Difference between revisions of "Mobile Communications/The Application of OFDMA and SC-FDMA in LTE"

From LNTwww
 
(93 intermediate revisions by 8 users not shown)
Line 2: Line 2:
 
{{Header
 
{{Header
 
|Untermenü=LTE – Long Term Evolution
 
|Untermenü=LTE – Long Term Evolution
|Vorherige Seite=Technische Neuerungen von LTE
+
|Vorherige Seite=Technical Innovations of LTE
|Nächste Seite=Bitübertragungsschicht bei LTE
+
|Nächste Seite=Physical Layer for LTE
 
}}
 
}}
  
== Allgemeines zur LTE–Übertragungstechnik ==
+
== General information on LTE transmission technology ==
 
<br>
 
<br>
Im Gegensatz zum Vorgänger UMTS setzt <i>Long Term Evolution</i> (LTE) eine Variante des auch von WLAN genutzten OFDM&ndash;Konzepts ein, um die Übertragungsressourcen systematisch aufzuteilen. Das Mehrfachzugriffsverfahren OFDM besitzt ebenso wie die UMTS&ndash;Grundlagentechnologie [http://en.lntwww.de/Beispiele_von_Nachrichtensystemen/Nachrichtentechnische_Aspekte_von_UMTS#Anwendung_des_CDMA.E2.80.93Verfahrens_in_UMTS CDMA] die Fähigkeit, das System gegen punktuell auftretende Übertragungsstörungen zu schützen.<br>
+
In contrast to its predecessor&nbsp; [[Mobile_Communications/Characteristics_of_UMTS|$\rm UMTS$]],&nbsp; Long Term Evolution&nbsp; $\rm (LTE)$&nbsp; uses a variant of the OFDM concept also used by&nbsp; [https://en.wikipedia.org/wiki/Wireless_LAN $\text{WLAN}$]&nbsp; to systematically divide the transmission resources.&nbsp; The multiple access method&nbsp; [[Modulation_Methods/General_Description_of_OFDM#The_principle_of_OFDM_-_system_consideration_in_the_time_domain| $\rm OFDM$]]&nbsp; possesses the ability to protect the system against intermittent transmission disturbances, just like the UMTS basic technology&nbsp; [[Examples_of_Communication_Systems/Telecommunications_Aspects_of_UMTS#Application_of_the_CDMA_method_to_UMTS|$\rm CDMA$]].<br>
  
Zwar wäre es möglich, die bei der zweiten und dritten Mobilfunkgeneration verwendeten Technologien so anzupassen und zu erweitern, dass sie auch die geforderten Vorgaben der vierten Generation erfüllen. Die schnell ansteigende Komplexität von CDMA beim Empfang von Signalen auf mehreren Pfaden lässt die technische Realisierung jedoch als wenig sinnvoll erscheinen.<br>
+
In principle, it would have been possible to adapt and expand the technologies used in the second and third generations of mobile communications in such a way that they also meet the required specifications for the fourth generation.&nbsp; However, the rapidly increasing complexity of CDMA when received signals on multiple paths made the technical implementation appear to make little sense.<br>
  
Die stark abstrahierte Grafik zeigt die Aufteilung der kompletten Bandbreite für einzelne Unterträger und erklärt den Unterschied zwischen CDMA (UMTS) und OFDM (LTE).<br>
+
The highly abstracted graphic shows the distribution of the complete bandwidth for individual subcarriers and explains the difference between&nbsp; $\rm CDMA$&nbsp; (UMTS) and&nbsp; $\rm OFDM$&nbsp; (LTE).
  
[[File:P ID2297 Mob T 4 3 S1 v1.png|Unterschied zwischen OFDM und CDMA|class=fit]]<br>
+
[[File:EN_Mob_T_4_3_S1.png|right|frame|Difference between OFDM and CDMA|class=fit]]
 +
 +
*In contrast to CDMA, OFDM has many subcarriers, typically even several hundred, with a bandwidth of only a few&nbsp; "kHz"&nbsp; each.
 +
 +
*To achieve this, the data stream is split and each of the many subcarriers is modulated individually with only a small bandwidth.<br>
  
OFDM besitzt also im Gegensatz zu CDMA viele &ndash; typischerweise sogar mehrere hundert &ndash; Unterträger mit einer Bandbreite von jeweils nur einigen Kilohertz. Dazu wird der Datenstrom aufgeteilt und jeder der vielen Unterträger einzeln mit nur geringer Bandbreite moduliert.<br>
 
  
In LTE benutzt man OFDMA, eine auf OFDM basierende Übertragungstechnik. Hierfür sprechen unter anderem folgende Gründe Holma, H.; Toskala, A.: ''LTE for UMTS OFDMA and SC–FDMA Based Radio Access.'' Wiley & Sons, 2009:
+
LTE uses&nbsp; $\rm OFDMA$, an OFDM based transmission technology.&nbsp; Among the reasons for this are&nbsp; [HT09]<ref name='HT09'>Holma, H.; Toskala, A.:&nbsp; LTE for UMTS - OFDMA and SC-FDMA Based Radio Access.&nbsp; Wiley & Sons, 2009.</ref>:
*Eine hohe Leistung in frequenzgesteuerten Kanälen,<br>
+
#High performance in frequency controlled channels,<br>
*die niedrige Komplexität im Empfänger,<br>
+
#the low complexity in the receiver,<br>
*gute Spektraleigenschaften und Bandbreitenflexibilität, sowie<br>
+
#good spectral properties and bandwidth flexibility, and<br>
*Kompatibilität mit den neuesten Empfänger&ndash; und Multiantennentechnologien.<br><br>
+
#compatibility with the latest receiver and multi-antenna technologies.<br><br>
  
Auf der folgenden Seite werden die Unterschiede zwischen den Mehrfachzugriffsverfahren OFDM und OFDMA kurz erläutert.<br>
+
In the next section the differences between the multiple access methods "OFDM" and "OFDMA" are briefly explained.<br>
  
== Gemeinsamkeiten und Unterschiede von OFDM und OFDMA ==
+
 
 +
== Similarities and differences of OFDM and OFDMA ==
 
<br>
 
<br>
Das Prinzip von <i>Orthogonal Frequency Division Multiplexing</i> (OFDM) wurde bereits im Kapitel 5.5 des Buches &bdquo;Modulationsverfahren&rdquo; erklärt. OFDM teilt das zur Verfügung stehende Frequenzband in eine große Anzahl von schmalbandigen Unterträgern auf, wobei zu beachten ist:
+
The principle of&nbsp; "Orthogonal Frequency Division Multiplexing" is explained in detail in chapter&nbsp; [[Examples_of_Communication_Systems/General Description of DSL#Motivation_for_xDSL|"Motivation for xDSL"]]&nbsp; of the book "Examples of Communication Systems".&nbsp;
*Damit die einzelnen Unterträger möglichst wenig Intercarrier&ndash;Interferenz aufweisen, werden die Frequenzen der Unterträger so gewählt, dass sie zueinander orthogonal sind.<br>
+
 
