Difference between revisions of "Mobile Communications/The Application of OFDMA and SC-FDMA in LTE"

From LNTwww
 
(41 intermediate revisions by 5 users not shown)
Line 2: Line 2:
 
{{Header
 
{{Header
 
|Untermenü=LTE – Long Term Evolution
 
|Untermenü=LTE – Long Term Evolution
|Vorherige Seite=Technical innovations of LTE
+
|Vorherige Seite=Technical Innovations of LTE
|Nächste Seite=Physical layer for LTE
+
|Nächste Seite=Physical Layer for LTE
 
}}
 
}}
  
 
== General information on LTE transmission technology ==
 
== General information on LTE transmission technology ==
 
<br>
 
<br>
In contrast to its predecessor&nbsp; [[Mobile_Communications/Characteristics_of_UMTS|UMTS]],&nbsp;  <i>Long Term Evolution</i>&nbsp; (LTE) uses a variant of the OFDM concept also used by&nbsp; [https://de.wikipedia.org/wiki/Wireless_Local_Area_Network WLAN]&nbsp; to systematically divide the transmission resources. The multiple access method&nbsp; [[Modulation_Methods/Allgemeine_Beschreibung_von_OFDM#Das_Prinzip_von_OFDM_.E2.80.93_Systembetrachtung_im_Zeitbereich_.281.29| OFDM]]&nbsp; possesses the ability to protect the system against intermittent transmission disturbances, just like the UMTS&ndash;Technology&nbsp; [[Examples_of_Communication_Systems/Telecommunication_aspects_of_UMTS#Application_of_CDMA.E2.80.93Procedure_in_UMTS| CDMA]].<br>
+
In contrast to its predecessor&nbsp; [[Mobile_Communications/Characteristics_of_UMTS|$\rm UMTS$]],&nbsp;  Long Term Evolution&nbsp; $\rm (LTE)$&nbsp; uses a variant of the OFDM concept also used by&nbsp; [https://en.wikipedia.org/wiki/Wireless_LAN $\text{WLAN}$]&nbsp; to systematically divide the transmission resources.&nbsp; The multiple access method&nbsp; [[Modulation_Methods/General_Description_of_OFDM#The_principle_of_OFDM_-_system_consideration_in_the_time_domain| $\rm OFDM$]]&nbsp; possesses the ability to protect the system against intermittent transmission disturbances, just like the UMTS basic technology&nbsp; [[Examples_of_Communication_Systems/Telecommunications_Aspects_of_UMTS#Application_of_the_CDMA_method_to_UMTS|$\rm CDMA$]].<br>
  
In principle, it would have been possible to adapt and expand the technologies used in the second and third generations of mobile communications in such a way that they also meet the required specifications for the fourth generation. However, the rapidly increasing complexity of CDMA when receiving signals on multiple paths made the technical implementation appear to make little sense.<br>
+
In principle, it would have been possible to adapt and expand the technologies used in the second and third generations of mobile communications in such a way that they also meet the required specifications for the fourth generation.&nbsp; However, the rapidly increasing complexity of CDMA when received signals on multiple paths made the technical implementation appear to make little sense.<br>
  
[[File:EN_Mob_T_4_3_S1.png|center|frame|difference between OFDM and CDMA|class=fit]]
+
The highly abstracted graphic shows the distribution of the complete bandwidth for individual subcarriers and explains the difference between&nbsp; $\rm CDMA$&nbsp; (UMTS) and&nbsp; $\rm OFDM$&nbsp; (LTE).
  
The highly abstracted graphic shows the distribution of the complete bandwidth for individual subcarriers and explains the difference between CDMA (UMTS) and OFDM (LTE).
+
[[File:EN_Mob_T_4_3_S1.png|right|frame|Difference between OFDM and CDMA|class=fit]]
*In contrast to CDMA, OFDM has many subcarriers, typically even several hundred, with a bandwidth of only a few kilohertz each.  
+
 +
*In contrast to CDMA, OFDM has many subcarriers, typically even several hundred, with a bandwidth of only a few&nbsp; "kHz"&nbsp; each.
 +
 
*To achieve this, the data stream is split and each of the many subcarriers is modulated individually with only a small bandwidth.<br>
 
*To achieve this, the data stream is split and each of the many subcarriers is modulated individually with only a small bandwidth.<br>
  
  
LTE uses OFDMA, an OFDM-based transmission technology. Among the reasons for this are&nbsp; [HT09]<ref name='HT09'>Holma, H.; Toskala, A.: ''LTE for UMTS - OFDMA and SC-FDMA Based Radio Access.'' Wiley & Sons, 2009.</ref>:
+
LTE uses&nbsp; $\rm OFDMA$, an OFDM based transmission technology.&nbsp; Among the reasons for this are&nbsp; [HT09]<ref name='HT09'>Holma, H.; Toskala, A.:&nbsp; LTE for UMTS - OFDMA and SC-FDMA Based Radio Access.&nbsp; Wiley & Sons, 2009.</ref>:
*High performance in frequency controlled channels,<br>
+
#High performance in frequency controlled channels,<br>
*the low complexity in the receiver,<br>
+
#the low complexity in the receiver,<br>
*good spectral properties and bandwidth flexibility, and<br>
+
#good spectral properties and bandwidth flexibility, and<br>
*compatibility with the latest receiver&ndash; and multi-antenna technologies.<br><br>
+
#compatibility with the latest receiver and multi-antenna technologies.<br><br>
  
On the next page the differences between the multiple access methods OFDM and OFDMA are briefly explained.<br>
+
In the next section the differences between the multiple access methods "OFDM" and "OFDMA" are briefly explained.<br>
  
  
 
== Similarities and differences of OFDM and OFDMA ==
 
== Similarities and differences of OFDM and OFDMA ==
 
<br>
 
<br>
The principle of&nbsp; <i>Orthogonal Frequency Division Multiplexing</i>&nbsp; (OFDM) is explained in detail in chapter&nbsp; [[Examples_of_Communication_Systems/Allgemeine_Beschreibung_von_DSL#Motivation_f.C3.BCr_xDSL|''' checkLink:_Buch_9 &rArr; ''' Motivation for xDSL]]&nbsp; of the book "Modulation methods". The diagram above shows the frequency assignment for OFDM: &nbsp; OFDM splits the available frequency band into a large number of narrow-band subcarriers, it is important to note:
+
The principle of&nbsp; "Orthogonal Frequency Division Multiplexing" is explained in detail in chapter&nbsp; [[Examples_of_Communication_Systems/General Description of DSL#Motivation_for_xDSL|"Motivation for xDSL"]]&nbsp; of the book "Examples of Communication Systems".&nbsp;
*To ensure that the individual subcarriers exhibit as little intercarrier&ndash;interference as possible, their frequencies are selected so that they are orthogonal to each other.<br>.
+
 
 +
The upper diagram shows the frequency assignment for&nbsp; $\rm OFDM$:&nbsp; This method splits the available frequency band into a large number of narrow&ndash;band subcarriers.&nbsp; It is important to note:
 +
[[File:EN_Mob_T_4_3_S2.png|right|frame|Division of data blocks by frequency and time for OFDM and OFDMA|class=fit]]
  
*This means: &nbsp; At the center frequency of each subcarrier, all other carriers have no spectral components. The goal is to select the currently most favorable resources for each user in order to obtain an overall optimal result.<br>.
+
*To ensure that the individual subcarriers exhibit as little intercarrier&ndash;interference as possible, their frequencies are selected so that they are orthogonal to each other. &nbsp; This means: <br>
 +
 
 +
*At the center frequency of each subcarrier, all other carriers have no spectral components.&nbsp; The goal is to select the currently most favorable resources for each user in order to obtain an overall optimal result.<br>
  
 
*In concrete terms, this also means that the available resources are allocated to the user who can currently do the most with them, adapted to the respective network situation.  
 
