_N, \text{...} \ , B_0$&nbsp; can be normalized to&nbsp; $1$&nbsp; without changing the quotient.
 
The transformation is unique.&nbsp; This can be seen from the fact that the &nbsp;$p$–transfer function is also determined only by &nbsp;$Z + N + 1$&nbsp; free parameters according to the first equation since one of the coefficients &nbsp;$A_Z, \text{...} \ , A_0, B_N, \text{...} \ , B_0$&nbsp; can be normalized to&nbsp; $1$&nbsp; without changing the quotient.
  
[[File:P_ID1759__LZI_T_3_2_S4_neu.png|right|frame|Considered two-port network and associated pole-zero diagram|class=fit]]
+
{{GraueBox|TEXT=
{{GraueBox|TEXT=  
+
[[File:P_ID1759__LZI_T_3_2_S4_neu.png|right|frame|Considered two-port network and associated pole-zero diagram|class=fit]]   
 
$\text{Example 2:}$&nbsp;  
 
$\text{Example 2:}$&nbsp;  
We consider the drawn two-port network with an inductance &nbsp;$L$&nbsp; $($complex resistance &nbsp;$pL)$&nbsp; in the longitudinal branch as well as the series connection of an ohmic resistance &nbsp;$R$&nbsp; and a capacitance &nbsp;$C$&nbsp; with the complex resistance &nbsp;$1/(pC)$ in the transverse branch.
+
We consider the drawn two-port network with  
 +
*an inductance &nbsp;$L$&nbsp; $($complex resistance &nbsp;$pL)$&nbsp; in the longitudinal branch as well as  
  
Thus, the &nbsp;$p$–transfer function is:
+
*the series connection of an ohmic resistance &nbsp;$R$&nbsp; and a capacitance &nbsp;$C$&nbsp; with the complex resistance &nbsp;$1/(pC)$ in the transverse branch.
 +
 
 +
 
 +
Thus,&nbsp; the &nbsp;$p$–transfer function is:
 
:$$H_{\rm L}(p)= \frac {Y_{\rm L}(p)} {X_{\rm L}(p)}= \frac {R + {1}/{(pC)} } {pL + R +{1}/{(pC)} }$$
 
:$$H_{\rm L}(p)= \frac {Y_{\rm L}(p)} {X_{\rm L}(p)}= \frac {R + {1}/{(pC)} } {pL + R +{1}/{(pC)} }$$
 
:$$\Rightarrow \hspace{0.3cm} H_{\rm L}(p)=  \frac {1 + p \cdot{RC} } {1 + p \cdot{RC}+ p^2 \cdot{LC} }
 
:$$\Rightarrow \hspace{0.3cm} H_{\rm L}(p)=  \frac {1 + p \cdot{RC} } {1 + p \cdot{RC}+ p^2 \cdot{LC} }
 
  \hspace{0.05cm} .$$
 
  \hspace{0.05cm} .$$
If &nbsp;$p = {\rm j} · 2πf$&nbsp; is set,&nbsp; then the Fourier transfer function&nbsp; (or the frequency response)&nbsp; is obtained.&nbsp; If the numerator and denominator in the above equation are divided by &nbsp;$LC$,&nbsp; then the following is obtained:
+
If &nbsp;$p = {\rm j} · 2πf$&nbsp; is set,&nbsp; then the Fourier transfer function&nbsp; $($or the&nbsp; &raquo;frequency response&laquo;$)$&nbsp; is obtained.&nbsp; If the numerator and denominator in the above equation are divided by &nbsp;$LC$,&nbsp; then the following is obtained:
 
:$$H_{\rm L}(p)= \frac {R} {L}\cdot \frac {p + {1}/{(RC)} } {p^2 + {R}/ {L}\cdot p + {1}/{(LC)} }= K \cdot \frac {p - p_{\rm o } } {(p - p_{\rm x 1})(p - p_{\rm x 2})}
 
:$$H_{\rm L}(p)= \frac {R} {L}\cdot \frac {p + {1}/{(RC)} } {p^2 + {R}/ {L}\cdot p + {1}/{(LC)} }= K \cdot \frac {p - p_{\rm o } } {(p - p_{\rm x 1})(p - p_{\rm x 2})}
 
  \hspace{0.05cm} .$$
 
  \hspace{0.05cm} .$$
  
In the right-hand side of the equation, the transfer function &nbsp;$H_{\rm L}(p)$&nbsp; is given in pole-zero notation.&nbsp; By comparison of coefficients the following values are obtained for &nbsp;$R = 50 \ \rm Ω$, &nbsp;$L = 25\ \rm  &micro; H$&nbsp; and &nbsp;$C = 62.5 \ \rm  nF$&nbsp;:  
+
&rArr; &nbsp; In the right-hand side of the equation,&nbsp; the transfer function &nbsp;$H_{\rm L}(p)$&nbsp; is given in&nbsp; &raquo;'''pole-zero notation'''&laquo;.&nbsp;  
*the constant &nbsp;$K = R/L = 2 · 10^6 \cdot 1/{\rm s}$,  
+
 
*the zero &nbsp;$p_{\rm o} = -1/(RC) = -0.32 · 10^6 \cdot 1/{\rm s},$  
+
By comparison of coefficients the following values are obtained for &nbsp;$R = 50 \ \rm Ω$, &nbsp;$L = 25\ \rm  &micro; H$&nbsp; and &nbsp;$C = 62.5 \ \rm  nF$&nbsp;:  
*the two poles &nbsp;$p_{\rm x1}$&nbsp; and &nbsp;$p_{\rm x2}$&nbsp; as the solution of the equation  
+
#the constant &nbsp;$K = R/L = 2 · 10^6 \cdot 1/{\rm s}$,  
:$$p^2 + \frac {R} {L}\cdot p + \frac{1}{LC} = 0 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm x 1,\hspace{0.05cm}2 }= -\frac {R} {2L}\pm \sqrt{\frac
+
#the zero &nbsp;$p_{\rm o} = -1/(RC) = -0.32 · 10^6 \cdot 1/{\rm s},$  
 +
#the two poles &nbsp;$p_{\rm x1}$&nbsp; and &nbsp;$p_{\rm x2}$&nbsp; as the solution of the equation  
 +
::$$p^2 + \frac {R} {L}\cdot p + \frac{1}{LC} = 0 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm x 1,\hspace{0.05cm}2 }= -\frac {R} {2L}\pm \sqrt{\frac
 
{R^2} {4L^2}- \frac{1}{LC} }$$
 
{R^2} {4L^2}- \frac{1}{LC} }$$
:$$\Rightarrow \hspace{0.3cm} p_{\rm x 1,\hspace{0.05cm}2 }= -10^6 \cdot {1}/{\rm s} \pm \sqrt{10^{12} \cdot  {1} /{\rm s^2}-0.64 \cdot 10^{12} \cdot {1}/ {\rm s^2} }\hspace{0.3cm}
+
::$$\Rightarrow \hspace{0.3cm} p_{\rm x 1,\hspace{0.05cm}2 }= -10^6 \cdot {1}/{\rm s} \pm \sqrt{10^{12} \cdot  {1} /{\rm s^2}-0.64 \cdot 10^{12} \cdot {1}/ {\rm s^2} }\hspace{0.6cm}
 
\Rightarrow \hspace{0.3cm} p_{\rm x 1 }= -0.4 \cdot 10^6\cdot {1}/ {\rm s},\hspace{0.2cm}p_{\rm x 2 }= -1.6 \cdot 10^6\cdot {1}/ {\rm s} \hspace{0.05cm} .$$
 
\Rightarrow \hspace{0.3cm} p_{\rm x 1 }= -0.4 \cdot 10^6\cdot {1}/ {\rm s},\hspace{0.2cm}p_{\rm x 2 }= -1.6 \cdot 10^6\cdot {1}/ {\rm s} \hspace{0.05cm} .$$
In the above graph, the pole-zero diagram is given on the right-hand side.  
+
In the above graph,&nbsp; the pole-zero diagram is given on the right-hand side.  
*The two axes denote the real and imaginary parts of the variable &nbsp;$p$,&nbsp; each normalized to the value &nbsp;$10^6 · \rm 1/s\; (= 1/&micro;s)$.  
+
*The two axes denote the real and imaginary parts of the variable &nbsp;$p$,&nbsp; each normalized to the value &nbsp;$10^6 · \rm 1/s\; (= 1/&micro;s)$.
 +
 