 +
The upper diagram shows the frequency assignment for&nbsp; $\rm OFDM$:&nbsp; This method splits the available frequency band into a large number of narrow&ndash;band subcarriers.&nbsp; It is important to note:
 +
[[File:EN_Mob_T_4_3_S2.png|right|frame|Division of data blocks by frequency and time for OFDM and OFDMA|class=fit]]
 +
 
 +
*To ensure that the individual subcarriers exhibit as little intercarrier&ndash;interference as possible, their frequencies are selected so that they are orthogonal to each other. &nbsp; This means: <br>
  
*Das bedeutet: Bei der Mittenfrequenz eines jeden Unterträgers weisen alle anderen Träger keine Spektralanteile auf. Ziel ist es, für jeden Nutzer die gegenwärtig günstigsten Ressourcen zu wählen, um ein in der Gesamtheit optimales Ergebnis zu erhalten.<br>
+
*At the center frequency of each subcarrier, all other carriers have no spectral components.&nbsp; The goal is to select the currently most favorable resources for each user in order to obtain an overall optimal result.<br>
  
*Konkret bedeutet das weiterhin, dass &ndash; angepasst an die jeweilige Netzsituation &ndash; die verfügbaren Ressourcen demjenigen Nutzer zugeteilt werden, der momentan damit am meisten anfangen kann. Zu diesem Zweck misst die Basisstation für die Abwärtsstrecke (Downlink) zum Endgerät hin die Leitungsqualität mit Hilfe von Referenzsymbolen.<br>
+
*In concrete terms, this also means that the available resources are allocated to the user who can currently do the most with them, adapted to the respective network situation.  
  
:[[File:P ID2298 Mob T 4 3 S2 v1.png|Aufteilung von Datenblöcken nach Frequenz und Zeit bei OFDM (oben) und  OFDMA (unten)|class=fit]]<br>
+
*For this purpose, the base station for the downlink to the terminal device measures the connection quality with the help of reference symbols.<br>
  
Die Grafik zeigt oben die Frequenzzuteilung bei OFDM. Das untere Schaubild zeigt die Zuteilung bei <i>Orthogonal Frequency Division Multiple Access</i> (OFDMA). Man erkennt:
 
*Bei OFDMA beschränkt sich die Ressourcenzuteilung nach Kanalschwankungen nicht wie bei OFDM nur auf den Zeitbereich, sondern es wird auch der Frequenzbereich optimal einbezogen.
 
  
*Dadurch ist die OFDMA&ndash;Ressourcenzuteilung besser an die äußeren Umstände angepasst als bei OFDM. Um diese Flexibilität optimal nutzen zu können, ist allerdings eine Abstimmung zwischen der Basisstation (<i>eNodeB</i>) und dem Endgerät notwendig. Mehr dazu später im Kapitel 4.4.
+
The lower diagram shows the allocation at&nbsp; "Orthogonal Frequency Division Multiple Access"&nbsp; $\rm (OFDMA)$.&nbsp; You can see:
 +
#For OFDMA the resource allocation after channel fluctuations is not limited to the time domain as with OFDM, but also the frequency domain is optimally included.&nbsp;  
 +
#Thus the OFDMA resource allocation is better adapted to the external circumstances than with OFDM.
 +
#In order to make optimum use of this flexibility, however, coordination between the base station&nbsp; ("eNodeB")&nbsp; and the terminal equipment is necessary.&nbsp; More on this in chapter&nbsp; [[Examples_of_Communication_Systems/General Description of DSL|"General Description of DSL"]].
  
== Unterschiede zwischen OFDMA und SC–FDMA (1) ==
+
 
 +
== Differences between OFDMA and SC-FDMA==
 
<br>
 
<br>
Es gibt Übertragungsverfahren wie beispielsweise WiMAX, die OFDMA in beiden Richtungen nutzen. Die LTE&ndash;Spezifizierung durch das 3GPP&ndash;Konsortium legt dagegen fest:
+
There are transmission methods such as&nbsp;
*Im Downlink &ndash;  Übertragung von der Basisstation zum Endgerät &ndash; wird OFDMA eingesetzt.<br>
+
[https://en.wikipedia.org/wiki/WiMAX $\text{WiMAX}$], which use OFDMA in both directions.&nbsp; The LTE specification by the 3GPP consortium on the other hand specifies:
  
*Im Uplink &ndash;  Übertragung vom Endgerät zur Basisstation  &ndash; verwendet man <i>Single Carrier Frequency Division Multiple Access</i> (SC&ndash;FDMA).<br><br>
+
[[File:EN_Mob_T_4_3_S3.png|right|frame|Sender and Receiver Structure of a SC-FDMA System|class=fit]]
  
Aus der Grafik erkennt man, dass die beiden Systeme &bdquo;SC&ndash;FDMA&rdquo; und &bdquo;OFDMA&rdquo; sehr ähnlich sind. Oder anders ausgedrückt: SC&ndash;FDMA baut auf OFDMA auf (oder umgekehrt).
+
*In the&nbsp; "downlink"&nbsp; $($transmission from the base station to the terminal$)$;&nbsp; $\rm OFDMA$&nbsp; is used.<br>
*Verzichtet man auf die beiden rot hinterlegten Komponenten (DFT) und auf die beiden blau hinterlegten Komponenten (IDFT) von SC&ndash;FDMA, so erhält man das OFDMA&ndash;System.<br>
 
  
*Die anderen hier verwendeten Symbole stehen für Seriell/Parallel&ndash;Wandler (S/P), Parallel/Seriell&ndash;Wandler (P/S), D/A&ndash;Wandler, A/D&ndash;Wandler sowie Hinzufügen/Entfernen des zyklischen Präfix'.<br>
+
*In the&nbsp; "uplink"&nbsp; $($from terminal to base station$)$ &nbsp; $\rm SC&ndash;FDMA$&nbsp; $($"Single Carrier Frequency Division Multiple Access"$)$&nbsp; is used.<br>
  
[[File:P ID2300 Mob T 4 3 S3 v4.png|Sender- und Empfängerstruktur eines SC-FDMA–Systems|class=fit]]<br>
 