*In concrete terms, this also means that the available resources are allocated to the user who can currently do the most with them, adapted to the respective network situation.  
 +
 
*For this purpose, the base station for the downlink to the terminal device measures the connection quality with the help of reference symbols.<br>
 
*For this purpose, the base station for the downlink to the terminal device measures the connection quality with the help of reference symbols.<br>
  
[[File:EN_Mob_T_4_3_S2.png|center|frame|division of data blocks by frequency and time for OFDM and OFDMA|class=fit]]
 
  
The lower diagram shows the allocation at&nbsp; <i>Orthogonal Frequency Division Multiple Access</i>&nbsp; (OFDMA). You can see:
+
The lower diagram shows the allocation at&nbsp; "Orthogonal Frequency Division Multiple Access"&nbsp; $\rm (OFDMA)$.&nbsp; You can see:
*For OFDMA the resource allocation after channel fluctuations is not limited to the time domain as with OFDM, but also the frequency domain is optimally included.
+
#For OFDMA the resource allocation after channel fluctuations is not limited to the time domain as with OFDM, but also the frequency domain is optimally included.&nbsp;
 
+
#Thus the OFDMA resource allocation is better adapted to the external circumstances than with OFDM.
*Thus the OFDMA&ndash;resource allocation is better adapted to the external circumstances than with OFDM.  
+
#In order to make optimum use of this flexibility, however, coordination between the base station&nbsp; ("eNodeB")&nbsp; and the terminal equipment is necessary.&nbsp; More on this in chapter&nbsp; [[Examples_of_Communication_Systems/General Description of DSL|"General Description of DSL"]].
*In order to make optimum use of this flexibility, however, coordination between the base station (<i>eNodeB</i>) and the terminal equipment is necessary. More on this in chapter&nbsp; [[Examples_of_Communication_Systems/Allgemeine_Beschreibung_von_DSL|''' checkLink:_Buch_9 &rArr; ''' General Description of DSL]].
 
  
  
Line 50: Line 55:
 
<br>
 
<br>
 
There are transmission methods such as&nbsp;  
 
There are transmission methods such as&nbsp;  
[https://de.wikipedia.org/wiki/WiMAX WiMAX], which use OFDMA in both directions. The LTE specification by the 3GPP consortium on the other hand specifies
+
[https://en.wikipedia.org/wiki/WiMAX $\text{WiMAX}$], which use OFDMA in both directions.&nbsp; The LTE specification by the 3GPP consortium on the other hand specifies:
*In&nbsp; '''Downlink'''&nbsp; (transmission from the base station to the terminal)&nbsp; '''OFDMA'''&nbsp; is used.<br>
+
 
 +
[[File:EN_Mob_T_4_3_S3.png|right|frame|Sender and Receiver Structure of a SC-FDMA System|class=fit]]
  
*In&nbsp; '''Uplink'''&nbsp; (transmission from terminal to base station) &nbsp; '''SC&ndash;FDMA''''&nbsp; (<i>Single Carrier Frequency Division Multiple Access</i>&nbsp;) is used.<br>
+
*In the&nbsp; "downlink"&nbsp; $($transmission from the base station to the terminal$)$;&nbsp; $\rm OFDMA$&nbsp; is used.<br>
  
 +
*In the&nbsp; "uplink"&nbsp; $($from terminal to base station$)$ &nbsp; $\rm SC&ndash;FDMA$&nbsp; $($"Single Carrier Frequency Division Multiple Access"$)$&nbsp; is used.<br>
  
[[File:EN_Mob_T_4_3_S3.png|center|frame|Sender and Receiver Structure of a SC-FDMA System|class=fit]]
 
  
From the graphic you can see that the two systems "SC&ndash;FDMA" and "OFDMA" are very similar. Or in other words: &nbsp; SC&ndash;FDMA is based on OFDMA (or vice versa).
+
From the graphic you can see that the two systems are very similar.&nbsp; In other words: &nbsp; SC&ndash;FDMA is based on OFDMA (or vice versa).
*If you omit the components highlighted in red&nbsp; ${\rm DFT} \ (K)$&nbsp; and&nbsp; ${\rm IDFT} \ (K)$&nbsp; from SC&ndash;FDMA, you get the OFDMA&ndash;System.<br>
+
*If you omit the components highlighted in red&nbsp; ${\rm DFT} \ (K)$&nbsp; and&nbsp; ${\rm IDFT} \ (K)$&nbsp; from SC&ndash;FDMA, you get the OFDMA system.<br>
  
*The other blocks stand for Serial/Parallel&ndash;Converter (S/P), Parallel/Serial&ndash;Converter (P/S), D/A&ndash;Converter, A/D&ndash;Converter as well as Add/Remove Prefix.<br>
+
*The other blocks stand for Serial/Parallel converter (S/P), Parallel/Serial converter (P/S), D/A converter, A/D converter as well as Add/Remove Prefix.<br>
  
  
 
The signal generation for SC&ndash;FDMA works similar to OFDMA, but with small changes that are important for mobile radio:
 
The signal generation for SC&ndash;FDMA works similar to OFDMA, but with small changes that are important for mobile radio:
*The main difference is the additional&nbsp; [[Signal_Representation/Discrete_Fourier_Transform_(DFT)#Argumente_f.C3.BCr_die_diskrete_Realisierung_der_FT|discrete Fourier-Transformation]]&nbsp; (DFT).<br>
+
*The main difference is the additional&nbsp; [[Signal_Representation/Discrete_Fourier_Transform_(DFT)#Arguments_for_the_discrete_implementation_of_the_Fourier_transform|"discrete Fourier transform"]]&nbsp; $\rm (DFT)$.&nbsp; This has to be done on the transmitting side directly after the serial/parallel conversion.
 
 
*This has to be done on the transmit side directly after the serial/parallel&ndash;conversion.
 
 
 
*Thus, it is no longer a multi-carrier procedure, but a single-carrier&ndash;FDMA&ndash;variant.<br>
 
  
*One speaks of "DFT&ndash;spread OFDM" because of the necessary DFT/IDFT&ndash;operations.<br><br>
+
*Thus, it is no longer a multi-carrier procedure, but a single-carrier FDMA variant.&nbsp; One speaks of&nbsp; "DFT&ndash;spread OFDM"&nbsp; because of the necessary DFT/IDFT operations.<br><br>
  
 
Let us summarize these statements briefly:  
 
Let us summarize these statements briefly:  
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
$\text{SC&ndash;FDMA is different from OFDMA}$&nbsp; in the following points&nbsp; [see also Internet article&nbsp; [https://en.wikipedia.org/wiki/Single-carrier_FDMA Single-carrier FDMA]&nbsp; (in Wikipedia) and&nbsp;  
+
$\text{SC&ndash;FDMA is different from OFDMA}$&nbsp; in the following points&nbsp; <br>[see also the Internet articles&nbsp; [https://en.wikipedia.org/wiki/Single-carrier_FDMA "Single-carrier FDMA"]&nbsp; (in Wikipedia) and&nbsp;  
[http://www.rfwireless-world.com/Articles/difference-between-SC-FDMA-and-OFDMA.html Difference between SC-FDMA and OFDMA.html]&nbsp; from (''RF Wireless World'')]:
+
[http://www.rfwireless-world.com/Articles/difference-between-SC-FDMA-and-OFDMA.html "Difference between SC-FDMA and OFDMA.html"]&nbsp; (from RF Wireless World)]:
 
   
 
   
*With SC&ndash;FDMA, the data symbols are sent in a group of simultaneously transmitted subcarriers instead of sending each symbol from a single orthogonal subcarrier as with OFDMA.  
+
#With SC&ndash;FDMA, the data symbols are sent in a group of simultaneously transmitted subcarriers instead of sending each symbol from a single orthogonal subcarrier as with OFDMA.&nbsp;
*This subcarrier group can then be considered a separate frequency band that transmits the data sequentially. This is where the name "Single Carrier FDMA" comes from.<br>
+
#This subcarrier group can then be considered a separate frequency band that transmits the data sequentially.&nbsp; This is where the name&nbsp; "Single Carrier FDMA"&nbsp; comes from.<br>
 
+
#While with OFDMA the data symbols directly create the different subcarriers, with SC&ndash;FDMA they first pass a discrete Fourier transform&nbsp;  $\rm (DFT)$.&nbsp;
*While with OFDMA the data symbols directly create the different subcarriers, with SC&ndash;FDMA they first pass a discrete Fourier transformation (DFT). Thus the data symbols are first transformed from the time domain into the frequency domain before they pass through the OFDM&ndash;procedure. <br>
+
#Thus the data symbols are first transformed from the time domain into the frequency domain before they pass through the OFDM procedure.}} <br>
 
+
[[File:P ID2301 Mob T 4 3 S3b v1.png|right|frame|Frequency band splitting for OFDMA and SC-FDMA|class=fit]]
 
 
One can also describe the difference between OFDMA and SC&ndash;FDMA in such a way:
 
*In an OFDMA&ndash;transmission, each orthogonal subcarrier only contains the information of a single signal.
 
  
 +
One can also describe the difference between&nbsp; "OFDMA"&nbsp; and&nbsp; "SC&ndash;FDMA"&nbsp; in such a way:
 +
*In an OFDMA transmission, each orthogonal subcarrier only contains the information of a single signal.
 
*In contrast, with SC&ndash;FDMA, each individual subcarrier contains information about all signals transmitted in this period.
 
*In contrast, with SC&ndash;FDMA, each individual subcarrier contains information about all signals transmitted in this period.
  