*The zero at &nbsp;$p_{\rm o} =\, –0.32$&nbsp; can be seen as a circle and the poles at &nbsp;$p_{\rm x1} = \,–0.4$&nbsp; and &nbsp;$p_{\rm x2} = \,–1.6$&nbsp; as crosses.}}
 
*The zero at &nbsp;$p_{\rm o} =\, –0.32$&nbsp; can be seen as a circle and the poles at &nbsp;$p_{\rm x1} = \,–0.4$&nbsp; and &nbsp;$p_{\rm x2} = \,–1.6$&nbsp; as crosses.}}
  
 
==Properties of poles and zeros==
 
==Properties of poles and zeros==
 
<br>
 
<br>
The transfer function &nbsp;$H_{\rm L}(p)$&nbsp; of any realizable circuit is fully described by &nbsp;$Z$&nbsp; "zeros"&nbsp; and &nbsp;$N$&nbsp; "poles"&nbsp; together with a constant &nbsp;$K$&nbsp; where the following restrictions apply:   
+
The transfer function &nbsp;$H_{\rm L}(p)$&nbsp; of any realizable circuit is fully described by &nbsp;$Z$&nbsp; &raquo;zeros&laquo;&nbsp; and &nbsp;$N$&nbsp; &raquo;poles&laquo;&nbsp; together with a constant &nbsp;$K$&nbsp; where the following restrictions apply:   
*$Z ≤ N$&nbsp; always holds.&nbsp; The &nbsp;$p$–transfer function would also be&nbsp; "infinitely large"&nbsp; with &nbsp;$Z > N$&nbsp; in the limiting case for &nbsp;$p → ∞$&nbsp; (i.e. for very high frequencies).  
+
*$Z ≤ N$&nbsp; always holds.&nbsp; The &nbsp;$p$–transfer function would also be&nbsp; &raquo;infinitely large&laquo;&nbsp; with &nbsp;$Z > N$&nbsp; in the limiting case for &nbsp;$p → ∞$&nbsp; $($i.e. for very high frequencies$)$.
*The zeros &nbsp;$p_{\rm oi}$&nbsp; and the poles &nbsp;$p_{ {\rm x}i}$&nbsp; are generally complex, and have like &nbsp;$p$&nbsp; the unit &nbsp;$\rm 1/s$.&nbsp;  If &nbsp;$Z < N$&nbsp; holds,&nbsp; then the constant &nbsp;$K$&nbsp; has also a unit.  
+
*The poles and zeros can be real as shown in the last example.&nbsp; If they are complex, then two poles and two zeros always occur as complex conjugates, respectively, since &nbsp;$H_{\rm L}(p)$&nbsp; always represents a real fractional-rational function.  
+
*The zeros &nbsp;$p_{\rm oi}$&nbsp; and the poles &nbsp;$p_{ {\rm x}i}$&nbsp; are generally complex,&nbsp; and have like &nbsp;$p$&nbsp; the unit &nbsp;$\rm 1/s$.&nbsp;  If &nbsp;$Z < N$&nbsp; holds,&nbsp; then the constant &nbsp;$K$&nbsp; has also a unit.  
*All poles lie in the left half-plane or on the imaginary axis (limiting case).&nbsp; This property follows from the required and assumed causality together with the &nbsp;[[Linear_and_Time_Invariant_Systems/Inverse_Laplace_Transform#Some_results_of_the_theory_of_functions|fundamental function theory]],&nbsp; which will be stated in the next chapter.  
+
 
*Zeros can occur in both the left and right &nbsp;$p$–half-planes or also on the imaginary axis.&nbsp; An example of zeros in the right half-plane can be found in &nbsp;[[Aufgaben:Exercise_3.4Z:_Various_All-Pass_Filters|Exercise 3.4Z]],&nbsp; which deals with all-pass filters.  
+
*The poles and zeros can be real as shown in the last example.&nbsp; If they are complex,&nbsp; then two poles resp. two zeros always occur as complex conjugates,&nbsp; since &nbsp;$H_{\rm L}(p)$&nbsp; always represents a real fractional-rational function.
*In so-called&nbsp; "minimum-phase systems",&nbsp; not only poles are forbidden in the right &nbsp;$p$–half-plane but also zeros.&nbsp; The real part of all singularities here is never positive.  
+
 +
*All poles lie in the left half-plane or on the imaginary axis&nbsp; $($limiting case$)$.&nbsp; This property follows from the required and assumed causality together with the &nbsp;[[Linear_and_Time_Invariant_Systems/Inverse_Laplace_Transform#Some_results_of_the_theory_of_functions|&raquo;fundamental function theory&laquo;]],&nbsp; which will be stated in the next chapter.
 +
 +
*Zeros can occur in both the left and right &nbsp;$p$–half-planes or also on the imaginary axis.&nbsp; An example of zeros in the right half-plane can be found in &nbsp;[[Aufgaben:Exercise_3.4Z:_Various_All-Pass_Filters|$\text{Exercise 3.4Z}$]],&nbsp; which deals with all-pass filters.
 +
 +
*In so-called&nbsp; &raquo;minimum-phase systems&laquo;,&nbsp; not only poles are forbidden in the right &nbsp;$p$–half-plane but also zeros.&nbsp; The real part of all singularities here is never positive.  
  
  
Line 141: Line 156:
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
 
$\text{Example 3:}$&nbsp;  
 
$\text{Example 3:}$&nbsp;  
Starting from the &nbsp;[[Linear_and_Time_Invariant_Systems/Laplace_Transform_and_p-Transfer_Function#Pole-zero_representation_of_circuits |two-port network]]&nbsp; $(L$&nbsp; in the longitudinal branch,&nbsp; $R$&nbsp; and&nbsp; $C$&nbsp; in the transverse branch$)$&nbsp; the characteristic quantities of the transfer function can be given as follows:
+
Starting from the &nbsp;[[Linear_and_Time_Invariant_Systems/Laplace_Transform_and_p-Transfer_Function#Pole-zero_representation_of_circuits |&raquo;two-port network&laquo;]]&nbsp; $(L$&nbsp; in the longitudinal branch,&nbsp; $R$&nbsp; and&nbsp; $C$&nbsp; in the transverse branch$)$&nbsp; the characteristic quantities of the transfer function can be given as follows:
:$$K = 2A, \hspace{0.2cm}p_{\rm x 1,\hspace{0.05cm}2 }= -A \pm \sqrt{A^2-B^2}, \hspace{0.2cm}p_{\rm o }= - \frac{B^2}{2A} \hspace{0.05cm} \hspace{0.2cm} {\rm with }  \hspace{0.2cm} A = \frac {R} {2L}, \hspace{0.2cm}B = \frac{1}{\sqrt{LC} } \hspace{0.05cm}.$$
+
[[File:EN_LZI_T_3_2_S5_neu_v2.png|right|frame|Location of the zero and the poles for&nbsp; $Z = 1$&nbsp; and&nbsp; $N = 2$|class=fit]]
The graph shows three different diagrams with different capacitance values &nbsp;$C$.&nbsp; &nbsp;$R = 50 \ \rm Ω$&nbsp; and &nbsp;$L = 25 \ \rm &micro; H$&nbsp; always hold. The axes are normalized to the variable &nbsp;$A = R/(2L) = 10^6 · \rm 1/s$&nbsp; and the constant factor in each case is &nbsp;$K = 2A = 2 · 10^6 · \rm 1/s.$
+
:$$K = 2A, \hspace{0.2cm}p_{\rm x 1,\hspace{0.05cm}2 }= -A \pm \sqrt{A^2-B^2},$$
 +
:$$p_{\rm o }= - \frac{B^2}{2A} \hspace{0.05cm} \hspace{0.2cm} {\rm with }  \hspace{0.2cm} A = \frac {R} {2L}, \hspace{0.2cm}B = \frac{1}{\sqrt{LC} } \hspace{0.05cm}.$$
 +
The graph shows three different diagrams with different capacitance values &nbsp;$C$.&nbsp;
 +
*$R = 50 \ \rm Ω$&nbsp; and &nbsp;$L = 25 \ \rm &micro; H$&nbsp; always hold.  
  