  
Die Signalerzeugung für SC&ndash;FDMA funktioniert ähnlich wie bei OFDMA, allerdings mit kleinen, für den Mobilfunk aber durchaus wichtigen Änderungen:
+
From the graphic you can see that the two systems are very similar.&nbsp; In other words: &nbsp; SC&ndash;FDMA is based on OFDMA (or vice versa).
*Der Hauptunterschied liegt in der zusätzlichen diskreten Fouriertransformation (DFT).<br>
+
*If you omit the components highlighted in red&nbsp; ${\rm DFT} \ (K)$&nbsp; and&nbsp; ${\rm IDFT} \ (K)$&nbsp; from SC&ndash;FDMA, you get the OFDMA system.<br>
  
*Diese ist sendeseitig direkt nach der Seriell/Parallel&ndash;Wandlung durchzuführen.<br>
+
*The other blocks stand for Serial/Parallel converter (S/P), Parallel/Serial converter (P/S), D/A converter, A/D converter as well as Add/Remove Prefix.<br>
  
*Es handelt sich somit nicht mehr um ein Mehrträgerverfahren, sondern um eine Einträger&ndash;FDMA.<br>
 
  
*Man spricht wegen der notwendigen DFT/IDFT&ndash;Operationen auch von &bdquo;DFT&ndash;spread OFDM&rdquo;.<br><br>
+
The signal generation for SC&ndash;FDMA works similar to OFDMA, but with small changes that are important for mobile radio:
 +
*The main difference is the additional&nbsp; [[Signal_Representation/Discrete_Fourier_Transform_(DFT)#Arguments_for_the_discrete_implementation_of_the_Fourier_transform|"discrete Fourier transform"]]&nbsp; $\rm (DFT)$.&nbsp; This has to be done on the transmitting side directly after the serial/parallel conversion.
  
Die Einzelheiten dieser Grafik werden auf den folgenden Seiten erklärt.<br>
+
*Thus, it is no longer a multi-carrier procedure, but a single-carrier FDMA variant.&nbsp; One speaks of&nbsp; "DFT&ndash;spread OFDM"&nbsp; because of the necessary DFT/IDFT operations.<br><br>
  
== Unterschiede zwischen OFDMA und SC–FDMA (2) ==
+
Let us summarize these statements briefly:
 +
 
 +
{{BlaueBox|TEXT=
 +
$\text{SC&ndash;FDMA is different from OFDMA}$&nbsp; in the following points&nbsp; <br>[see also the Internet articles&nbsp; [https://en.wikipedia.org/wiki/Single-carrier_FDMA "Single-carrier FDMA"]&nbsp; (in Wikipedia) and&nbsp;
 +
[http://www.rfwireless-world.com/Articles/difference-between-SC-FDMA-and-OFDMA.html "Difference between SC-FDMA and OFDMA.html"]&nbsp; (from RF Wireless World)]:
 +
 +
#With SC&ndash;FDMA, the data symbols are sent in a group of simultaneously transmitted subcarriers instead of sending each symbol from a single orthogonal subcarrier as with OFDMA.&nbsp;
 +
#This subcarrier group can then be considered a separate frequency band that transmits the data sequentially.&nbsp; This is where the name&nbsp; "Single Carrier FDMA"&nbsp; comes from.<br>
 +
#While with OFDMA the data symbols directly create the different subcarriers, with SC&ndash;FDMA they first pass a discrete Fourier transform&nbsp;  $\rm (DFT)$.&nbsp;
 +
#Thus the data symbols are first transformed from the time domain into the frequency domain before they pass through the OFDM procedure.}} <br>
 +
[[File:P ID2301 Mob T 4 3 S3b v1.png|right|frame|Frequency band splitting for OFDMA and SC-FDMA|class=fit]]
 +
 
 +
One can also describe the difference between&nbsp; "OFDMA"&nbsp; and&nbsp; "SC&ndash;FDMA"&nbsp; in such a way:
 +
*In an OFDMA transmission, each orthogonal subcarrier only contains the information of a single signal.
 +
*In contrast, with SC&ndash;FDMA, each individual subcarrier contains information about all signals transmitted in this period.
 +
 
 +
 
 +
This difference and the quasi&ndash;sequential transmission with SC&ndash;FDMA can be seen particularly well from the diagram on the right.&nbsp;
 +
 
 +
 +
This graphic is taken from a PDF document from&nbsp; "Agilent&ndash;3GPP".
 +
<br clear=all>
 +
== Functionality of SC-FDMA==
 
<br>
 
<br>
Fassen wir die Aussagen der letzten Seite nochmals kurz zusammen. SC&ndash;FDMA unterscheidet sich von OFDMA folgendermaßen:
+
Now the SC&ndash;FDMA transfer process shall be examined more in detail.&nbsp; The information for this section comes largely from&nbsp; [MG08]<ref name='MG08'>Myung, H.; Goodman, D.:&nbsp; Single Carrier FDMA – A New Air Interface for Long Term Evolution.&nbsp; West Sussex: John Wiley & Sons, 2008.</ref>.
*Die Datensymbole werden mit einer Gruppe gleichzeitig übertragener Unterträger gesendet und nicht jedes Symbol von einem einzelnen, orthogonalen Unterträger.<br>
+
 
 +
[[File:P ID2304 Mob T 4 3 S4a v3.png|right|frame|Considered SC-FDMA transmitter |class=fit]]
 +
 
 +
The purpose and function of the&nbsp; "Cyclic Prefix"&nbsp; is not discussed here in detail.&nbsp; The reasons for this unit are the same as for OFDM and can be read in the section&nbsp; [[Modulation_Methods/Implementation of OFDM Systems#Cyclic Prefix|"Cyclic Prefix"]]&nbsp; of the book "Modulation Methods".
  