This difference and the quasi&ndash;sequential transmission with SC&ndash;FDMA can be seen particularly well from the following diagram. This is taken from a PDF document from&nbsp; [http://www.keysight.com/main/application.jspx?cc=DE&lc=ger&ckey=1174746&nid=-34867.0.00&id=1174746 Agilent&ndash;3GPP.]
 
 
[[File:P ID2301 Mob T 4 3 S3b v1.png|center|frame|Frequency band splitting for OFDMA and SC-FDMA|class=fit]]
 
  
 +
This difference and the quasi&ndash;sequential transmission with SC&ndash;FDMA can be seen particularly well from the diagram on the right.&nbsp;
  
 +
 +
This graphic is taken from a PDF document from&nbsp; "Agilent&ndash;3GPP".
 +
<br clear=all>
 
== Functionality of SC-FDMA==
 
== Functionality of SC-FDMA==
 
<br>
 
<br>
Now the SC&ndash;FDMA&ndash;transfer process shall be examined more in detail. The information for this comes largely from&nbsp; [MG08]<ref name='MG08'>Myung, H.; Goodman, D.: ''Single Carrier FDMA - A New Air Interface for Long Term Evolution''. West Sussex: John Wiley & Sons, 2008.</ref>.
+
Now the SC&ndash;FDMA transfer process shall be examined more in detail.&nbsp; The information for this section comes largely from&nbsp; [MG08]<ref name='MG08'>Myung, H.; Goodman, D.:&nbsp; Single Carrier FDMA A New Air Interface for Long Term Evolution.&nbsp; West Sussex: John Wiley & Sons, 2008.</ref>.
 
 
The purpose and function of the&nbsp; <i>Cyclic Prefix</i>&nbsp; is not discussed in detail here. The reasons are the same as for OFDM and can be read in the section&nbsp; [[Modulation_Methods/Realisierung_von_OFDM-Systemen#Zyklisches_Pr.C3.A4fix|''' checkLink:_Buch_5 &rArr; ''' Cyclic Prefix]]&nbsp; of the book "Modulation_Methods".
 
 
 
The following description refers to the SC&ndash;FDMA&ndash;Sender shown here. Note that with LTE the modulation is adapted to the channel quality:
 
*In highly noisy channels 4&ndash;QAM (<i>Quadrature Amplitude Modulation</i> with only four signal space points) is used.
 
* Under better conditions, the system then switches to a higher-level QAM, up to 64&ndash;QAM.  
 
  
 +
[[File:P ID2304 Mob T 4 3 S4a v3.png|right|frame|Considered SC-FDMA transmitter |class=fit]]
  
[[File:P ID2304 Mob T 4 3 S4a v3.png|center|frame|Received SC-FDMA Transmitter |class=fit]]
+
The purpose and function of the&nbsp; "Cyclic Prefix"&nbsp; is not discussed here in detail.&nbsp; The reasons for this unit are the same as for OFDM and can be read in the section&nbsp; [[Modulation_Methods/Implementation of OFDM Systems#Cyclic Prefix|"Cyclic Prefix"]]&nbsp; of the book "Modulation Methods".
  
 +
The following description refers to the&nbsp; SC&ndash;FDMA transmitter&nbsp; shown here.&nbsp; Note that with LTE the modulation is adapted to the channel quality:
 +
*In highly noisy channels&nbsp; $\rm 4&ndash;QAM$&nbsp; (Quadrature Amplitude Modulation with only four signal space points)&nbsp; is used.
 +
* Under better conditions, the system then switches to a higher-level QAM, up to&nbsp; $\rm  64&ndash;QAM$.
 +
<br clear=all>
 
The following also applies:
 
The following also applies:
*An input data block consists of&nbsp; $K$&nbsp; complex modulation symbols&nbsp; $x_\nu$ which are generated at a rate of&nbsp; $R_{\rm Q}\ \big[\rm symbols/s \big]$&nbsp;. The discrete Fourier transform (DFT) generates&nbsp; $K$&nbsp; symbols&nbsp; $X_\mu$&nbsp; in the frequency domain, which are modulated on&nbsp; $K$&nbsp; from a total of&nbsp; $N$&nbsp; orthogonal subcarriers:   
+
*An input data block consists of&nbsp; $K$&nbsp; complex modulation symbols&nbsp; $x_\nu$ which are generated at a rate of&nbsp; $R_{\rm Q}\ \big[\rm symbols/s \big]$.&nbsp; The discrete Fourier transform &nbsp; $\rm (DFT)$&nbsp; generates&nbsp; $K$&nbsp; symbols&nbsp; $X_\mu$&nbsp; in the frequency domain, which are modulated on&nbsp; $K$&nbsp; from a total of&nbsp; $N$&nbsp; orthogonal subcarriers:   
 
::<math>X_\mu  =  \sum_{\nu = 0 }^{K-1}
 
::<math>X_\mu  =  \sum_{\nu = 0 }^{K-1}
 
   x_\nu \cdot  {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} { 2 \pi \hspace{0.05cm}\cdot \hspace{0.05cm} \nu  
 
   x_\nu \cdot  {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} { 2 \pi \hspace{0.05cm}\cdot \hspace{0.05cm} \nu  
 
  \hspace{0.05cm}\cdot \hspace{0.05cm} \mu }/{K}} \hspace{0.05cm},</math>
 
  \hspace{0.05cm}\cdot \hspace{0.05cm} \mu }/{K}} \hspace{0.05cm},</math>
*The subcarriers are distributed over a larger bandwidth of&nbsp; $B_{\rm K} = N \cdot f_0$&nbsp; where&nbsp; $f_0 = 15 \ \rm kHz$&nbsp; is the smallest addressable bandwidth for LTE. Unused channels are shown as dashed lines in the example graphic.<br>.
+
*The subcarriers are distributed over a larger bandwidth of&nbsp; $B_{\rm K} = N \cdot f_0$&nbsp; where&nbsp; $f_0 = 15 \ \rm kHz$&nbsp; is the smallest addressable bandwidth for LTE.&nbsp; Unused channels are shown as dashed lines in the example graphic.<br>
  
*The channel transmission rate is&nbsp; $R_{\rm C} = J \cdot R_{\rm Q}$&nbsp; with spreading factor&nbsp; $J = N/K$. This SC&ndash;FDMA&ndash;system could simultaneously process&nbsp; $J$&nbsp; orthogonal input signals. In the case of LTE, for example, the values are&nbsp; $K = 12$&nbsp; (smallest addressable block) and&nbsp; $N = 1024$. $J$&nbsp; thus also indicates the number of terminal devices that can be simultaneously connected to this base station.<br>
+
*The channel transmission rate is&nbsp; $R_{\rm C} = J \cdot R_{\rm Q}$&nbsp; with spreading factor&nbsp; $J = N/K$.&nbsp; This SC&ndash;FDMA system could simultaneously process&nbsp; $J$&nbsp; orthogonal input signals &nbsp; &rArr; &nbsp; number of terminal devices that can be simultaneously connected to this base station.&nbsp; In the case of LTE, for example, the values are&nbsp; $K = 12$&nbsp; (smallest addressable block) and&nbsp; $N = 1024$.&nbsp;  
  
*According to the so-called&nbsp; <i>subcarrier&ndash;mapping</i>&nbsp;, which is the assignment of the symbols generated by the DFT to the available subcarriers, the symbols are then "mapped" to a certain bandwidth, for example &nbsp; $K = 12$&nbsp; maps to the range of&nbsp; $0 \ \text{...} \ 180 \ \rm kHz$&nbsp; or to the range of&nbsp; $180 \ \rm kHz \ \text{...} \ 360 \ \rm kHz$.<br>
+
*According to the so-called&nbsp; "Subcarrier Mapping"&nbsp; which is the assignment of the symbols generated by the DFT to the available subcarriers, the symbols are then mapped to a certain bandwidth, for example &nbsp; $K = 12$&nbsp; maps to the range of&nbsp; $0 \ \text{...} \ 180 \ \rm kHz$&nbsp; or to the range of&nbsp; $180 \ \rm kHz \ \text{...} \ 360 \ \rm kHz$.<br>
  
*The IDFT&ndash;transformation (highlighted in blue above) transforms the output values&nbsp; $Y_\mu$&nbsp; on the frequency domain in its time representation&nbsp; $y_\nu$. These samples are then transformed by the parallel/serial&ndash;converter into a sequence suitable for transmission.<br><br>
+
*The&nbsp; $\rm IDFT$&nbsp; (highlighted in blue) transforms the output values&nbsp; $Y_\mu$&nbsp; on the frequency domain in its time representation&nbsp; $y_\nu$.&nbsp; These samples are then transformed by the Parallel/Serial converter into a sequence suitable for transmission.<br><br>
  