[[File:EN_LZI_T_3_2_S5_neu.png|right|frame|Location of the zero and the poles for&nbsp; $Z = 1$&nbsp; and&nbsp; $N = 2$|class=fit]]
+
*The axes are normalized to &nbsp;$A = R/(2L) = 10^6 · \rm 1/s$.
  
*For&nbsp; $B < A$,&nbsp; '''two real poles'''&nbsp; and a zero to the right of &nbsp;$-A/2$&nbsp; are obtained. The following arises as a result for &nbsp;$C = 62.5 \ \rm  nF$ &nbsp; &rArr; &nbsp; $ {B}/ {A}= 0.8 $&nbsp; (left diagram):
+
*The constant factor is &nbsp;$K = 2A = 2 · 10^6 · \rm 1/s.$
 +
<br clear=all>
 +
$\text{Example 3.1:}$&nbsp;<br>
 +
For&nbsp; $B < A$,&nbsp; &raquo;'''two real poles'''&laquo;&nbsp; and&nbsp; &raquo;one zero&laquo;&nbsp; to the right of &nbsp;$-A/2$&nbsp; are obtained. The following arises as a result for &nbsp;$C = 62.5 \ \rm  nF$ &nbsp; &rArr; &nbsp; $ {B}/ {A}= 0.8 $&nbsp; $($left diagram$)$:
 
:$$ p_{\rm x 1}/A = -0.4 , \hspace{0.2cm}p_{\rm x 2}/A= -1.6 , \hspace{0.2cm}p_{\rm o}/A= -0.32  \hspace{0.05cm} .$$
 
:$$ p_{\rm x 1}/A = -0.4 , \hspace{0.2cm}p_{\rm x 2}/A= -1.6 , \hspace{0.2cm}p_{\rm o}/A= -0.32  \hspace{0.05cm} .$$
*For&nbsp; $B > A$,&nbsp; '''two conjugate-complex poles'''&nbsp; and a zero to the left of &nbsp; $-A/2$&nbsp; are obtained. For&nbsp; $C = 8 \ \rm nF$ &nbsp; &rArr; &nbsp; $ {B}/ {A}= \sqrt{5}  $&nbsp; (right diagram):
+
 
 +
$\text{Example 3.2:}$&nbsp;<br>
 +
For&nbsp; $B > A$,&nbsp; &raquo;'''two conjugate-complex poles'''&laquo;&nbsp; and&nbsp; &raquo;one zero&laquo;&nbsp; to the left of &nbsp; $-A/2$&nbsp; are obtained. For&nbsp; $C = 8 \ \rm nF$ &nbsp; &rArr; &nbsp; $ {B}/ {A}= \sqrt{5}  $&nbsp; $($right diagram$)$:
 
:$$p_{\rm x 1,\hspace{0.05cm}2 }/A= -1\pm {\rm j}\cdot 2,\hspace{0.2cm}p_{\rm o}/A\approx -2.5  \hspace{0.05cm} .$$
 
:$$p_{\rm x 1,\hspace{0.05cm}2 }/A= -1\pm {\rm j}\cdot 2,\hspace{0.2cm}p_{\rm o}/A\approx -2.5  \hspace{0.05cm} .$$
*The case&nbsp; $A = B$&nbsp; leads to&nbsp; '''a real double pole'''&nbsp; and a zero at&nbsp; $– A/2$.&nbsp; For&nbsp; $C = 400 \ \rm nF$  &nbsp; &rArr; &nbsp; $ {B}/ {A}= 1 $&nbsp; (middle diagram):
+
 
 +
$\text{Example 3.3:}$&nbsp;<br>
 +
The case&nbsp; $A = B$&nbsp; leads to&nbsp; &raquo;'''a real double pole'''&laquo;&nbsp; and&nbsp; &raquo;one zero&laquo;&nbsp; at&nbsp; $– A/2$.&nbsp; For&nbsp; $C = 400 \ \rm nF$  &nbsp; &rArr; &nbsp; $ {B}/ {A}= 1 $&nbsp; $($middle diagram$)$:
 
:$$ p_{\rm x 1}/A=  p_{\rm x 2}/A= -1, \hspace{0.2cm}p_{\rm o}/A= -0.5  \hspace{0.05cm} .$$
 
:$$ p_{\rm x 1}/A=  p_{\rm x 2}/A= -1, \hspace{0.2cm}p_{\rm o}/A= -0.5  \hspace{0.05cm} .$$
  
The impulse responses &nbsp;$h(t)$&nbsp; are obtained according to the following chapter&nbsp; [[Linear_and_Time_Invariant_Systems/Inverse_Laplace_Transform|Inverse Laplace Transform]]&nbsp; as follows:
+
The impulse responses &nbsp;$h(t)$&nbsp; are obtained according to the following chapter&nbsp; [[Linear_and_Time_Invariant_Systems/Inverse_Laplace_Transform|&raquo;Inverse Laplace Transform&laquo;]]&nbsp; as follows:
*For the left constellation, &nbsp;$h(t)$&nbsp; is [[Linear_and_Time_Invariant_Systems/Inverse_Laplace_Transform#Aperiodically_decaying_impulse_response|aperiodically decaying]].  
+
#For the left constellation, &nbsp;$h(t)$&nbsp; is&nbsp; [[Linear_and_Time_Invariant_Systems/Inverse_Laplace_Transform#Aperiodically_decaying_impulse_response|&raquo;aperiodically decaying&laquo;]].
*For the right constellation, &nbsp;$h(t)$&nbsp; is [[Linear_and_Time_Invariant_Systems/Inverse_Laplace_Transform#Attenuated-oscillatory_impulse_response|attenuated-oscillatory]].  
+
#For the right constellation, &nbsp;$h(t)$&nbsp; is&nbsp; [[Linear_and_Time_Invariant_Systems/Inverse_Laplace_Transform#Attenuated-oscillatory_impulse_response|&raquo;attenuated-oscillatory&laquo;]].  
*The middle constellation is called the &nbsp;[[Linear_and_Time_Invariant_Systems/Inverse_Laplace_Transform#Critically-damped_case|critically-damped case]]. }}
+
#The middle constellation is called the &nbsp;[[Linear_and_Time_Invariant_Systems/Inverse_Laplace_Transform#Critically_attenuated_case|&raquo;critically attenuated case&laquo;]]. }}
  
 
==Graphical determination of attenuation and phase==
 
==Graphical determination of attenuation and phase==
 
<br>
 
<br>
[[File:EN_LZI_T_3_2_S6.png|right|frame|Output diagram for the computation <br>of attenuation and phase|class=fit]]
+
[[File:EN_LZI_T_3_2_S6.png|right|frame|For the computation of attenuation and phase|class=fit]]
 
The &nbsp;$p$–transfer function is given in pole-zero notation:  
 
The &nbsp;$p$–transfer function is given in pole-zero notation:  
 
:$$H_{\rm L}(p)= K \cdot \frac {\prod\limits_{i=1}^Z (p - p_{\rm o i})} {\prod\limits_{i=1}^N (p - p_{\rm x i})}= K \cdot \frac {(p - p_{\rm o 1})(p - p_{\rm o 2})\cdot \text{...} \cdot (p - p_{ {\rm o} \hspace{-0.03cm} Z})} {(p - p_{\rm x 1})(p - p_{\rm x 2})\cdot \text{...} \cdot (p - p_{ {\rm x} \hspace{-0.03cm} N})}
 
:$$H_{\rm L}(p)= K \cdot \frac {\prod\limits_{i=1}^Z (p - p_{\rm o i})} {\prod\limits_{i=1}^N (p - p_{\rm x i})}= K \cdot \frac {(p - p_{\rm o 1})(p - p_{\rm o 2})\cdot \text{...} \cdot (p - p_{ {\rm o} \hspace{-0.03cm} Z})} {(p - p_{\rm x 1})(p - p_{\rm x 2})\cdot \text{...} \cdot (p - p_{ {\rm x} \hspace{-0.03cm} N})}
 