*Diese Unterträgergruppe kann dann als ein separates Frequenzband betrachtet werden, das die Daten sequenziell überträgt. Darauf geht der Name &bdquo;Single Carrier FDMA&rdquo; zurück.<br>
+
The following description refers to the&nbsp; SC&ndash;FDMA transmitter&nbsp; shown here.&nbsp; Note that with LTE the modulation is adapted to the channel quality:
 +
*In highly noisy channels&nbsp; $\rm 4&ndash;QAM$&nbsp; (Quadrature Amplitude Modulation with only four signal space points)&nbsp; is used.
 +
* Under better conditions, the system then switches to a higher-level QAM, up to&nbsp; $\rm  64&ndash;QAM$.  
 +
<br clear=all>
 +
The following also applies:
 +
*An input data block consists of&nbsp; $K$&nbsp; complex modulation symbols&nbsp; $x_\nu$ which are generated at a rate of&nbsp; $R_{\rm Q}\ \big[\rm symbols/s \big]$.&nbsp; The discrete Fourier transform &nbsp; $\rm (DFT)$&nbsp; generates&nbsp; $K$&nbsp; symbols&nbsp; $X_\mu$&nbsp; in the frequency domain, which are modulated on&nbsp; $K$&nbsp; from a total of&nbsp; $N$&nbsp; orthogonal subcarriers: 
 +
::<math>X_\mu  =  \sum_{\nu = 0 }^{K-1}
 +
  x_\nu \cdot  {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} { 2 \pi \hspace{0.05cm}\cdot \hspace{0.05cm} \nu
 +
\hspace{0.05cm}\cdot \hspace{0.05cm} \mu }/{K}} \hspace{0.05cm},</math>
 +
*The subcarriers are distributed over a larger bandwidth of&nbsp; $B_{\rm K} = N \cdot f_0$&nbsp; where&nbsp; $f_0 = 15 \ \rm kHz$&nbsp; is the smallest addressable bandwidth for LTE.&nbsp; Unused channels are shown as dashed lines in the example graphic.<br>
  
*Während bei OFDMA die Datensymbole direkt die verschiedenen Unterträger erzeugen, durchlaufen sie bei SC&ndash;FDMA zuerst eine diskrete Fouriertransformation (DFT).<br>
+
*The channel transmission rate is&nbsp; $R_{\rm C} = J \cdot R_{\rm Q}$&nbsp; with spreading factor&nbsp; $J = N/K$.&nbsp; This SC&ndash;FDMA system could simultaneously process&nbsp; $J$&nbsp; orthogonal input signals &nbsp; &rArr; &nbsp; number of terminal devices that can be simultaneously connected to this base station.&nbsp; In the case of LTE, for example, the values are&nbsp; $K = 12$&nbsp; (smallest addressable block) and&nbsp; $N = 1024$.&nbsp;
  
*So werden die Datensymbole aus dem Zeitbereich zuerst in den Frequenzbereich transformiert, bevor sie die OFDM&ndash;Prozedur durchlaufen ''SC-FDMA – Single Carrier FDMA in LTE.'' <br>
+
*According to the so-called&nbsp; "Subcarrier Mapping"&nbsp; which is the assignment of the symbols generated by the DFT to the available subcarriers, the symbols are then mapped to a certain bandwidth, for example &nbsp; $K = 12$&nbsp; maps to the range of&nbsp; $0 \ \text{...} \ 180 \ \rm kHz$&nbsp; or to the range of&nbsp; $180 \ \rm kHz \ \text{...} \ 360 \ \rm kHz$.<br>
  
[[File:P ID2301 Mob T 4 3 S3b v1.png|Frequenzbandaufteilung bei OFDMA und SC–FDMA|class=fit]]<br>
+
*The&nbsp; $\rm IDFT$&nbsp; (highlighted in blue) transforms the output values&nbsp; $Y_\mu$&nbsp; on the frequency domain in its time representation&nbsp; $y_\nu$.&nbsp; These samples are then transformed by the Parallel/Serial converter into a sequence suitable for transmission.<br><br>
  
Man kann den Unterschied zwischen OFDMA und SC&ndash;FDMA aber auch so beschreiben:
 
*Bei einer OFDMA&ndash;Übertragung enthält jeder orthogonale Unterträger nur die Informationen eines einzigen Signals.<br>
 
  
*Hingegen beinhaltet bei SC&ndash;FDMA jeder einzelne Unterträger Informationen über alle in dieser Periode übertragenen Signale.<br><br>
+
== Different approaches for the Subcarrier Mapping==
 +
<br>
 +
The following figure illustrates three types of&nbsp; "Subcarrier Mapping".&nbsp; To simplify the representation, we will limit ourselves here to the (very small) parameter values&nbsp; $K = 4$&nbsp; and&nbsp; $N = 12$.<br>
 +
[[File:EN_Mob_T_4_3_S4b.png|right|frame|Various methods of Subcarrier Mapping|class=fit]]
 +
*&raquo;'''DFDMA'''&laquo;&nbsp; or &nbsp;"Distributed Mapping": <br> Here the modulation symbols are distributed over a certain range of the available channel bandwidth.<br>
  
Dieser Unterschied und die quasi&ndash;sequentielle Übertragung bei SC&ndash;FDMA lassen sich in obigem Schaubild besonders gut erkennen. Dieses stammt aus einem PDF&ndash;Dokument von [http://cp.literature.agilent.com/litweb/pdf/5991-2556EN.pdf Agilent&ndash;3GPP.]
+
*&raquo;'''IFDMA'''&laquo;&nbsp; or&nbsp; "Interleaved FDMA": <br>Special form of DFDMA, when the modulation symbols are distributed over the entire bandwidth with equal distances between them.<br>
  
 +
*&raquo;'''LFDMA'''&laquo;&nbsp; or&nbsp; "Localized Mapping": <br>The &nbsp;$K$&nbsp; modulation symbols are assigned directly to adjacent subcarriers.&nbsp; This corresponds to the current 3GPP&ndash;specification.<br>
  
  
 +
It can be shown that with SC&ndash;FDMA the transmitter does not have to be run through the following steps individually
 +
#Discrete Fourier Transform&nbsp; $\rm (DFT)$,<br>
 +
#Subcarrier Mapping,
 +
#Inverse discrete Fourier transform&nbsp; $\rm (IDFT)$&nbsp; or inverse Fast Fourier transform&nbsp; $\rm (IFFT)$.<br><br>
  
 +
Instead, these three operations can be realized together as one single linear operation.&nbsp; The complete and mathematically complex derivation can be found for example in&nbsp; [MG08]<ref name='MG08'></ref>.&nbsp; Each element&nbsp; $y_\nu$&nbsp; of the output sequence is then representable by a weighted sum of the input sequence elements&nbsp; $x_\nu$&nbsp; where the weights are complex-valued.<br>
  
 +
Hence, instead of the comparatively complicated Fourier transform, the operation is reduced
 +
*to a multiplication with a complex number, and<br>
  
 +
*the&nbsp; $J$&ndash;fold repetition of the input sequence&nbsp; $\langle x_\nu \rangle $.<br><br>
  
 +
In&nbsp; [[Aufgaben:Exercise 4.3: Subcarrier Mapping|"Exercise 4.3"]]&nbsp; the (transmit-side)&nbsp; "Subcarrier Mapping"&nbsp; is considered with more realistic values for&nbsp; $K$&nbsp; and&nbsp; $N$&nbsp; and its differences to the&nbsp; "Subcarrier Demapping"&nbsp; (at the receiver) are pointed out.<br>
  