  
== Verschiedene Ansätze für das Subcarrier&ndash;Mapping==
+
== Different approaches for the Subcarrier Mapping==
 
<br>
 
<br>
Die folgende Abbildung verdeutlicht drei Arten für das&nbsp; <i>Subcarrier&ndash;Mapping</i>. Zur Vereinfachung der Darstellung beschränken wir uns hier auf die (sehr kleinen) Parameterwerte&nbsp; $K = 4$&nbsp; und&nbsp; $N = 12$.<br>
+
The following figure illustrates three types of&nbsp; "Subcarrier Mapping".&nbsp; To simplify the representation, we will limit ourselves here to the (very small) parameter values&nbsp; $K = 4$&nbsp; and&nbsp; $N = 12$.<br>
[[File:EN_Mob_T_4_3_S4b.png|center|frame|Verschiedene Methoden des Subcarrier-Mappings|class=fit]]
+
[[File:EN_Mob_T_4_3_S4b.png|right|frame|Various methods of Subcarrier Mapping|class=fit]]
<b>DFDMA</b>&nbsp; oder &nbsp;<i>Distributed Mapping</i>: <br>Hier werden die Modulationssymbole auf einen gewissen Bereich der verfügbaren Kanalbandbreite verteilt.<br>
+
*&raquo;'''DFDMA'''&laquo;&nbsp; or &nbsp;"Distributed Mapping": <br> Here the modulation symbols are distributed over a certain range of the available channel bandwidth.<br>
 +
 
 +
*&raquo;'''IFDMA'''&laquo;&nbsp; or&nbsp; "Interleaved FDMA": <br>Special form of DFDMA, when the modulation symbols are distributed over the entire bandwidth with equal distances between them.<br>
  
<b>IFDMA</b>&nbsp; oder&nbsp; <i>Interleaved FDMA</i>: <br>Sonderform der DFDMA, wenn man die Modulationssymbole auf die komplette Bandbreite mit gleichen Abständen verteilt.<br>
+
*&raquo;'''LFDMA'''&laquo;&nbsp; or&nbsp; "Localized Mapping": <br>The &nbsp;$K$&nbsp; modulation symbols are assigned directly to adjacent subcarriers.&nbsp; This corresponds to the current 3GPP&ndash;specification.<br>
  
<b>LFDMA</b>&nbsp;  oder&nbsp; <i>Localized Mapping</i>: <br>Die &nbsp;$K$&nbsp; Modulationssymbole werden direkt benachbarten Unterträgern zugeordnet. Dies entspricht der derzeitigen 3GPP&ndash;Spezifikation.<br>
 
  
Man kann zeigen, dass der Sender bei SC&ndash;FDMA die drei Schritte
+
It can be shown that with SC&ndash;FDMA the transmitter does not have to be run through the following steps individually
*Diskrete Fouriertransformation (DFT),<br>
+
#Discrete Fourier Transform&nbsp; $\rm (DFT)$,<br>
*Subcarrier&ndash;Mapping, und<br>
+
#Subcarrier Mapping,  
*Inverse diskrete Fouriertransformation (IDFT) bzw. Fast&ndash;Fouriertransformation (IFFT)<br><br>
+
#Inverse discrete Fourier transform&nbsp; $\rm (IDFT)$&nbsp; or inverse Fast Fourier transform&nbsp; $\rm (IFFT)$.<br><br>
  
gar nicht einzeln durchlaufen muss. Diese drei Operationen kann man vielmehr gemeinsam als eine einzige lineare Operation realisieren. Die vollständige und mathematisch nicht einfache Herleitung findet sich zum Beispiel in&nbsp; [MG08]<ref name='MG08'>Myung, H.; Goodman, D.: ''Single Carrier FDMA – A New Air Interface for Long Term Evolution''. West Sussex: John Wiley & Sons, 2008.</ref>. Jedes Element&nbsp; $y_\nu$&nbsp; der Ausgangssequenz ist dann durch eine gewichtete Summe der Eingangssequenzelemente&nbsp; $x_\nu$&nbsp; darstellbar, wobei die Gewichte komplexwertig sind.<br>
+
Instead, these three operations can be realized together as one single linear operation.&nbsp; The complete and mathematically complex derivation can be found for example in&nbsp; [MG08]<ref name='MG08'></ref>.&nbsp; Each element&nbsp; $y_\nu$&nbsp; of the output sequence is then representable by a weighted sum of the input sequence elements&nbsp; $x_\nu$&nbsp; where the weights are complex-valued.<br>
  
Anstatt der vergleichsweise komplizierten Fouriertransformation reduziert sich die Operation somit
+
Hence, instead of the comparatively complicated Fourier transform, the operation is reduced
*auf eine Multiplikation mit einer komplexen Zahl, und<br>
+
*to a multiplication with a complex number, and<br>
  
*dem&nbsp; $J$&ndash;fachen Wiederholen der Eingangssequenz&nbsp; $\langle x_\nu \rangle $.<br><br>
+
*the&nbsp; $J$&ndash;fold repetition of the input sequence&nbsp; $\langle x_\nu \rangle $.<br><br>
  
In&nbsp; [[Aufgaben:Aufgabe_4.3:_Subcarrier–Mapping|Aufgabe 4.3]]&nbsp; wird das (sendeseitige)&nbsp; <i>Subcarrier&ndash;Mapping</i>&nbsp; mit realistischeren Werten für&nbsp; $K$&nbsp; und&nbsp; $N$&nbsp; betrachtet und auf die Unterschiede zum&nbsp; <i>Subcarrier&ndash;Demapping</i>&nbsp; (am Empfänger) hingewiesen.<br>
+
In&nbsp; [[Aufgaben:Exercise 4.3: Subcarrier Mapping|"Exercise 4.3"]]&nbsp; the (transmit-side)&nbsp; "Subcarrier Mapping"&nbsp; is considered with more realistic values for&nbsp; $K$&nbsp; and&nbsp; $N$&nbsp; and its differences to the&nbsp; "Subcarrier Demapping"&nbsp; (at the receiver) are pointed out.<br>
  
== Vorteile von SC–FDMA gegenüber OFDM==
+
 
 +
== Advantages of SC-FDMA over OFDM==
 
<br>
 
<br>
Der entscheidende Vorteil von SC&ndash;FDMA gegenüber OFDMA ist auf Grund seiner Einzelträgerstruktur sein niedrigeres&nbsp; <i>Peak&ndash;to&ndash;Average Power&ndash;Ratio</i>&nbsp; $\rm (PAPR)$. Darunter versteht man das Verhältnis von momentaner Spitzenleistung&nbsp; $P_{\rm max}$&nbsp; zur mittleren Sendeleistung&nbsp; $P_{\rm S}$.  $\rm PAPR$&nbsp; lässt sich auch durch den&nbsp; [[Digitalsignal%C3%BCbertragung/Optimierung_der_Basisband%C3%BCbertragungssysteme#Systemoptimierung_bei_Spitzenwertbegrenzung| Crest&ndash;Faktor]]&nbsp; (Quotient der Signalamplituden) ausdrücken. Die beiden Größen sind allerdings nicht identisch.<br>
+
The decisive advantage of SC&ndash;FDMA over OFDMA is its lower&nbsp; "Peak&ndash;to&ndash;Average Power Ratio"&nbsp; $\rm (PAPR)$&nbsp; due to its single-carrier structure.&nbsp;
 +
*This is the ratio of current peak power&nbsp; $P_{\rm max}$&nbsp; to average power&nbsp; $P_{\rm S}$.&nbsp; $\rm PAPR$&nbsp; can also be expressed by the&nbsp; [[Digital_Signal_Transmission/Optimization_of_Baseband_Transmission_Systems#System_optimization_with_peak_limitation|"Crest factor"]]&nbsp; (quotient of the signal amplitudes).&nbsp;
 +
 
 +
*However, the two quantities are not identical.<br>
 +
 
 +
[[File:P ID2308 Mob T 4 3 S5a v2.png|right|frame|(Complementary)&nbsp; $\rm PAPR$&nbsp; for OFDM]]
 +
 
 +
 
 +
The graphic from the Internet document&nbsp; [Wu09]<ref name ='Wu09'>Wu, B.:&nbsp; Analyzing WiMAX Modulation Quality. &nbsp; PDF Internet document, 2009.</ref>&nbsp; shows in double&ndash;logarithmic representation the probability that with 64QAM&ndash;OFDM the current power&nbsp; $P_{\rm max}$&nbsp; is above the average power&nbsp; $P_{\rm S}$.&nbsp; You can see:
 +
#The probability of large&nbsp; "outliers"&nbsp; is small.&nbsp; For example, the average power is only exceeded in&nbsp; $0.1\%$&nbsp; of time by more than&nbsp; $\text{10 dB}$&nbsp; &nbsp; &nbsp; &rArr; &nbsp; marked in red.<br>
 +
#Even if such high power peaks are very rare, they still pose a problem for the receiver's power amplifier.
 +
 