  \hspace{0.05cm} .$$
 
  \hspace{0.05cm} .$$
The conventional frequency response &nbsp;$H(f)$&nbsp; is obtained by replacing the argument &nbsp;$p$&nbsp; of &nbsp;$H_{\rm L}(p)$&nbsp; by&nbsp; ${\rm j} \cdot 2πf$&nbsp;:
+
*The conventional frequency response &nbsp;$H(f)$&nbsp; is obtained by replacing the argument &nbsp;$p$&nbsp; of &nbsp;$H_{\rm L}(p)$&nbsp; by&nbsp; ${\rm j} \cdot 2πf$&nbsp;:
 
:$$H(f)=  K \cdot \frac {({\rm j} \cdot 2\pi \hspace{-0.05cm}f - p_{\rm o 1})({\rm j} \cdot 2\pi \hspace{-0.05cm}f - p_{\rm o 2})\cdot  \text{...} \cdot ({\rm j} \cdot 2\pi \hspace{-0.05cm}f - p_{ {\rm o} \hspace{-0.03cm} Z})} {({\rm j} \cdot 2\pi \hspace{-0.05cm}f - p_{\rm x 1})({\rm j} \cdot 2\pi \hspace{-0.05cm}f - p_{\rm x 2})\cdot \text{...}\cdot ({\rm j} \cdot 2\pi \hspace{-0.05cm}f - p_{ {\rm x} \hspace{-0.03cm} N})} \hspace{0.05cm} .$$
 
:$$H(f)=  K \cdot \frac {({\rm j} \cdot 2\pi \hspace{-0.05cm}f - p_{\rm o 1})({\rm j} \cdot 2\pi \hspace{-0.05cm}f - p_{\rm o 2})\cdot  \text{...} \cdot ({\rm j} \cdot 2\pi \hspace{-0.05cm}f - p_{ {\rm o} \hspace{-0.03cm} Z})} {({\rm j} \cdot 2\pi \hspace{-0.05cm}f - p_{\rm x 1})({\rm j} \cdot 2\pi \hspace{-0.05cm}f - p_{\rm x 2})\cdot \text{...}\cdot ({\rm j} \cdot 2\pi \hspace{-0.05cm}f - p_{ {\rm x} \hspace{-0.03cm} N})} \hspace{0.05cm} .$$
We now consider a fixed frequency&nbsp; $f$&nbsp; and describe the distances and angles of all&nbsp; "zeros"&nbsp; (circles)&nbsp; by vectors:
+
*We now consider a fixed frequency $f$&nbsp; and describe the distances and angles of all&nbsp; &raquo;zeros&laquo;&nbsp; $($circles$)$&nbsp; by vectors:
  
 
:$$R_{ {\rm o} i} =  {\rm j} \cdot 2\pi \hspace{-0.05cm}f - p_{ {\rm o} i}= |R_{{\rm o} i}| \cdot {\rm e}^{\hspace{0.03cm}{\rm j}\hspace{0.03cm}\cdot\hspace{0.03cm}\phi_{ {\rm o} i} },
 
:$$R_{ {\rm o} i} =  {\rm j} \cdot 2\pi \hspace{-0.05cm}f - p_{ {\rm o} i}= |R_{{\rm o} i}| \cdot {\rm e}^{\hspace{0.03cm}{\rm j}\hspace{0.03cm}\cdot\hspace{0.03cm}\phi_{ {\rm o} i} },
 
  \hspace{0.3cm}i= 1, \text{...}\ , Z \hspace{0.05cm} .$$
 
  \hspace{0.3cm}i= 1, \text{...}\ , Z \hspace{0.05cm} .$$
We proceed in the same way for the&nbsp; "poles"&nbsp; (crosses):
+
*We proceed in the same way for the&nbsp; &raquo;poles&laquo;&nbsp; $($crosses$)$:
 
:$$R_{ {\rm x} i} =  {\rm j} \cdot 2\pi \hspace{-0.05cm}f - p_{ {\rm x} i}= |R_{ {\rm x} i}| \cdot {\rm e}^{\hspace{0.03cm}{\rm j}\hspace{0.03cm}\cdot\hspace{0.03cm}\phi_{ {\rm x} i} },  \hspace{0.3cm}i= 1,  \text{...}\ , N \hspace{0.05cm} .$$
 
:$$R_{ {\rm x} i} =  {\rm j} \cdot 2\pi \hspace{-0.05cm}f - p_{ {\rm x} i}= |R_{ {\rm x} i}| \cdot {\rm e}^{\hspace{0.03cm}{\rm j}\hspace{0.03cm}\cdot\hspace{0.03cm}\phi_{ {\rm x} i} },  \hspace{0.3cm}i= 1,  \text{...}\ , N \hspace{0.05cm} .$$
  
The graph shows the magnitudes and phase angles for a system  
+
*The graph shows the magnitudes and phase angles for a system with
*with &nbsp;$Z = 2$&nbsp; zeros&nbsp; (circles)&nbsp; in the right half-plane  
+
#$Z = 2$&nbsp; zeros&nbsp; (circles)&nbsp; in the right half-plane  
*and &nbsp;$N = 2$&nbsp; poles&nbsp; (crosses)&nbsp; in the left half-plane.  
+
#$N = 2$&nbsp; poles&nbsp; (crosses)&nbsp; in the left half-plane.  
 
+
#constant&nbsp; $K$.
  
Moreover, the constant&nbsp; $K$ is also to be considered.
+
*The following can be written for the frequency response with this vector representation:
 
 
The following can be written for the frequency response with this vector representation:
 
 
:$$H(f)=  K \cdot \frac {|R_{ {\rm o} 1}| \cdot |R_{ {\rm o} 2}|\cdot ... \cdot |R_{ {\rm o} \hspace{-0.03cm} Z}|} {|R_{ {\rm x} 1}| \cdot |R_{ {\rm x} 2}|\cdot \text{...} \cdot |R_{ {\rm x} \hspace{-0.03cm} N}|} \cdot  {\rm e^{\hspace{0.03cm}{\rm j} \hspace{0.05cm}\cdot [ \phi_{ {\rm o} 1}\hspace{0.1cm}+ \hspace{0.1cm}\phi_{ {\rm o} 2} \hspace{0.1cm}+ \hspace{0.1cm}\hspace{0.1cm}\text{...}. \hspace{0.1cm} + \hspace{0.1cm}\phi_{ {\rm o} \hspace{-0.03cm}{\it Z}}\hspace{0.1cm}- \hspace{0.1cm}\phi_{ {\rm x} 1}\hspace{0.1cm}- \hspace{0.1cm}\phi_{ {\rm x} 2} \hspace{0.1cm}- \hspace{0.1cm}... \hspace{0.1cm}
 
:$$H(f)=  K \cdot \frac {|R_{ {\rm o} 1}| \cdot |R_{ {\rm o} 2}|\cdot ... \cdot |R_{ {\rm o} \hspace{-0.03cm} Z}|} {|R_{ {\rm x} 1}| \cdot |R_{ {\rm x} 2}|\cdot \text{...} \cdot |R_{ {\rm x} \hspace{-0.03cm} N}|} \cdot  {\rm e^{\hspace{0.03cm}{\rm j} \hspace{0.05cm}\cdot [ \phi_{ {\rm o} 1}\hspace{0.1cm}+ \hspace{0.1cm}\phi_{ {\rm o} 2} \hspace{0.1cm}+ \hspace{0.1cm}\hspace{0.1cm}\text{...}. \hspace{0.1cm} + \hspace{0.1cm}\phi_{ {\rm o} \hspace{-0.03cm}{\it Z}}\hspace{0.1cm}- \hspace{0.1cm}\phi_{ {\rm x} 1}\hspace{0.1cm}- \hspace{0.1cm}\phi_{ {\rm x} 2} \hspace{0.1cm}- \hspace{0.1cm}... \hspace{0.1cm}
 
  - \hspace{0.1cm} \phi_{ {\rm x} \hspace{-0.03cm}{\it N} }]} } \hspace{0.05cm} .$$
 