  
 +
== Advantages of SC-FDMA over OFDM==
 +
<br>
 +
The decisive advantage of SC&ndash;FDMA over OFDMA is its lower&nbsp; "Peak&ndash;to&ndash;Average Power Ratio"&nbsp; $\rm (PAPR)$&nbsp; due to its single-carrier structure.&nbsp;
 +
*This is the ratio of current peak power&nbsp; $P_{\rm max}$&nbsp; to average power&nbsp; $P_{\rm S}$.&nbsp;  $\rm PAPR$&nbsp; can also be expressed by the&nbsp; [[Digital_Signal_Transmission/Optimization_of_Baseband_Transmission_Systems#System_optimization_with_peak_limitation|"Crest factor"]]&nbsp; (quotient of the signal amplitudes).&nbsp;
 +
 +
*However, the two quantities are not identical.<br>
 +
 +
[[File:P ID2308 Mob T 4 3 S5a v2.png|right|frame|(Complementary)&nbsp; $\rm PAPR$&nbsp;  for OFDM]]
 +
 +
 +
The graphic from the Internet document&nbsp; [Wu09]<ref name ='Wu09'>Wu, B.:&nbsp; Analyzing WiMAX Modulation Quality. &nbsp; PDF Internet document, 2009.</ref>&nbsp; shows in double&ndash;logarithmic representation the probability that with 64QAM&ndash;OFDM the current power&nbsp; $P_{\rm max}$&nbsp; is above the average power&nbsp; $P_{\rm S}$.&nbsp; You can see:
 +
#The probability of large&nbsp; "outliers"&nbsp; is small.&nbsp; For example, the average power is only exceeded in&nbsp; $0.1\%$&nbsp; of time by more than&nbsp; $\text{10 dB}$&nbsp; &nbsp; &nbsp; &rArr; &nbsp; marked in red.<br>
 +
#Even if such high power peaks are very rare, they still pose a problem for the receiver's power amplifier.
 +
 +
 +
The power amplifiers should be operated in the linear range, otherwise the signal is distorted.&nbsp; Non-linearities arise in particular due to
 +
*intercarrier interference&nbsp; within the signal,<br>
 +
 +
*interference from adjacent channels due to spectrum expansions.<br><br>
 +
 +
Therefore, OFDM requires the amplifier to operate at a lower power level than its peak power most of the time, which can drastically reduce its efficiency.
 +
 +
*Because one can regard&nbsp; SC&ndash;FDMA&nbsp; quasi as single carrier transmission procedures, its PAPR is lower than the one of OFDMA.
 +
 +
*Thus, for example, a so-called&nbsp; "pulse shaping filter" can be used which reduces the PAPR.
 +
 +
 +
The lower PAPR  is the main reason why SC&ndash;FDMA is used in the  LTE uplink  and not OFDMA.
 +
*A low PAPR  means longer battery life, an extremely important criterion for mobile phones/smartphones.
 +
 +
*At the same time, SC&ndash;FDMA offers similar performance and complexity to OFDMA.
 +
 +
*Since a long battery life is less important for the downlink, OFDMA is used here.<br>
 +
 +
 +
{{GraueBox|TEXT= 
 +
$\text{Example 1:}$&nbsp; We consider an OFDM system with&nbsp; $N$&nbsp; carriers, all with the same signal amplitude&nbsp; $A$.
 +
 +
After a highly simplified calculation with the same proportionality factor we obtain:
 +
 +
*the maximum signal power is proportional to&nbsp; $(N \cdot A)^2$, and<br>
 +
 +
*the average signal power is proportional to&nbsp; $N \cdot A^2$ .<br><br>
 +
 +
This results in the&nbsp; peak&ndash;to&ndash;average power ratio&nbsp; ${\rm PAPR} = N$, since it's the quotient of these two powers.&nbsp; Already with only two carriers this results in&nbsp; ${\rm PAPR} = 2$&nbsp; which corresponds to&nbsp; $\text{3 dB}$:<br>
 +
 +
*So even with only two carriers the amplifier must always operate&nbsp; $\text{3 dB}$&nbsp; below the maximum power to avoid signal distortion in case of signal peaks.
 +
 +
*As will be shown below,&nbsp; $\text{3 dB}$&nbsp; already means a decrease in efficiency to&nbsp; $85\%$.}}<br>
 +
 +
{{GraueBox|TEXT= 
 +
$\text{Example 2:}$&nbsp; The parameter&nbsp; $\rm PAPR$&nbsp; is directly related to the&nbsp; "Transmit Amplifier Efficiency".&nbsp; 
 +
*Maximum efficiency is achieved when the amplifier can operate in the vicinity of the saturation limit.
 +
 +
*The graphic shows an example of an amplifier's characteristic curve, i.e. the output power plotted against the input power.<br>
 +
 +
 +
[[File:EN_Mob_T_4_3_S5b.png|right|frame|Decrease in amplifier efficiency with increasing back-off]]
 +
 +
At&nbsp; $\rm PAPR = 1$&nbsp; $(\text{0 dB})$&nbsp; one could set the average power&nbsp; $P_{\rm S}$&nbsp; equal to the allowed peak power&nbsp; $P_{\rm max}$.&nbsp; According to the characteristic curve&nbsp; $P_{\rm out}/P_{\rm in}$&nbsp; the amplifier efficiency would be (exemplarily)&nbsp; $95\%$.<br>
 +
 +
Nevertheless, for large&nbsp; $\rm PAPR$&nbsp; the amplifier must be operated below the saturation limit to avoid too much signal distortion.&nbsp; Here are some numerical examples:
 +
*At&nbsp; $\rm PAPR = 2$&nbsp; according to the rough calculation on the last example, the average transmitted power would have to be chosen  $\text{3 dB}$&nbsp; lower than the allowed power,&nbsp; so that&nbsp; $P_{\rm max}$&nbsp; would not be exceeded at any time.&nbsp; The efficiency would then decrease to&nbsp; $85\%$&nbsp;. <br>
 +
 +
*A back&ndash;off from&nbsp; $\text{3 dB}$&nbsp; is usually not sufficient, but in practice values between&nbsp; $\text{5 dB}$&nbsp; and&nbsp; $\text{8 dB}$,&nbsp; taken from &nbsp;[Hin08]<ref name='Hin08'>Hindelang, T.:&nbsp; Mobile Communications.&nbsp; Lecture Manuscript.&nbsp; Chair of Communications Engineering, TU Munich, 2008.</ref>.&nbsp; According to the given curve, however, at&nbsp; $\text{5 dB}$&nbsp; the efficiency already drops to only &nbsp; $70\%$&nbsp; $($system&nbsp; $\rm S1$, green line$)$.<br>
 +
 +
*With  system&nbsp; $\rm S2$&nbsp; all signal peaks reduced in&nbsp; $\text{8 dB}$&nbsp; can be transmitted by the amplifier without distortion, but the amplifier efficiency is then only&nbsp; $40\%$.&nbsp; As can be seen in the first graphic in this section, strong distortions still occur about&nbsp; $2\%$&nbsp; of the time.
 +
 +
*If the average transmitted power is&nbsp; $P_{\rm S} = 100\, \rm mW$, then with a&nbsp; $\rm PAPR = 9 \ \Rightarrow \ \text{8 dB}$&nbsp; the amplifier must work up to&nbsp; $P_{\rm max} = 900\, \rm mW$&nbsp; without distortion, with&nbsp; $\rm PAPR = 2 \ \Rightarrow \ \text{3 dB}$&nbsp; on the other hand, only up to&nbsp; $200 \, \rm mW$.&nbsp; The difference between the two amplifiers is an enormous cost factor.}}<br>
 +
 +
{{BlaueBox|TEXT= 
 +
$\text{Conclusion:}$&nbsp;
 +
*OFDM with a large back&ndash;off in the uplink would lead to problems, namely extremely short battery life of the mobile devices&nbsp; &rArr; &nbsp; SC&ndash;FDMA is used in the LTE uplink.<br>
 +
 +
*In addition, the complexity of SC&ndash;FDMA is generally lower than other methods, which means cheaper terminals&nbsp; [MLG06]<ref name='MLG06'>Myung, H.; Lim, J.; Goodman, D.:&nbsp; Single Carrier FDMA for Uplink Wireless Transmission.&nbsp; IEEE Vehicular Technology Magazine, Vol. 1, No. 3, 2006.</ref>.&nbsp; If the CDMA used in UMTS were extended to the 4G standard, the receiver complexity would increase significantly due to the high frequency diversity in the channel&nbsp; [IXIA09]<ref name='IXIA09'>SC-FDMA - Single Carrier FDMA in LTE. &nbsp; PDF Internet document, 2009.</ref>.<br>
 +
 +
*However, the frequency domain equalization with SC&ndash;FDMA is more complicated than with OFDMA.&nbsp; This is the main reason why SC&ndash;FDMA is only used in the uplink.&nbsp; So these complicated equalizers have to be installed only in the base stations and not in the terminals.}}<br><br>
 +
 +
== Exercices for the chapter ==
 +
<br>
 +
[[Aufgaben:Exercise 4.3: Subcarrier Mapping]]
 +
 +
[[Aufgaben:Exercise 4.3Z: Multiple-Access Methods in LTE]]
  