 +
 
 +
The power amplifiers should be operated in the linear range, otherwise the signal is distorted.&nbsp; Non-linearities arise in particular due to
 +
*intercarrier interference&nbsp; within the signal,<br>
  
[[File:P ID2308 Mob T 4 3 S5a v2.png|right|frame|(Komplementäre)&nbsp; $\rm PAPR$&ndash; Verteilungsfunktion bei OFDM]]
+
*interference from adjacent channels due to spectrum expansions.<br><br>
  
Die Grafik aus dem Internet&ndash;Dokument&nbsp; [Wu09]<ref name ='Wu09'>Wu, B.: ''Analyzing WiMAX Modulation Quality.'' [http://mwrf.com/Articles/Print.cfm?Ad=1&ArticleID=22022 PDF–Internetdokument,] 2009.</ref>&nbsp; zeigt in doppelt&ndash;logarithmischer Darstellung die Wahrscheinlichkeit dafür, dass bei 64&ndash;QAM&ndash;OFDM die momentane Leistung&nbsp; $P_{\rm max}$&nbsp; über der mittleren Leistung&nbsp; $P_{\rm max}$&nbsp; liegt. Man erkennt:
+
Therefore, OFDM requires the amplifier to operate at a lower power level than its peak power most of the time, which can drastically reduce its efficiency.
*Die Wahrscheinlichkeit für große &bdquo;Ausreißer&rdquo; ist gering. Beispielsweise wird die mittlere Leistung nur in&nbsp; $0.1\%$&nbsp; der Zeit um mehr als&nbsp; $\text{10 dB}$&nbsp; überschritten &nbsp; &rArr; &nbsp; rote Markierung.<br>
 
  
*Auch wenn solche hohen Leistungsspitzen nur sehr selten sind, stellen sie trotzdem ein Problem für den Leistungsverstärker des Empfängers dar.<br><br>
+
*Because one can regard&nbsp; SC&ndash;FDMA&nbsp; quasi as single carrier transmission procedures, its PAPR is lower than the one of OFDMA.  
  
Die Leistungsverstärker  sollten im linearen Bereich betrieben werden, da ansonsten das Signal verzerrt wird. Nichtlinearitäten ergeben sich insbesondere auf Grund von
+
*Thus, for example, a so-called&nbsp; "pulse shaping filter" can be used which reduces the PAPR.
*Intercarrier&ndash;Interferenz innerhalb des Signals,<br>
 
  
*Interferenzen von benachbarten Kanälen aufgrund von Spektrumserweiterungen.<br><br>
 
  
Daher muss bei OFDM der Verstärker die meiste Zeit mit einer niedrigeren Leistung als möglich betrieben werden, was seine Effizienz drastisch reduzieren kann.
+
The lower PAPR  is the main reason why SC&ndash;FDMA is used in the  LTE uplink  and not OFDMA.
 +
*A low PAPR  means longer battery life, an extremely important criterion for mobile phones/smartphones.  
  
*Weil man SC&ndash;FDMA quasi als Einzelträger&ndash;Übertragungsverfahren betrachten kann, ist bei diesem $\rm PAPR$ niedriger als bei OFDMA.  
+
*At the same time, SC&ndash;FDMA offers similar performance and complexity to OFDMA.  
*Dadurch kann zum Beispiel ein so genanntes&nbsp; <i>Pulse&ndash;shaping</i>&ndash;Filter verwendet werden, der das&nbsp; $\rm PAPR$&nbsp; reduziert.<br><br>
 
  
Das niedrigere&nbsp; $\rm PAPR$&nbsp; ist der wesentliche Grund dafür, dass im LTE&ndash;Uplink SC&ndash;FDMA zum Einsatz kommt und nicht OFDMA.
+
*Since a long battery life is less important for the downlink, OFDMA is used here.<br>
*Ein niedriges&nbsp; $\rm PAPR$&nbsp; bedeutet eine längere Batterielaufzeit, ein für Mobiltelefone/Smartphones  äußerst wichtiges Kriterium.
 
*Gleichzeitig bietet SC&ndash;FDMA eine ähnliche Leistungsfähigkeit und Komplexität wie OFDMA.
 
*Da für den Downlink eine lange Batterielaufzeit weniger bedeutend ist, wird hier OFDMA eingesetzt.<br>
 
  
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 1:}$&nbsp; Wir betrachten ein OFDM&ndash;System mit&nbsp; $N$&nbsp; Trägern, alle mit gleicher Signalamplitude&nbsp; $A$. Dann ist nach einer stark vereinfachten Rechnung mit gleichem Proportionalitätsfaktor
+
$\text{Example 1:}$&nbsp; We consider an OFDM system with&nbsp; $N$&nbsp; carriers, all with the same signal amplitude&nbsp; $A$.
  
*die maximale Signalleistung proportional zu&nbsp; $(N \cdot  A)^2$, und<br>
+
After a highly simplified calculation with the same proportionality factor we obtain:
  
*die mittlere Signalleistung proportional zu&nbsp; $N \cdot A^2$ .<br><br>
+
*the maximum signal power is proportional to&nbsp; $(N \cdot A)^2$, and<br>
  
Daraus ergibt sich das&nbsp; <i>Peak&ndash;to&ndash;Average Power&ndash;Ratio</i>&nbsp; als der Quotient dieser beiden Leistungen zu&nbsp; ${\rm PAPR} = N$. Bereits bei nur zwei Trägern ergibt sich schon&nbsp; ${\rm PAPR} = 2$&nbsp; entsprechend&nbsp; $\text{3 dB}$.<br>
+
*the average signal power is proportional to&nbsp; $N \cdot A^2$ .<br><br>
  
*Somit muss der Verstärker selbst bei nur zwei Trägern immer&nbsp; $\text{3 dB}$&nbsp; unterhalb der maximalen Leistung arbeiten, um im Fall von Signalspitzen keine Signalverzerrungen zu produzieren.
+
This results in the&nbsp; peak&ndash;to&ndash;average power ratio&nbsp; ${\rm PAPR} = N$, since it's the quotient of these two powers.&nbsp; Already with only two carriers this results in&nbsp; ${\rm PAPR} = 2$&nbsp; which corresponds to&nbsp; $\text{3 dB}$:<br>
*Wie anschließend gezeigt wird, bedeuten&nbsp; $\text{3 dB}$&nbsp; aber bereits einen Rückgang des Wirkungsgrads auf&nbsp; $85\%$.}}<br>
 
  
 +
*So even with only two carriers the amplifier must always operate&nbsp; $\text{3 dB}$&nbsp; below the maximum power to avoid signal distortion in case of signal peaks.
 +
 +
*As will be shown below,&nbsp; $\text{3 dB}$&nbsp; already means a decrease in efficiency to&nbsp; $85\%$.}}<br>
  
Das&nbsp; <i>Peak&ndash;to&ndash;Average Power&ndash;Ratio</i>&nbsp; $\rm (PAPR)$&nbsp; steht in direkter Beziehung zur&nbsp; ''Sendeverstärkereffizienz''. Die maximale Effizienz wird erreicht, wenn der Verstärker in der Umgebung der Sättigungsgrenze arbeiten kann.
 