  - \hspace{0.1cm} \phi_{ {\rm x} \hspace{-0.03cm}{\it N} }]} } \hspace{0.05cm} .$$
  
 
If &nbsp;$H(f)$&nbsp; is expressed by the attenuation function &nbsp;$a(f)$&nbsp; and the phase function &nbsp;$b(f)$&nbsp; according to the generally valid relation &nbsp;$H(f) = {\rm e}^{-a(f)\hspace{0.05cm}- \hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}b(f)}$,&nbsp; then the following result is obtained by comparing with the above equation:  
 
If &nbsp;$H(f)$&nbsp; is expressed by the attenuation function &nbsp;$a(f)$&nbsp; and the phase function &nbsp;$b(f)$&nbsp; according to the generally valid relation &nbsp;$H(f) = {\rm e}^{-a(f)\hspace{0.05cm}- \hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}b(f)}$,&nbsp; then the following result is obtained by comparing with the above equation:  
*With a suitable normalization of all dimensional quantities the following holds for the attenuation function in Neper&nbsp; $(1 \ \rm  Np$ corresponds to $8.686 \ \rm  dB)$:
+
*With a suitable normalization of all dimensional quantities the following holds for the&nbsp; &raquo;attenuation function&laquo;&nbsp; in Neper &nbsp; $(1 \ \rm  Np$ corresponds to&nbsp; $8.686 \ \rm  dB)$:
 
:$$a(f) = -{\rm ln} \hspace{0.1cm} K + \sum \limits_{i=1}^N {\rm ln} \hspace{0.1cm} |R_{ {\rm x} i}|- \sum \limits_{i=1}^Z {\rm ln} \hspace{0.1cm} |R_{ {\rm o} i}| \hspace{0.05cm} .$$
 
:$$a(f) = -{\rm ln} \hspace{0.1cm} K + \sum \limits_{i=1}^N {\rm ln} \hspace{0.1cm} |R_{ {\rm x} i}|- \sum \limits_{i=1}^Z {\rm ln} \hspace{0.1cm} |R_{ {\rm o} i}| \hspace{0.05cm} .$$
*The phase function in radian $\rm (rad)$ arises as a result according to the upper sketch and is
+
*The&nbsp; &raquo;phase function&laquo;&nbsp; in radian&nbsp; $\rm (rad)$&nbsp; arises as a result according to the upper sketch:
 
:$$b(f) = \phi_K  + \sum \limits_{i=1}^N \phi_{ {\rm x} i}- \sum \limits_{i=1}^Z \phi_{ {\rm o} i}\hspace{0.2cm}{\rm with} \hspace{0.2cm} \phi_K = \left\{ \begin{array}{c} 0 \\ \pi  \end{array} \right. \begin{array}{c}  {\rm{for} }  \\ {\rm{for} }  \end{array}\begin{array}{*{20}c} {  K > 0\hspace{0.05cm},}  \\ { K <0\hspace{0.05cm}.} \end{array}$$
 
:$$b(f) = \phi_K  + \sum \limits_{i=1}^N \phi_{ {\rm x} i}- \sum \limits_{i=1}^Z \phi_{ {\rm o} i}\hspace{0.2cm}{\rm with} \hspace{0.2cm} \phi_K = \left\{ \begin{array}{c} 0 \\ \pi  \end{array} \right. \begin{array}{c}  {\rm{for} }  \\ {\rm{for} }  \end{array}\begin{array}{*{20}c} {  K > 0\hspace{0.05cm},}  \\ { K <0\hspace{0.05cm}.} \end{array}$$
  
[[File:P_ID1762__LZI_T_3_2_S6b_neu.png |right|frame| For the computation of the attenuation and phase functions (screen capture of the program "Causal Systems & Laplace Transformation" in an earlier German version)|class=fit]]
 
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
 
$\text{Example 4:}$&nbsp;  
 
$\text{Example 4:}$&nbsp;  
The graphic illustrates the calculation  
+
The graphic illustrates the calculation of
*of the attenuation function &nbsp;$a(f)$ &nbsp; &rArr; &nbsp; red curve,&nbsp; and  
+
[[File:P_ID1762__LZI_T_3_2_S6b_neu.png |right|frame| For the computation of the attenuation and phase functions&nbsp; $($screen capture of the program &raquo;Causal Systems & Laplace Transformation&raquo; in an earlier German version$)$|class=fit]]
*of the phase function &nbsp;$b(f)$ &nbsp; &rArr; &nbsp; green curve
+
# &nbsp; the attenuation function &nbsp;$a(f)$ &nbsp; &rArr; &nbsp; red curve,&nbsp; and  
 +
# &nbsp; the phase function &nbsp;$b(f)$ &nbsp; &rArr; &nbsp; green curve
 +
 
  
 +
of a two-port network which is defined by
 +
*the factor &nbsp;$K = 1.5$,&nbsp;
 +
*one zero at &nbsp;$-3$&nbsp; and
 +
*two poles at &nbsp;$–1 \pm {\rm j} · 4$.
  
of a two-port network which is defined by the factor &nbsp;$K = 1.5$,&nbsp; one zero at &nbsp;$-3$&nbsp; and two poles at &nbsp;$–1 \pm {\rm j} · 4$.
 
  
 
The given numerical values are valid for the frequency &nbsp;$2πf = 3$:  
 
The given numerical values are valid for the frequency &nbsp;$2πf = 3$:  
Line 206: Line 233:
 
:$$  b\big [f = {3}/({2\pi}) \big ] = -8.1^\circ \hspace{0.05cm} .$$
 
:$$  b\big [f = {3}/({2\pi}) \big ] = -8.1^\circ \hspace{0.05cm} .$$
  
The derivation of these numerical values is illustrated in the framed block.&nbsp; For the magnitude frequency response &nbsp; $\vert H(f)\vert$ &nbsp; &rArr; &nbsp; blue curve, a bandpass-like curve shape is obtained with
+
The derivation of these numerical values is illustrated in the framed block.&nbsp; For the magnitude frequency response &nbsp; $\vert H(f)\vert$ &nbsp; &rArr; &nbsp; blue curve,&nbsp; a band-pass-like curve shape is obtained with
 
:$$\vert H(f = 0)\vert \approx 0.25\hspace{0.05cm},$$
 
:$$\vert H(f = 0)\vert \approx 0.25\hspace{0.05cm},$$
:$$\vert H(f = {4}/(2\pi)\vert \approx 0637\hspace{0.05cm},$$
+
:$$\vert H(f = {3}/(2\pi)\vert \approx 0636\hspace{0.05cm},$$
 
:$$\vert H(f \rightarrow \infty)\vert= 0 \hspace{0.05cm}.$$}}
 
:$$\vert H(f \rightarrow \infty)\vert= 0 \hspace{0.05cm}.$$}}
  

Latest revision as of 17:56, 19 November 2023

Considered system model


We consider a linear time-invariant system with the impulse response  $h(t)$,  whose input the signal  $x(t)$  is applied to.  The output signal  $y(t)$  is then obtained as the convolution product  $x(t) ∗ h(t)$.

General (also non-causal) and causal system model

For non-causal systems and signals, the  »first Fourier integral«  must always be applied to describe the spectral behavior and the following is valid for the output spectrum:

$$Y(f) = X(f) \cdot H(f) \hspace{0.05cm}.$$

The Fourier integral also continues to be valid for causal systems and signals,  i.e. under the assumption

$$x(t) = 0 \hspace{0.2cm}{\rm{for}} \hspace{0.2cm} t<0\hspace{0.05cm},\hspace{0.2cm} h(t) = 0 \hspace{0.2cm}{\rm{for}} \hspace{0.2cm} t<0 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} y(t) = 0 \hspace{0.2cm}{\rm{for}} \hspace{0.2cm} t<0 \hspace{0.05cm}.$$

In this case,  however,  there are significant advantages in applying the  »Laplace transformation«  while taking into account certain restrictions:

  1. The systems treated in this way are always realizable by a circuit.  The developer is not tempted to offer unrealistic solutions.
  2. The Laplace transform  $X_{\rm L}(p)$  is always a real function of the spectral variable  $p$. 
  3. The fact that this variable is derived from the multiplication of the physical angular frequency  $ω = 2πf$  by the imaginary unit  $\rm j$  according to  $p = {\rm j} · 2πf$  does not matter for the user.
  4. The implicit condition  $x(t) = 0$  for  $t < 0$  specifically allows for simpler analysis of transient
    behavior after switching-on processes than with the Fourier integral.