 +
==References==
  
 +
<references/>
  
 
{{Display}}
 
{{Display}}

Latest revision as of 19:15, 9 February 2023

General information on LTE transmission technology


In contrast to its predecessor  $\rm UMTS$,  Long Term Evolution  $\rm (LTE)$  uses a variant of the OFDM concept also used by  $\text{WLAN}$  to systematically divide the transmission resources.  The multiple access method  $\rm OFDM$  possesses the ability to protect the system against intermittent transmission disturbances, just like the UMTS basic technology  $\rm CDMA$.

In principle, it would have been possible to adapt and expand the technologies used in the second and third generations of mobile communications in such a way that they also meet the required specifications for the fourth generation.  However, the rapidly increasing complexity of CDMA when received signals on multiple paths made the technical implementation appear to make little sense.

The highly abstracted graphic shows the distribution of the complete bandwidth for individual subcarriers and explains the difference between  $\rm CDMA$  (UMTS) and  $\rm OFDM$  (LTE).

Difference between OFDM and CDMA
  • In contrast to CDMA, OFDM has many subcarriers, typically even several hundred, with a bandwidth of only a few  "kHz"  each.
  • To achieve this, the data stream is split and each of the many subcarriers is modulated individually with only a small bandwidth.


LTE uses  $\rm OFDMA$, an OFDM based transmission technology.  Among the reasons for this are  [HT09][1]:

  1. High performance in frequency controlled channels,
  2. the low complexity in the receiver,
  3. good spectral properties and bandwidth flexibility, and
  4. compatibility with the latest receiver and multi-antenna technologies.

In the next section the differences between the multiple access methods "OFDM" and "OFDMA" are briefly explained.


Similarities and differences of OFDM and OFDMA


The principle of  "Orthogonal Frequency Division Multiplexing" is explained in detail in chapter  "Motivation for xDSL"  of the book "Examples of Communication Systems". 

The upper diagram shows the frequency assignment for  $\rm OFDM$:  This method splits the available frequency band into a large number of narrow–band subcarriers.  It is important to note:

Division of data blocks by frequency and time for OFDM and OFDMA
  • To ensure that the individual subcarriers exhibit as little intercarrier–interference as possible, their frequencies are selected so that they are orthogonal to each other.   This means:
  • At the center frequency of each subcarrier, all other carriers have no spectral components.  The goal is to select the currently most favorable resources for each user in order to obtain an overall optimal result.
  • In concrete terms, this also means that the available resources are allocated to the user who can currently do the most with them, adapted to the respective network situation.
  • For this purpose, the base station for the downlink to the terminal device measures the connection quality with the help of reference symbols.


The lower diagram shows the allocation at  "Orthogonal Frequency Division Multiple Access"  $\rm (OFDMA)$.  You can see:

  1. For OFDMA the resource allocation after channel fluctuations is not limited to the time domain as with OFDM, but also the frequency domain is optimally included. 
  2. Thus the OFDMA resource allocation is better adapted to the external circumstances than with OFDM.
  3. In order to make optimum use of this flexibility, however, coordination between the base station  ("eNodeB")  and the terminal equipment is necessary.  More on this in chapter  "General Description of DSL".


Differences between OFDMA and SC-FDMA


There are transmission methods such as  $\text{WiMAX}$, which use OFDMA in both directions.  The LTE specification by the 3GPP consortium on the other hand specifies:

Sender and Receiver Structure of a SC-FDMA System
  • In the  "downlink"  $($transmission from the base station to the terminal$)$;  $\rm OFDMA$  is used.
  • In the  "uplink"  $($from terminal to base station$)$   $\rm SC–FDMA$  $($"Single Carrier Frequency Division Multiple Access"$)$  is used.


From the graphic you can see that the two systems are very similar.  In other words:   SC–FDMA is based on OFDMA (or vice versa).