 
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 2:}$&nbsp; Die Grafik zeigt eine beispielhafte Verstärkerkennlinie, also die Ausgangsleistung aufgetragen über der Eingangsleistung.<br>
+
$\text{Example 2:}$&nbsp; The parameter&nbsp; $\rm PAPR$&nbsp; is directly related to the&nbsp; "Transmit Amplifier Efficiency".&nbsp; 
 +
*Maximum efficiency is achieved when the amplifier can operate in the vicinity of the saturation limit.
 +
 
 +
*The graphic shows an example of an amplifier's characteristic curve, i.e. the output power plotted against the input power.<br>
 +
 
  
[[File:EN_Mob_T_4_3_S5b.png|right|frame|Rückgang des Verstärkerwirkungsgrads <br>bei steigendem „Back–off”]]
+
[[File:EN_Mob_T_4_3_S5b.png|right|frame|Decrease in amplifier efficiency with increasing back-off]]
*Bei&nbsp; $\rm PAPR = 1$&nbsp;  $($also $\text{0 dB})$&nbsp; könnte man die mittlere Leistung&nbsp; $P_{\rm S}$&nbsp; gleich der zulässigen Spitzenleistung&nbsp; $P_{\rm max}$&nbsp; setzen. Gemäß der  Kennlinie&nbsp; $P_{\rm out}/P_{\rm in}$&nbsp; ergäbe sich (beispielhaft) der Verstärkerwirkungsgrad zu&nbsp;  $95\%$.<br>
 
*Bei großem&nbsp; $\rm PAPR$&nbsp; muss aber der Verstärker unterhalb der Sättigungsgrenze betrieben werden, um zu starke Signalverzerrungen zu verhindern.<br>
 
  
 +
At&nbsp; $\rm PAPR = 1$&nbsp; $(\text{0 dB})$&nbsp; one could set the average power&nbsp; $P_{\rm S}$&nbsp; equal to the allowed peak power&nbsp; $P_{\rm max}$.&nbsp; According to the characteristic curve&nbsp; $P_{\rm out}/P_{\rm in}$&nbsp; the amplifier efficiency would be (exemplarily)&nbsp; $95\%$.<br>
  
Hier einige numerische Beispiele:
+
Nevertheless, for large&nbsp; $\rm PAPR$&nbsp; the amplifier must be operated below the saturation limit to avoid too much signal distortion.&nbsp; Here are some numerical examples:
*Bei&nbsp; $\rm PAPR = 2$&nbsp; entsprechend der Überschlagsrechnung auf der letzten Seite müsste man die mittlere Sendeleistung um&nbsp; $\text{3 dB}$&nbsp; kleiner als zulässig wählen, damit&nbsp; $P_{\rm max}$&nbsp; zu keinem Zeitpunkt überschritten würde. Der Wirkungsgrad würde so auf&nbsp; $85\%$&nbsp; zurückgehen.<br>
+
*At&nbsp; $\rm PAPR = 2$&nbsp; according to the rough calculation on the last example, the average transmitted power would have to be chosen  $\text{3 dB}$&nbsp; lower than the allowed power,&nbsp; so that&nbsp; $P_{\rm max}$&nbsp; would not be exceeded at any time.&nbsp; The efficiency would then decrease to&nbsp; $85\%$&nbsp;. <br>
  
*Ein Back&ndash;off von&nbsp; $\text{3 dB}$&nbsp; reicht aber meist nicht aus, vielmehr geht man in der Praxis von Werten zwischen&nbsp; $\text{5 dB}$&nbsp; und&nbsp; $\text{8 dB}$&nbsp; aus&nbsp; [Hin08]<ref name='Hin08'>Hindelang, T.: ''Mobile Communications. Vorlesungsmanuskript.'' Lehrstuhl für Nachrichtentechnik, TU München, 2008.</ref>. Nach obiger Kurve sinkt aber bereits bei&nbsp; $\text{5 dB}$&nbsp; der Wirkungsgrad auf nur mehr&nbsp; $70\%$ (System&nbsp; $\rm S1$, grüne Linie).<br>
+
*A back&ndash;off from&nbsp; $\text{3 dB}$&nbsp; is usually not sufficient, but in practice values between&nbsp; $\text{5 dB}$&nbsp; and&nbsp; $\text{8 dB}$,&nbsp; taken from &nbsp;[Hin08]<ref name='Hin08'>Hindelang, T.:&nbsp; Mobile Communications.&nbsp; Lecture Manuscript.&nbsp; Chair of Communications Engineering, TU Munich, 2008.</ref>.&nbsp; According to the given curve, however, at&nbsp; $\text{5 dB}$&nbsp; the efficiency already drops to only &nbsp; $70\%$&nbsp; $($system&nbsp; $\rm S1$, green line$)$.<br>
  
*Mit dem System&nbsp; $\rm S2$&nbsp; können zwar alle Signalspitzen  kleiner&nbsp; $\text{8 dB}$&nbsp; vom Verstärker verzerrungsfrei übertragen werden, aber der Verstärkerwirkungsgrad  beträgt dann nur noch&nbsp; $40\%$. Wie aus der ersten Grafik auf dieser Seite zu ersehen ist, treten trotzdem noch in ca.&nbsp; $2\%$ der Zeit starke Verzerrungen auf.<br>
+
*With  system&nbsp; $\rm S2$&nbsp; all signal peaks reduced in&nbsp; $\text{8 dB}$&nbsp; can be transmitted by the amplifier without distortion, but the amplifier efficiency is then only&nbsp; $40\%$.&nbsp; As can be seen in the first graphic in this section, strong distortions still occur about&nbsp; $2\%$&nbsp; of the time.
  
*Ist die mittlere Sendeleistung sei&nbsp; $P_{\rm S} = 100\, \rm mW$, so muss bei einem&nbsp; $\rm PAPR = 9 \ \text{(8 dB)}$&nbsp; der Verstärker bis zu&nbsp; $P_{\rm max} = 900\, \rm mW$&nbsp; verzerrungsfrei arbeiten, bei&nbsp; $\rm PAPR = 2 \ \text{(8 dB)}$&nbsp; dagegen nur bis&nbsp; $200 \, \rm mW$. Der Unterschied zwischen den beiden Verstärkern ist ein enormer Kostenfaktor.}}<br><br>
+
*If the average transmitted power is&nbsp; $P_{\rm S} = 100\, \rm mW$, then with a&nbsp; $\rm PAPR = 9 \ \Rightarrow \ \text{8 dB}$&nbsp; the amplifier must work up to&nbsp; $P_{\rm max} = 900\, \rm mW$&nbsp; without distortion, with&nbsp; $\rm PAPR = 2 \ \Rightarrow \ \text{3 dB}$&nbsp; on the other hand, only up to&nbsp; $200 \, \rm mW$.&nbsp; The difference between the two amplifiers is an enormous cost factor.}}<br>
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Fazit:}$&nbsp; Aufgrund dieser Angaben kann zusammengefasst werden:
+
$\text{Conclusion:}$&nbsp;  
*OFDM mit einem großen  Back&ndash;off im Uplink würde zu Problemen führen, nämlich zu extrem kurzen Batterielaufzeiten der mobilen Endgeräte. Daher wird im LTE&ndash;Uplink das konkurrierende Verfahren SC&ndash;FDMA verwendet.<br>
+
*OFDM with a large back&ndash;off in the uplink would lead to problems, namely extremely short battery life of the mobile devices&nbsp; &rArr; &nbsp; SC&ndash;FDMA is used in the LTE uplink.<br>
  
*Zudem ist die Sender&ndash;Komplexität bei SC&ndash;FDMA allgemein niedriger als bei anderen Verfahren, was billigere Endgeräte bedeutet&nbsp; [MLG06]<ref name='MLG06'>Myung, H.; Lim, J.; ''Goodman, D.: Single Carrier FDMA for Uplink Wireless Transmission.'' IEEE Vehicular Technology Magazine, Vol. 1, No. 3, 2006.</ref>. Würde man das bei UMTS genutzte CDMA auf den 4G&ndash;Standard erweitern, so würde demgegenüber auf Grund der hohen Frequenzdiversität im Kanal die Empfängerkomplexität stark ansteigen&nbsp; [IXIA09]<ref name='IXIA09'>''SC-FDMA Single Carrier FDMA in LTE.'' (PDF–Dokument im Internet), 2009.</ref>.<br>
+
*In addition, the complexity of SC&ndash;FDMA is generally lower than other methods, which means cheaper terminals&nbsp; [MLG06]<ref name='MLG06'>Myung, H.; Lim, J.; Goodman, D.:&nbsp; Single Carrier FDMA for Uplink Wireless Transmission.&nbsp; IEEE Vehicular Technology Magazine, Vol. 1, No. 3, 2006.</ref>.&nbsp; If the CDMA used in UMTS were extended to the 4G standard, the receiver complexity would increase significantly due to the high frequency diversity in the channel&nbsp; [IXIA09]<ref name='IXIA09'>SC-FDMA - Single Carrier FDMA in LTE. &nbsp; PDF Internet document, 2009.</ref>.<br>
  
*Allerdings wird die Frequenzbereichsentzerrung bei SC&ndash;FDMA komplizierter als bei OFDMA. Dies ist der Hauptgrund, warum man SC&ndash;FDMA nur im Uplink verwendet. So müssen diese komplizierten Entzerrer nur in den Basisstationen eingebaut werden und nicht in den Endgeräten.}}<br><br>
+
*However, the frequency domain equalization with SC&ndash;FDMA is more complicated than with OFDMA.&nbsp; This is the main reason why SC&ndash;FDMA is only used in the uplink.&nbsp; So these complicated equalizers have to be installed only in the base stations and not in the terminals.}}<br><br>
  
== Aufgaben zum Kapitel ==
+
== Exercices for the chapter ==
 
<br>
 
<br>
[[Aufgaben:4.3 Subcarrier–Mapping|Aufgabe 4.3: Subcarrier–Mapping]]
+
[[Aufgaben:Exercise 4.3: Subcarrier Mapping]]
  
[[Aufgaben:Aufgabe_4.3Z:_Zugriffsverfahren_bei_LTE|Aufgabe 4.3Z: Zugriffsverfahren bei LTE]]
+
[[Aufgaben:Exercise 4.3Z: Multiple-Access Methods in LTE]]
  
==Quellenverzeichnis==
+
==References==
  
 
<references/>
 
<references/>
  
 
{{Display}}
 
{{Display}}

Latest revision as of 19:15, 9 February 2023

General information on LTE transmission technology


In contrast to its predecessor  $\rm UMTS$,  Long Term Evolution  $\rm (LTE)$  uses a variant of the OFDM concept also used by  $\text{WLAN}$  to systematically divide the transmission resources.  The multiple access method  $\rm OFDM$  possesses the ability to protect the system against intermittent transmission disturbances, just like the UMTS basic technology  $\rm CDMA$.