Definition of the Laplace transformation


Starting from the  »first Fourier integral«

$$X(f) = \int_{-\infty}^{+\infty} { x(t) \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm e}^{-{\rm j}\hspace{0.05cm} 2\pi f t}}\hspace{0.1cm}{\rm d}t,$$

the Laplace transformation is obtained directly by using the formal substitution  $p = {\rm j} · 2πf$  for a causal time function  $x(t) = 0 \ \ \ \text{for} \ \ \ t < 0.$

$\text{Definition:}$  The   »Laplace transform«  of a causal time function  $x(t)$  is:

$$X_{\rm L}(p) = \int_{0}^{\infty} { x(t) \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm e}^{-p t} }\hspace{0.1cm}{\rm d}t\hspace{0.05cm}, \hspace{0.3cm}{\rm briefly}\hspace{0.3cm} X_{\rm L}(p) \quad \bullet\!\!-\!\!\!-^{\hspace{-0.25cm}\rm L}\!\!\!-\!\!\circ\quad x(t)\hspace{0.05cm}.$$


The relationship between the Laplace transform  $X_{\rm L}(p)$  and the physical spectrum  $X(f)$  is often given as follows:

$$X(f) = X_{\rm L}(p) \Bigg |_{{\hspace{0.1cm} p\hspace{0.05cm}={\rm \hspace{0.05cm} j\hspace{0.05cm}2\pi \it f}}}.$$
  1. However,  if the signal  $x(t)$  has periodic components and thus the spectral function  $X(f)$  contains Dirac delta functions,  then this equation is not applicable.
  2. In this case,  $p = α + {\rm j} · 2πf$  must be applied and then the limit  $α → 0$  must be formed.


$\text{Example 1:}$  We assume the unilaterally and exponentially decreasing signal corresponding to  $\text{Example 1}$  of chapter  »Conclusions from the Allocation Theorem«:

$$x(t) = \left\{ \begin{array}{c} 0 \\ 0.5 \\ {\rm e}^{-t/T} \end{array} \right.\quad \quad \begin{array}{c} {\rm{for} } \\ {\rm{for} } \\ {\rm{for} } \end{array}\begin{array}{*{20}c}{ t < 0\hspace{0.05cm},} \\ { t = 0\hspace{0.05cm},} \\{ t > 0\hspace{0.05cm}.} \end{array}$$
  • Thus,  the Laplace transform is:
$$X_{\rm L}(p) = \int_{0}^{\infty} {\rm e}^{-t/T} \cdot {\rm e}^{-pt} \hspace{0.1cm}{\rm d}t= \frac {1}{p + 1/T} \cdot {{\rm e}^{-(p+1/T) \hspace{0.08cm}\cdot \hspace{0.08cm}t}}\hspace{0.15cm}\Bigg \vert_{t \hspace{0.05cm}=\hspace{0.05cm} 0}^{\infty}= \frac {1}{p + 1/T} \hspace{0.05cm} .$$
  • Considering  $p = {\rm j} · 2πf$,  the conventional spectral function with respect to $f$  is obtained:
$$X(f) = \frac {1}{{\rm j \cdot 2\pi \it f} + 1/T} = \frac {T}{1+{\rm j \cdot 2\pi \it fT}} \hspace{0.05cm} .$$
  • In contrast,  if we consider the frequency response of a low-pass filter of first-order whose impulse response  $h(t)$  differs from the above time function by the factor  $1/T$,  then the following holds for the Laplace transform and the Fourier transform,  respectively:
$$H_{\rm L}(p)= \frac {1/T}{p + 1/T}= \frac {1}{1 + p \cdot T} \hspace{0.05cm} , \hspace{0.8cm}H(f) = \frac {1}{1+{\rm j \cdot 2\pi \it fT} } = \frac {1}{1+{\rm j} \cdot f/f_{\rm G} } \hspace{0.05cm} .$$
  • In this equation,  the  »3 dB cut-off frequency«  $f_{\rm G} = 1/(2πT)$   $($German:  "Grenzfrequenz"   ⇒   subscript  "G"$)$ is used instead of the parameter  $T$.

Some important Laplace correspondences


Some important Laplace correspondences are compiled subsequently.  All time signals  $x(t)$  considered here are assumed to be dimensionless.  For this reason,  $X_{\rm L}(p)$  then always has the unit  »second«  as an integral over time.

Table with some Laplace transforms
  1. The Laplace transform of the  »Dirac delta function«  $δ(t)$  is  $X_{\rm L}(p) = 1$  $($diagram $\rm A)$. 
  2. $X_{\rm L}(p) = 1/p$  is obtained for the  »unit jump function«  $γ(t)$  $($diagram $\rm B)$  by applying the  »integration theorem«
  3. From this the Laplace transform of the  »linearly increasing function«  $x(t) = t/T$  for  $t > 0$  is obtained by multiplication by  $1/(pT)$  $($diagram $\rm C)$.
  4. The  »rectangular function«  can be generated by subtraction of two jump functions  $γ(t)$  and  $γ(t – T)$  separated by  $T$  so that the Laplace transform  $X_{\rm L}(p) = (1 – {\rm e}^{–pT})/p$  is obtained according to the  »shifting theorem«  $($diagram $\rm D)$.
  5. By integration the  »ramp function«  or after multiplication by  $1/(pT)$  its Laplace transform  is obtained from it $($diagram $\rm E)$.
  6. The  »exponential function«  $($diagram $\rm F)$  has already been considered in the  »last section« .  Considering the factor  $1/T$,  this is at the same time the impulse response of a low-pass filter of first-order.
  7. The Laplace transform of a second-order low-pass   ⇒   function $x(t) = t/T · {\rm e}^{–t/T}$   is obtained by squaring  $($diagram  $\rm G)$.
  8. In addition to the causal  $\rm sinc$–function  $($diagram $\rm H)$,  the Laplace transforms of the  »causal cosine and sine functions«  $($diagrams  $\rm I$  and  $\rm J)$,  which result in  $p/(p^2 + ω_0^2)$  resp.  $ω_0/(p^2 + ω_0^2)$  are also given in the table.
  9. Here,  $ω_0 = 2πf_0 = 2π/T$  denotes the  »angular frequency«.



Pole-zero representation of circuits


Any  »linear time-invariant system«  $\rm (LTI)$  which can be realized by a circuit of discrete time-constant components such as

  • resistances  $(R)$,
  • capacitances  $(C)$,
  • inductances  $(L)$  and
  • amplifier elements,


have a fractional-rational  »$p$–transfer function«:

$$H_{\rm L}(p)= \frac {A_Z \cdot p^Z +\text{...} + A_2 \cdot p^2 + A_1 \cdot p + A_0} {B_N \cdot p^N +\text{...} \ + B_2 \cdot p^2 + B_1 \cdot p + B_0}= \frac {Z(p)}{N(p)} \hspace{0.05cm} .$$

All coefficients of the numerator   ⇒   $A_Z, \text{...} \ , A_0$  and of the denominator   ⇒   $B_N, \text{...} , B_0$  are real.  Furthermore:

  1. $Z$  denotes the degree of the numerator polynomial  $Z(p)$,
  2. $N$  denotes the degree of the denominator polynomial  $N(p)$.