  • If you omit the components highlighted in red  ${\rm DFT} \ (K)$  and  ${\rm IDFT} \ (K)$  from SC–FDMA, you get the OFDMA system.
  • The other blocks stand for Serial/Parallel converter (S/P), Parallel/Serial converter (P/S), D/A converter, A/D converter as well as Add/Remove Prefix.


The signal generation for SC–FDMA works similar to OFDMA, but with small changes that are important for mobile radio:

  • The main difference is the additional  "discrete Fourier transform"  $\rm (DFT)$.  This has to be done on the transmitting side directly after the serial/parallel conversion.
  • Thus, it is no longer a multi-carrier procedure, but a single-carrier FDMA variant.  One speaks of  "DFT–spread OFDM"  because of the necessary DFT/IDFT operations.

Let us summarize these statements briefly:

$\text{SC–FDMA is different from OFDMA}$  in the following points 
[see also the Internet articles  "Single-carrier FDMA"  (in Wikipedia) and  "Difference between SC-FDMA and OFDMA.html"  (from RF Wireless World)]:

  1. With SC–FDMA, the data symbols are sent in a group of simultaneously transmitted subcarriers instead of sending each symbol from a single orthogonal subcarrier as with OFDMA. 
  2. This subcarrier group can then be considered a separate frequency band that transmits the data sequentially.  This is where the name  "Single Carrier FDMA"  comes from.
  3. While with OFDMA the data symbols directly create the different subcarriers, with SC–FDMA they first pass a discrete Fourier transform  $\rm (DFT)$. 
  4. Thus the data symbols are first transformed from the time domain into the frequency domain before they pass through the OFDM procedure.


Frequency band splitting for OFDMA and SC-FDMA

One can also describe the difference between  "OFDMA"  and  "SC–FDMA"  in such a way:

  • In an OFDMA transmission, each orthogonal subcarrier only contains the information of a single signal.
  • In contrast, with SC–FDMA, each individual subcarrier contains information about all signals transmitted in this period.


This difference and the quasi–sequential transmission with SC–FDMA can be seen particularly well from the diagram on the right. 


This graphic is taken from a PDF document from  "Agilent–3GPP".

Functionality of SC-FDMA


Now the SC–FDMA transfer process shall be examined more in detail.  The information for this section comes largely from  [MG08][2].

Considered SC-FDMA transmitter

The purpose and function of the  "Cyclic Prefix"  is not discussed here in detail.  The reasons for this unit are the same as for OFDM and can be read in the section  "Cyclic Prefix"  of the book "Modulation Methods".

The following description refers to the  SC–FDMA transmitter  shown here.  Note that with LTE the modulation is adapted to the channel quality:

  • In highly noisy channels  $\rm 4–QAM$  (Quadrature Amplitude Modulation with only four signal space points)  is used.
  • Under better conditions, the system then switches to a higher-level QAM, up to  $\rm 64–QAM$.


The following also applies:

  • An input data block consists of  $K$  complex modulation symbols  $x_\nu$ which are generated at a rate of  $R_{\rm Q}\ \big[\rm symbols/s \big]$.  The discrete Fourier transform   $\rm (DFT)$  generates  $K$  symbols  $X_\mu$  in the frequency domain, which are modulated on  $K$  from a total of  $N$  orthogonal subcarriers:
\[X_\mu = \sum_{\nu = 0 }^{K-1} x_\nu \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} { 2 \pi \hspace{0.05cm}\cdot \hspace{0.05cm} \nu \hspace{0.05cm}\cdot \hspace{0.05cm} \mu }/{K}} \hspace{0.05cm},\]
  • The subcarriers are distributed over a larger bandwidth of  $B_{\rm K} = N \cdot f_0$  where  $f_0 = 15 \ \rm kHz$  is the smallest addressable bandwidth for LTE.  Unused channels are shown as dashed lines in the example graphic.
  • The channel transmission rate is  $R_{\rm C} = J \cdot R_{\rm Q}$  with spreading factor  $J = N/K$.  This SC–FDMA system could simultaneously process  $J$  orthogonal input signals   ⇒   number of terminal devices that can be simultaneously connected to this base station.  In the case of LTE, for example, the values are  $K = 12$  (smallest addressable block) and  $N = 1024$. 
  • According to the so-called  "Subcarrier Mapping"  which is the assignment of the symbols generated by the DFT to the available subcarriers, the symbols are then mapped to a certain bandwidth, for example   $K = 12$  maps to the range of  $0 \ \text{...} \ 180 \ \rm kHz$  or to the range of  $180 \ \rm kHz \ \text{...} \ 360 \ \rm kHz$.
  • The  $\rm IDFT$  (highlighted in blue) transforms the output values  $Y_\mu$  on the frequency domain in its time representation  $y_\nu$.  These samples are then transformed by the Parallel/Serial converter into a sequence suitable for transmission.


Different approaches for the Subcarrier Mapping


The following figure illustrates three types of  "Subcarrier Mapping".  To simplify the representation, we will limit ourselves here to the (very small) parameter values  $K = 4$  and  $N = 12$.

Various methods of Subcarrier Mapping
  • »DFDMA«  or  "Distributed Mapping":
    Here the modulation symbols are distributed over a certain range of the available channel bandwidth.
  • »IFDMA«  or  "Interleaved FDMA":
    Special form of DFDMA, when the modulation symbols are distributed over the entire bandwidth with equal distances between them.
  • »LFDMA«  or  "Localized Mapping":
    The  $K$  modulation symbols are assigned directly to adjacent subcarriers.  This corresponds to the current 3GPP–specification.


It can be shown that with SC–FDMA the transmitter does not have to be run through the following steps individually

  1. Discrete Fourier Transform  $\rm (DFT)$,
  2. Subcarrier Mapping,
  3. Inverse discrete Fourier transform  $\rm (IDFT)$  or inverse Fast Fourier transform  $\rm (IFFT)$.

Instead, these three operations can be realized together as one single linear operation.  The complete and mathematically complex derivation can be found for example in  [MG08][2].  Each element  $y_\nu$  of the output sequence is then representable by a weighted sum of the input sequence elements  $x_\nu$  where the weights are complex-valued.

Hence, instead of the comparatively complicated Fourier transform, the operation is reduced

  • to a multiplication with a complex number, and
  • the  $J$–fold repetition of the input sequence  $\langle x_\nu \rangle $.

In  "Exercise 4.3"  the (transmit-side)  "Subcarrier Mapping"  is considered with more realistic values for  $K$  and  $N$  and its differences to the  "Subcarrier Demapping"  (at the receiver) are pointed out.