In principle, it would have been possible to adapt and expand the technologies used in the second and third generations of mobile communications in such a way that they also meet the required specifications for the fourth generation.  However, the rapidly increasing complexity of CDMA when received signals on multiple paths made the technical implementation appear to make little sense.

The highly abstracted graphic shows the distribution of the complete bandwidth for individual subcarriers and explains the difference between  $\rm CDMA$  (UMTS) and  $\rm OFDM$  (LTE).

Difference between OFDM and CDMA
  • In contrast to CDMA, OFDM has many subcarriers, typically even several hundred, with a bandwidth of only a few  "kHz"  each.
  • To achieve this, the data stream is split and each of the many subcarriers is modulated individually with only a small bandwidth.


LTE uses  $\rm OFDMA$, an OFDM based transmission technology.  Among the reasons for this are  [HT09][1]:

  1. High performance in frequency controlled channels,
  2. the low complexity in the receiver,
  3. good spectral properties and bandwidth flexibility, and
  4. compatibility with the latest receiver and multi-antenna technologies.

In the next section the differences between the multiple access methods "OFDM" and "OFDMA" are briefly explained.


Similarities and differences of OFDM and OFDMA


The principle of  "Orthogonal Frequency Division Multiplexing" is explained in detail in chapter  "Motivation for xDSL"  of the book "Examples of Communication Systems". 

The upper diagram shows the frequency assignment for  $\rm OFDM$:  This method splits the available frequency band into a large number of narrow–band subcarriers.  It is important to note:

Division of data blocks by frequency and time for OFDM and OFDMA
  • To ensure that the individual subcarriers exhibit as little intercarrier–interference as possible, their frequencies are selected so that they are orthogonal to each other.   This means:
  • At the center frequency of each subcarrier, all other carriers have no spectral components.  The goal is to select the currently most favorable resources for each user in order to obtain an overall optimal result.
  • In concrete terms, this also means that the available resources are allocated to the user who can currently do the most with them, adapted to the respective network situation.
  • For this purpose, the base station for the downlink to the terminal device measures the connection quality with the help of reference symbols.


The lower diagram shows the allocation at  "Orthogonal Frequency Division Multiple Access"  $\rm (OFDMA)$.  You can see:

  1. For OFDMA the resource allocation after channel fluctuations is not limited to the time domain as with OFDM, but also the frequency domain is optimally included. 
  2. Thus the OFDMA resource allocation is better adapted to the external circumstances than with OFDM.
  3. In order to make optimum use of this flexibility, however, coordination between the base station  ("eNodeB")  and the terminal equipment is necessary.  More on this in chapter  "General Description of DSL".


Differences between OFDMA and SC-FDMA


There are transmission methods such as  $\text{WiMAX}$, which use OFDMA in both directions.  The LTE specification by the 3GPP consortium on the other hand specifies:

Sender and Receiver Structure of a SC-FDMA System
  • In the  "downlink"  $($transmission from the base station to the terminal$)$;  $\rm OFDMA$  is used.
  • In the  "uplink"  $($from terminal to base station$)$   $\rm SC–FDMA$  $($"Single Carrier Frequency Division Multiple Access"$)$  is used.


From the graphic you can see that the two systems are very similar.  In other words:   SC–FDMA is based on OFDMA (or vice versa).

  • If you omit the components highlighted in red  ${\rm DFT} \ (K)$  and  ${\rm IDFT} \ (K)$  from SC–FDMA, you get the OFDMA system.
  • The other blocks stand for Serial/Parallel converter (S/P), Parallel/Serial converter (P/S), D/A converter, A/D converter as well as Add/Remove Prefix.


The signal generation for SC–FDMA works similar to OFDMA, but with small changes that are important for mobile radio:

  • The main difference is the additional  "discrete Fourier transform"  $\rm (DFT)$.  This has to be done on the transmitting side directly after the serial/parallel conversion.
  • Thus, it is no longer a multi-carrier procedure, but a single-carrier FDMA variant.  One speaks of  "DFT–spread OFDM"  because of the necessary DFT/IDFT operations.

Let us summarize these statements briefly:

$\text{SC–FDMA is different from OFDMA}$  in the following points 
[see also the Internet articles  "Single-carrier FDMA"  (in Wikipedia) and  "Difference between SC-FDMA and OFDMA.html"  (from RF Wireless World)]:

  1. With SC–FDMA, the data symbols are sent in a group of simultaneously transmitted subcarriers instead of sending each symbol from a single orthogonal subcarrier as with OFDMA. 
  2. This subcarrier group can then be considered a separate frequency band that transmits the data sequentially.  This is where the name  "Single Carrier FDMA"  comes from.
  3. While with OFDMA the data symbols directly create the different subcarriers, with SC–FDMA they first pass a discrete Fourier transform  $\rm (DFT)$. 
  4. Thus the data symbols are first transformed from the time domain into the frequency domain before they pass through the OFDM procedure.


Frequency band splitting for OFDMA and SC-FDMA

One can also describe the difference between  "OFDMA"  and  "SC–FDMA"  in such a way:

  • In an OFDMA transmission, each orthogonal subcarrier only contains the information of a single signal.
  • In contrast, with SC–FDMA, each individual subcarrier contains information about all signals transmitted in this period.


This difference and the quasi–sequential transmission with SC–FDMA can be seen particularly well from the diagram on the right. 


This graphic is taken from a PDF document from  "Agilent–3GPP".

Functionality of SC-FDMA


Now the SC–FDMA transfer process shall be examined more in detail.  The information for this section comes largely from  [MG08][2].

Considered SC-FDMA transmitter

The purpose and function of the  "Cyclic Prefix"  is not discussed here in detail.  The reasons for this unit are the same as for OFDM and can be read in the section  "Cyclic Prefix"  of the book "Modulation Methods".

The following description refers to the  SC–FDMA transmitter  shown here.  Note that with LTE the modulation is adapted to the channel quality:

  • In highly noisy channels  $\rm 4–QAM$  (Quadrature Amplitude Modulation with only four signal space points)  is used.
  • Under better conditions, the system then switches to a higher-level QAM, up to  $\rm 64–QAM$.


The following also applies:

  • An input data block consists of  $K$  complex modulation symbols  $x_\nu$ which are generated at a rate of  $R_{\rm Q}\ \big[\rm symbols/s \big]$.  The discrete Fourier transform   $\rm (DFT)$  generates  $K$  symbols  $X_\mu$  in the frequency domain, which are modulated on  $K$  from a total of  $N$  orthogonal subcarriers:
\[X_\mu = \sum_{\nu = 0 }^{K-1} x_\nu \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} { 2 \pi \hspace{0.05cm}\cdot \hspace{0.05cm} \nu \hspace{0.05cm}\cdot \hspace{0.05cm} \mu }/{K}} \hspace{0.05cm},\]
  • The subcarriers are distributed over a larger bandwidth of  $B_{\rm K} = N \cdot f_0$  where  $f_0 = 15 \ \rm kHz$  is the smallest addressable bandwidth for LTE.  Unused channels are shown as dashed lines in the example graphic.
  • The channel transmission rate is  $R_{\rm C} = J \cdot R_{\rm Q}$  with spreading factor  $J = N/K$.  This SC–FDMA system could simultaneously process  $J$  orthogonal input signals   ⇒   number of terminal devices that can be simultaneously connected to this base station.  In the case of LTE, for example, the values are  $K = 12$  (smallest addressable block) and  $N = 1024$. 
  • According to the so-called  "Subcarrier Mapping"  which is the assignment of the symbols generated by the DFT to the available subcarriers, the symbols are then mapped to a certain bandwidth, for example   $K = 12$  maps to the range of  $0 \ \text{...} \ 180 \ \rm kHz$  or to the range of  $180 \ \rm kHz \ \text{...} \ 360 \ \rm kHz$.
  • The  $\rm IDFT$  (highlighted in blue) transforms the output values  $Y_\mu$  on the frequency domain in its time representation  $y_\nu$.  These samples are then transformed by the Parallel/Serial converter into a sequence suitable for transmission.