$\text{Equivalent pole-zero representation:}$   The following can be formulated for the  »$p$–transfer function«,  too:

$$H_{\rm L}(p)= K \cdot \frac {\prod\limits_{i=1}^Z p - p_{\rm o i} } {\prod\limits_{i=1}^N p - p_{\rm x i} }= K \cdot \frac {(p - p_{\rm o 1})(p - p_{\rm o 2})\cdot \text{...} \ \cdot (p - p_{ {\rm o} \hspace{-0.03cm} Z})} {(p - p_{\rm x 1})(p - p_{\rm x 2})\cdot \text{...} \cdot (p - p_{ {\rm x} \hspace{-0.03cm} N})} \hspace{0.05cm} .$$

The  $Z + N + 1$  parameters signify:

  1. $K = A_Z/B_N$  is a constant factor.   If  $Z = N$,  this is dimensionless.
  2. The solutions of the equation  $Z(p) = 0$  result in the  $Z$  »zeros«  $p_{\rm o1},\text{...} \ , p_{\rm oZ}$  of  $H_{\rm L}(p)$.
  3. The zeros of the denominator polynomial  $N(p)$  yield the  $N$  pole locations  $($or  »poles«  for short$)$.


The transformation is unique.  This can be seen from the fact that the  $p$–transfer function is also determined only by  $Z + N + 1$  free parameters according to the first equation since one of the coefficients  $A_Z, \text{...} \ , A_0, B_N, \text{...} \ , B_0$  can be normalized to  $1$  without changing the quotient.

Considered two-port network and associated pole-zero diagram

$\text{Example 2:}$  We consider the drawn two-port network with

  • an inductance  $L$  $($complex resistance  $pL)$  in the longitudinal branch as well as
  • the series connection of an ohmic resistance  $R$  and a capacitance  $C$  with the complex resistance  $1/(pC)$ in the transverse branch.


Thus,  the  $p$–transfer function is:

$$H_{\rm L}(p)= \frac {Y_{\rm L}(p)} {X_{\rm L}(p)}= \frac {R + {1}/{(pC)} } {pL + R +{1}/{(pC)} }$$
$$\Rightarrow \hspace{0.3cm} H_{\rm L}(p)= \frac {1 + p \cdot{RC} } {1 + p \cdot{RC}+ p^2 \cdot{LC} } \hspace{0.05cm} .$$

If  $p = {\rm j} · 2πf$  is set,  then the Fourier transfer function  $($or the  »frequency response«$)$  is obtained.  If the numerator and denominator in the above equation are divided by  $LC$,  then the following is obtained:

$$H_{\rm L}(p)= \frac {R} {L}\cdot \frac {p + {1}/{(RC)} } {p^2 + {R}/ {L}\cdot p + {1}/{(LC)} }= K \cdot \frac {p - p_{\rm o } } {(p - p_{\rm x 1})(p - p_{\rm x 2})} \hspace{0.05cm} .$$

⇒   In the right-hand side of the equation,  the transfer function  $H_{\rm L}(p)$  is given in  »pole-zero notation«. 

By comparison of coefficients the following values are obtained for  $R = 50 \ \rm Ω$,  $L = 25\ \rm µ H$  and  $C = 62.5 \ \rm nF$ :

  1. the constant  $K = R/L = 2 · 10^6 \cdot 1/{\rm s}$,
  2. the zero  $p_{\rm o} = -1/(RC) = -0.32 · 10^6 \cdot 1/{\rm s},$
  3. the two poles  $p_{\rm x1}$  and  $p_{\rm x2}$  as the solution of the equation
$$p^2 + \frac {R} {L}\cdot p + \frac{1}{LC} = 0 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm x 1,\hspace{0.05cm}2 }= -\frac {R} {2L}\pm \sqrt{\frac {R^2} {4L^2}- \frac{1}{LC} }$$
$$\Rightarrow \hspace{0.3cm} p_{\rm x 1,\hspace{0.05cm}2 }= -10^6 \cdot {1}/{\rm s} \pm \sqrt{10^{12} \cdot {1} /{\rm s^2}-0.64 \cdot 10^{12} \cdot {1}/ {\rm s^2} }\hspace{0.6cm} \Rightarrow \hspace{0.3cm} p_{\rm x 1 }= -0.4 \cdot 10^6\cdot {1}/ {\rm s},\hspace{0.2cm}p_{\rm x 2 }= -1.6 \cdot 10^6\cdot {1}/ {\rm s} \hspace{0.05cm} .$$

In the above graph,  the pole-zero diagram is given on the right-hand side.

  • The two axes denote the real and imaginary parts of the variable  $p$,  each normalized to the value  $10^6 · \rm 1/s\; (= 1/µs)$.
  • The zero at  $p_{\rm o} =\, –0.32$  can be seen as a circle and the poles at  $p_{\rm x1} = \,–0.4$  and  $p_{\rm x2} = \,–1.6$  as crosses.

Properties of poles and zeros


The transfer function  $H_{\rm L}(p)$  of any realizable circuit is fully described by  $Z$  »zeros«  and  $N$  »poles«  together with a constant  $K$  where the following restrictions apply:

  • $Z ≤ N$  always holds.  The  $p$–transfer function would also be  »infinitely large«  with  $Z > N$  in the limiting case for  $p → ∞$  $($i.e. for very high frequencies$)$.
  • The zeros  $p_{\rm oi}$  and the poles  $p_{ {\rm x}i}$  are generally complex,  and have like  $p$  the unit  $\rm 1/s$.  If  $Z < N$  holds,  then the constant  $K$  has also a unit.
  • The poles and zeros can be real as shown in the last example.  If they are complex,  then two poles resp. two zeros always occur as complex conjugates,  since  $H_{\rm L}(p)$  always represents a real fractional-rational function.
  • All poles lie in the left half-plane or on the imaginary axis  $($limiting case$)$.  This property follows from the required and assumed causality together with the  »fundamental function theory«,  which will be stated in the next chapter.
  • Zeros can occur in both the left and right  $p$–half-planes or also on the imaginary axis.  An example of zeros in the right half-plane can be found in  $\text{Exercise 3.4Z}$,  which deals with all-pass filters.
  • In so-called  »minimum-phase systems«,  not only poles are forbidden in the right  $p$–half-plane but also zeros.  The real part of all singularities here is never positive.


These properties are now illustrated by three examples.

$\text{Example 3:}$  Starting from the  »two-port network«  $(L$  in the longitudinal branch,  $R$  and  $C$  in the transverse branch$)$  the characteristic quantities of the transfer function can be given as follows:

Location of the zero and the poles for  $Z = 1$  and  $N = 2$
$$K = 2A, \hspace{0.2cm}p_{\rm x 1,\hspace{0.05cm}2 }= -A \pm \sqrt{A^2-B^2},$$
$$p_{\rm o }= - \frac{B^2}{2A} \hspace{0.05cm} \hspace{0.2cm} {\rm with } \hspace{0.2cm} A = \frac {R} {2L}, \hspace{0.2cm}B = \frac{1}{\sqrt{LC} } \hspace{0.05cm}.$$

The graph shows three different diagrams with different capacitance values  $C$. 

  • $R = 50 \ \rm Ω$  and  $L = 25 \ \rm µ H$  always hold.
  • The axes are normalized to  $A = R/(2L) = 10^6 · \rm 1/s$.
  • The constant factor is  $K = 2A = 2 · 10^6 · \rm 1/s.$


$\text{Example 3.1:}$ 
For  $B < A$,  »two real poles«  and  »one zero«  to the right of  $-A/2$  are obtained. The following arises as a result for  $C = 62.5 \ \rm nF$   ⇒   $ {B}/ {A}= 0.8 $  $($left diagram$)$:

$$ p_{\rm x 1}/A = -0.4 , \hspace{0.2cm}p_{\rm x 2}/A= -1.6 , \hspace{0.2cm}p_{\rm o}/A= -0.32 \hspace{0.05cm} .$$

$\text{Example 3.2:}$ 
For  $B > A$,  »two conjugate-complex poles«  and  »one zero«  to the left of   $-A/2$  are obtained. For  $C = 8 \ \rm nF$   ⇒   $ {B}/ {A}= \sqrt{5} $  $($right diagram$)$:

$$p_{\rm x 1,\hspace{0.05cm}2 }/A= -1\pm {\rm j}\cdot 2,\hspace{0.2cm}p_{\rm o}/A\approx -2.5 \hspace{0.05cm} .$$

$\text{Example 3.3:}$ 
The case  $A = B$  leads to  »a real double pole«  and  »one zero«  at  $– A/2$.  For  $C = 400 \ \rm nF$   ⇒   $ {B}/ {A}= 1 $  $($middle diagram$)$:

$$ p_{\rm x 1}/A= p_{\rm x 2}/A= -1, \hspace{0.2cm}p_{\rm o}/A= -0.5 \hspace{0.05cm} .$$

The impulse responses  $h(t)$  are obtained according to the following chapter  »Inverse Laplace Transform«  as follows:

  1. For the left constellation,  $h(t)$  is  »aperiodically decaying«.
  2. For the right constellation,  $h(t)$  is  »attenuated-oscillatory«.
  3. The middle constellation is called the  »critically attenuated case«.