Advantages of SC-FDMA over OFDM


The decisive advantage of SC–FDMA over OFDMA is its lower  "Peak–to–Average Power Ratio"  $\rm (PAPR)$  due to its single-carrier structure. 

  • This is the ratio of current peak power  $P_{\rm max}$  to average power  $P_{\rm S}$.  $\rm PAPR$  can also be expressed by the  "Crest factor"  (quotient of the signal amplitudes). 
  • However, the two quantities are not identical.
(Complementary)  $\rm PAPR$  for OFDM


The graphic from the Internet document  [Wu09][3]  shows in double–logarithmic representation the probability that with 64QAM–OFDM the current power  $P_{\rm max}$  is above the average power  $P_{\rm S}$.  You can see:

  1. The probability of large  "outliers"  is small.  For example, the average power is only exceeded in  $0.1\%$  of time by more than  $\text{10 dB}$      ⇒   marked in red.
  2. Even if such high power peaks are very rare, they still pose a problem for the receiver's power amplifier.


The power amplifiers should be operated in the linear range, otherwise the signal is distorted.  Non-linearities arise in particular due to

  • intercarrier interference  within the signal,
  • interference from adjacent channels due to spectrum expansions.

Therefore, OFDM requires the amplifier to operate at a lower power level than its peak power most of the time, which can drastically reduce its efficiency.

  • Because one can regard  SC–FDMA  quasi as single carrier transmission procedures, its PAPR is lower than the one of OFDMA.
  • Thus, for example, a so-called  "pulse shaping filter" can be used which reduces the PAPR.


The lower PAPR is the main reason why SC–FDMA is used in the LTE uplink and not OFDMA.

  • A low PAPR means longer battery life, an extremely important criterion for mobile phones/smartphones.
  • At the same time, SC–FDMA offers similar performance and complexity to OFDMA.
  • Since a long battery life is less important for the downlink, OFDMA is used here.


$\text{Example 1:}$  We consider an OFDM system with  $N$  carriers, all with the same signal amplitude  $A$.

After a highly simplified calculation with the same proportionality factor we obtain:

  • the maximum signal power is proportional to  $(N \cdot A)^2$, and
  • the average signal power is proportional to  $N \cdot A^2$ .

This results in the  peak–to–average power ratio  ${\rm PAPR} = N$, since it's the quotient of these two powers.  Already with only two carriers this results in  ${\rm PAPR} = 2$  which corresponds to  $\text{3 dB}$:

  • So even with only two carriers the amplifier must always operate  $\text{3 dB}$  below the maximum power to avoid signal distortion in case of signal peaks.
  • As will be shown below,  $\text{3 dB}$  already means a decrease in efficiency to  $85\%$.


$\text{Example 2:}$  The parameter  $\rm PAPR$  is directly related to the  "Transmit Amplifier Efficiency". 

  • Maximum efficiency is achieved when the amplifier can operate in the vicinity of the saturation limit.
  • The graphic shows an example of an amplifier's characteristic curve, i.e. the output power plotted against the input power.


Decrease in amplifier efficiency with increasing back-off

At  $\rm PAPR = 1$  $(\text{0 dB})$  one could set the average power  $P_{\rm S}$  equal to the allowed peak power  $P_{\rm max}$.  According to the characteristic curve  $P_{\rm out}/P_{\rm in}$  the amplifier efficiency would be (exemplarily)  $95\%$.

Nevertheless, for large  $\rm PAPR$  the amplifier must be operated below the saturation limit to avoid too much signal distortion.  Here are some numerical examples:

  • At  $\rm PAPR = 2$  according to the rough calculation on the last example, the average transmitted power would have to be chosen $\text{3 dB}$  lower than the allowed power,  so that  $P_{\rm max}$  would not be exceeded at any time.  The efficiency would then decrease to  $85\%$ .
  • A back–off from  $\text{3 dB}$  is usually not sufficient, but in practice values between  $\text{5 dB}$  and  $\text{8 dB}$,  taken from  [Hin08][4].  According to the given curve, however, at  $\text{5 dB}$  the efficiency already drops to only   $70\%$  $($system  $\rm S1$, green line$)$.
  • With system  $\rm S2$  all signal peaks reduced in  $\text{8 dB}$  can be transmitted by the amplifier without distortion, but the amplifier efficiency is then only  $40\%$.  As can be seen in the first graphic in this section, strong distortions still occur about  $2\%$  of the time.
  • If the average transmitted power is  $P_{\rm S} = 100\, \rm mW$, then with a  $\rm PAPR = 9 \ \Rightarrow \ \text{8 dB}$  the amplifier must work up to  $P_{\rm max} = 900\, \rm mW$  without distortion, with  $\rm PAPR = 2 \ \Rightarrow \ \text{3 dB}$  on the other hand, only up to  $200 \, \rm mW$.  The difference between the two amplifiers is an enormous cost factor.


$\text{Conclusion:}$ 

  • OFDM with a large back–off in the uplink would lead to problems, namely extremely short battery life of the mobile devices  ⇒   SC–FDMA is used in the LTE uplink.
  • In addition, the complexity of SC–FDMA is generally lower than other methods, which means cheaper terminals  [MLG06][5].  If the CDMA used in UMTS were extended to the 4G standard, the receiver complexity would increase significantly due to the high frequency diversity in the channel  [IXIA09][6].
  • However, the frequency domain equalization with SC–FDMA is more complicated than with OFDMA.  This is the main reason why SC–FDMA is only used in the uplink.  So these complicated equalizers have to be installed only in the base stations and not in the terminals.



Exercices for the chapter


Exercise 4.3: Subcarrier Mapping

Exercise 4.3Z: Multiple-Access Methods in LTE

References

  1. Holma, H.; Toskala, A.:  LTE for UMTS - OFDMA and SC-FDMA Based Radio Access.  Wiley & Sons, 2009.
  2. 2.0 2.1 Myung, H.; Goodman, D.:  Single Carrier FDMA – A New Air Interface for Long Term Evolution.  West Sussex: John Wiley & Sons, 2008.
  3. Wu, B.:  Analyzing WiMAX Modulation Quality.   PDF Internet document, 2009.
  4. Hindelang, T.:  Mobile Communications.  Lecture Manuscript.  Chair of Communications Engineering, TU Munich, 2008.
  5. Myung, H.; Lim, J.; Goodman, D.:  Single Carrier FDMA for Uplink Wireless Transmission.  IEEE Vehicular Technology Magazine, Vol. 1, No. 3, 2006.
  6. SC-FDMA - Single Carrier FDMA in LTE.   PDF Internet document, 2009.