Different approaches for the Subcarrier Mapping


The following figure illustrates three types of  "Subcarrier Mapping".  To simplify the representation, we will limit ourselves here to the (very small) parameter values  $K = 4$  and  $N = 12$.

Various methods of Subcarrier Mapping
  • »DFDMA«  or  "Distributed Mapping":
    Here the modulation symbols are distributed over a certain range of the available channel bandwidth.
  • »IFDMA«  or  "Interleaved FDMA":
    Special form of DFDMA, when the modulation symbols are distributed over the entire bandwidth with equal distances between them.
  • »LFDMA«  or  "Localized Mapping":
    The  $K$  modulation symbols are assigned directly to adjacent subcarriers.  This corresponds to the current 3GPP–specification.


It can be shown that with SC–FDMA the transmitter does not have to be run through the following steps individually

  1. Discrete Fourier Transform  $\rm (DFT)$,
  2. Subcarrier Mapping,
  3. Inverse discrete Fourier transform  $\rm (IDFT)$  or inverse Fast Fourier transform  $\rm (IFFT)$.

Instead, these three operations can be realized together as one single linear operation.  The complete and mathematically complex derivation can be found for example in  [MG08][2].  Each element  $y_\nu$  of the output sequence is then representable by a weighted sum of the input sequence elements  $x_\nu$  where the weights are complex-valued.

Hence, instead of the comparatively complicated Fourier transform, the operation is reduced

  • to a multiplication with a complex number, and
  • the  $J$–fold repetition of the input sequence  $\langle x_\nu \rangle $.

In  "Exercise 4.3"  the (transmit-side)  "Subcarrier Mapping"  is considered with more realistic values for  $K$  and  $N$  and its differences to the  "Subcarrier Demapping"  (at the receiver) are pointed out.


Advantages of SC-FDMA over OFDM


The decisive advantage of SC–FDMA over OFDMA is its lower  "Peak–to–Average Power Ratio"  $\rm (PAPR)$  due to its single-carrier structure. 

  • This is the ratio of current peak power  $P_{\rm max}$  to average power  $P_{\rm S}$.  $\rm PAPR$  can also be expressed by the  "Crest factor"  (quotient of the signal amplitudes). 
  • However, the two quantities are not identical.
(Complementary)  $\rm PAPR$  for OFDM


The graphic from the Internet document  [Wu09][3]  shows in double–logarithmic representation the probability that with 64QAM–OFDM the current power  $P_{\rm max}$  is above the average power  $P_{\rm S}$.  You can see:

  1. The probability of large  "outliers"  is small.  For example, the average power is only exceeded in  $0.1\%$  of time by more than  $\text{10 dB}$      ⇒   marked in red.
  2. Even if such high power peaks are very rare, they still pose a problem for the receiver's power amplifier.


The power amplifiers should be operated in the linear range, otherwise the signal is distorted.  Non-linearities arise in particular due to

  • intercarrier interference  within the signal,
  • interference from adjacent channels due to spectrum expansions.

Therefore, OFDM requires the amplifier to operate at a lower power level than its peak power most of the time, which can drastically reduce its efficiency.

  • Because one can regard  SC–FDMA  quasi as single carrier transmission procedures, its PAPR is lower than the one of OFDMA.
  • Thus, for example, a so-called  "pulse shaping filter" can be used which reduces the PAPR.


The lower PAPR is the main reason why SC–FDMA is used in the LTE uplink and not OFDMA.

  • A low PAPR means longer battery life, an extremely important criterion for mobile phones/smartphones.
  • At the same time, SC–FDMA offers similar performance and complexity to OFDMA.
  • Since a long battery life is less important for the downlink, OFDMA is used here.


$\text{Example 1:}$  We consider an OFDM system with  $N$  carriers, all with the same signal amplitude  $A$.

After a highly simplified calculation with the same proportionality factor we obtain:

  • the maximum signal power is proportional to  $(N \cdot A)^2$, and
  • the average signal power is proportional to  $N \cdot A^2$ .

This results in the  peak–to–average power ratio  ${\rm PAPR} = N$, since it's the quotient of these two powers.  Already with only two carriers this results in  ${\rm PAPR} = 2$  which corresponds to  $\text{3 dB}$:

  • So even with only two carriers the amplifier must always operate  $\text{3 dB}$  below the maximum power to avoid signal distortion in case of signal peaks.
  • As will be shown below,  $\text{3 dB}$  already means a decrease in efficiency to  $85\%$.


$\text{Example 2:}$  The parameter  $\rm PAPR$  is directly related to the  "Transmit Amplifier Efficiency". 

  • Maximum efficiency is achieved when the amplifier can operate in the vicinity of the saturation limit.
  • The graphic shows an example of an amplifier's characteristic curve, i.e. the output power plotted against the input power.


Decrease in amplifier efficiency with increasing back-off

At  $\rm PAPR = 1$  $(\text{0 dB})$  one could set the average power  $P_{\rm S}$  equal to the allowed peak power  $P_{\rm max}$.  According to the characteristic curve  $P_{\rm out}/P_{\rm in}$  the amplifier efficiency would be (exemplarily)  $95\%$.

Nevertheless, for large  $\rm PAPR$  the amplifier must be operated below the saturation limit to avoid too much signal distortion.  Here are some numerical examples:

  • At  $\rm PAPR = 2$  according to the rough calculation on the last example, the average transmitted power would have to be chosen $\text{3 dB}$  lower than the allowed power,  so that  $P_{\rm max}$  would not be exceeded at any time.  The efficiency would then decrease to  $85\%$ .
  • A back–off from  $\text{3 dB}$  is usually not sufficient, but in practice values between  $\text{5 dB}$  and  $\text{8 dB}$,  taken from  [Hin08][4].  According to the given curve, however, at  $\text{5 dB}$  the efficiency already drops to only   $70\%$  $($system  $\rm S1$, green line$)$.
  • With system  $\rm S2$  all signal peaks reduced in  $\text{8 dB}$  can be transmitted by the amplifier without distortion, but the amplifier efficiency is then only  $40\%$.  As can be seen in the first graphic in this section, strong distortions still occur about  $2\%$  of the time.
  • If the average transmitted power is  $P_{\rm S} = 100\, \rm mW$, then with a  $\rm PAPR = 9 \ \Rightarrow \ \text{8 dB}$  the amplifier must work up to  $P_{\rm max} = 900\, \rm mW$  without distortion, with  $\rm PAPR = 2 \ \Rightarrow \ \text{3 dB}$  on the other hand, only up to  $200 \, \rm mW$.  The difference between the two amplifiers is an enormous cost factor.


$\text{Conclusion:}$ 

  • OFDM with a large back–off in the uplink would lead to problems, namely extremely short battery life of the mobile devices  ⇒   SC–FDMA is used in the LTE uplink.
  • In addition, the complexity of SC–FDMA is generally lower than other methods, which means cheaper terminals  [MLG06][5].  If the CDMA used in UMTS were extended to the 4G standard, the receiver complexity would increase significantly due to the high frequency diversity in the channel  [IXIA09][6].
  • However, the frequency domain equalization with SC–FDMA is more complicated than with OFDMA.  This is the main reason why SC–FDMA is only used in the uplink.  So these complicated equalizers have to be installed only in the base stations and not in the terminals.



Exercices for the chapter


Exercise 4.3: Subcarrier Mapping

Exercise 4.3Z: Multiple-Access Methods in LTE

References

  1. Holma, H.; Toskala, A.:  LTE for UMTS - OFDMA and SC-FDMA Based Radio Access.  Wiley & Sons, 2009.
  2. 2.0 2.1 Myung, H.; Goodman, D.:  Single Carrier FDMA – A New Air Interface for Long Term Evolution.  West Sussex: John Wiley & Sons, 2008.
  3. Wu, B.:  Analyzing WiMAX Modulation Quality.   PDF Internet document, 2009.
  4. Hindelang, T.:  Mobile Communications.  Lecture Manuscript.  Chair of Communications Engineering, TU Munich, 2008.
  5. Myung, H.; Lim, J.; Goodman, D.:  Single Carrier FDMA for Uplink Wireless Transmission.  IEEE Vehicular Technology Magazine, Vol. 1, No. 3, 2006.
  6. SC-FDMA - Single Carrier FDMA in LTE.   PDF Internet document, 2009.