Graphical determination of attenuation and phase


For the computation of attenuation and phase

The  $p$–transfer function is given in pole-zero notation:

$$H_{\rm L}(p)= K \cdot \frac {\prod\limits_{i=1}^Z (p - p_{\rm o i})} {\prod\limits_{i=1}^N (p - p_{\rm x i})}= K \cdot \frac {(p - p_{\rm o 1})(p - p_{\rm o 2})\cdot \text{...} \cdot (p - p_{ {\rm o} \hspace{-0.03cm} Z})} {(p - p_{\rm x 1})(p - p_{\rm x 2})\cdot \text{...} \cdot (p - p_{ {\rm x} \hspace{-0.03cm} N})} \hspace{0.05cm} .$$
  • The conventional frequency response  $H(f)$  is obtained by replacing the argument  $p$  of  $H_{\rm L}(p)$  by  ${\rm j} \cdot 2πf$ :
$$H(f)= K \cdot \frac {({\rm j} \cdot 2\pi \hspace{-0.05cm}f - p_{\rm o 1})({\rm j} \cdot 2\pi \hspace{-0.05cm}f - p_{\rm o 2})\cdot \text{...} \cdot ({\rm j} \cdot 2\pi \hspace{-0.05cm}f - p_{ {\rm o} \hspace{-0.03cm} Z})} {({\rm j} \cdot 2\pi \hspace{-0.05cm}f - p_{\rm x 1})({\rm j} \cdot 2\pi \hspace{-0.05cm}f - p_{\rm x 2})\cdot \text{...}\cdot ({\rm j} \cdot 2\pi \hspace{-0.05cm}f - p_{ {\rm x} \hspace{-0.03cm} N})} \hspace{0.05cm} .$$
  • We now consider a fixed frequency $f$  and describe the distances and angles of all  »zeros«  $($circles$)$  by vectors:
$$R_{ {\rm o} i} = {\rm j} \cdot 2\pi \hspace{-0.05cm}f - p_{ {\rm o} i}= |R_{{\rm o} i}| \cdot {\rm e}^{\hspace{0.03cm}{\rm j}\hspace{0.03cm}\cdot\hspace{0.03cm}\phi_{ {\rm o} i} }, \hspace{0.3cm}i= 1, \text{...}\ , Z \hspace{0.05cm} .$$
  • We proceed in the same way for the  »poles«  $($crosses$)$:
$$R_{ {\rm x} i} = {\rm j} \cdot 2\pi \hspace{-0.05cm}f - p_{ {\rm x} i}= |R_{ {\rm x} i}| \cdot {\rm e}^{\hspace{0.03cm}{\rm j}\hspace{0.03cm}\cdot\hspace{0.03cm}\phi_{ {\rm x} i} }, \hspace{0.3cm}i= 1, \text{...}\ , N \hspace{0.05cm} .$$
  • The graph shows the magnitudes and phase angles for a system with
  1. $Z = 2$  zeros  (circles)  in the right half-plane
  2. $N = 2$  poles  (crosses)  in the left half-plane.
  3. constant  $K$.
  • The following can be written for the frequency response with this vector representation:
$$H(f)= K \cdot \frac {|R_{ {\rm o} 1}| \cdot |R_{ {\rm o} 2}|\cdot ... \cdot |R_{ {\rm o} \hspace{-0.03cm} Z}|} {|R_{ {\rm x} 1}| \cdot |R_{ {\rm x} 2}|\cdot \text{...} \cdot |R_{ {\rm x} \hspace{-0.03cm} N}|} \cdot {\rm e^{\hspace{0.03cm}{\rm j} \hspace{0.05cm}\cdot [ \phi_{ {\rm o} 1}\hspace{0.1cm}+ \hspace{0.1cm}\phi_{ {\rm o} 2} \hspace{0.1cm}+ \hspace{0.1cm}\hspace{0.1cm}\text{...}. \hspace{0.1cm} + \hspace{0.1cm}\phi_{ {\rm o} \hspace{-0.03cm}{\it Z}}\hspace{0.1cm}- \hspace{0.1cm}\phi_{ {\rm x} 1}\hspace{0.1cm}- \hspace{0.1cm}\phi_{ {\rm x} 2} \hspace{0.1cm}- \hspace{0.1cm}... \hspace{0.1cm} - \hspace{0.1cm} \phi_{ {\rm x} \hspace{-0.03cm}{\it N} }]} } \hspace{0.05cm} .$$

If  $H(f)$  is expressed by the attenuation function  $a(f)$  and the phase function  $b(f)$  according to the generally valid relation  $H(f) = {\rm e}^{-a(f)\hspace{0.05cm}- \hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}b(f)}$,  then the following result is obtained by comparing with the above equation:

  • With a suitable normalization of all dimensional quantities the following holds for the  »attenuation function«  in Neper   $(1 \ \rm Np$ corresponds to  $8.686 \ \rm dB)$:
$$a(f) = -{\rm ln} \hspace{0.1cm} K + \sum \limits_{i=1}^N {\rm ln} \hspace{0.1cm} |R_{ {\rm x} i}|- \sum \limits_{i=1}^Z {\rm ln} \hspace{0.1cm} |R_{ {\rm o} i}| \hspace{0.05cm} .$$
  • The  »phase function«  in radian  $\rm (rad)$  arises as a result according to the upper sketch:
$$b(f) = \phi_K + \sum \limits_{i=1}^N \phi_{ {\rm x} i}- \sum \limits_{i=1}^Z \phi_{ {\rm o} i}\hspace{0.2cm}{\rm with} \hspace{0.2cm} \phi_K = \left\{ \begin{array}{c} 0 \\ \pi \end{array} \right. \begin{array}{c} {\rm{for} } \\ {\rm{for} } \end{array}\begin{array}{*{20}c} { K > 0\hspace{0.05cm},} \\ { K <0\hspace{0.05cm}.} \end{array}$$

$\text{Example 4:}$  The graphic illustrates the calculation of

For the computation of the attenuation and phase functions  $($screen capture of the program »Causal Systems & Laplace Transformation» in an earlier German version$)$
  1.   the attenuation function  $a(f)$   ⇒   red curve,  and
  2.   the phase function  $b(f)$   ⇒   green curve


of a two-port network which is defined by

  • the factor  $K = 1.5$, 
  • one zero at  $-3$  and
  • two poles at  $–1 \pm {\rm j} · 4$.


The given numerical values are valid for the frequency  $2πf = 3$:

$$a \big [f = {3}/({2\pi}) \big ] = 0.453\,\,{\rm Np}= 3.953\,\,{\rm dB}$$
$$\Rightarrow \hspace{0.4cm}\big \vert H \big [f = {3}/({2\pi}) \big ]\big \vert = 0.636,$$
$$ b\big [f = {3}/({2\pi}) \big ] = -8.1^\circ \hspace{0.05cm} .$$

The derivation of these numerical values is illustrated in the framed block.  For the magnitude frequency response   $\vert H(f)\vert$   ⇒   blue curve,  a band-pass-like curve shape is obtained with

$$\vert H(f = 0)\vert \approx 0.25\hspace{0.05cm},$$
$$\vert H(f = {3}/(2\pi)\vert \approx 0636\hspace{0.05cm},$$
$$\vert H(f \rightarrow \infty)\vert= 0 \hspace{0.05cm}.$$


Exercises for the chapter

Exercise 3.2: Laplace Transform

Exercise 3.2Z: Laplace and Fourier

Exercise 3.3: p-Transfer Function

Exercise 3.3Z: High- and Low-Pass Filters in p-Form

Exercise 3.4: Attenuation and Phase Response

Exercise 3.4Z: Various All-Pass Filters