Difference between revisions of "Modulation Methods/OFDM for 4G Networks"

From LNTwww
 
(40 intermediate revisions by 6 users not shown)
Line 1: Line 1:
 
   
 
   
 
{{Header
 
{{Header
|Untermenü=Vielfachzugriffsverfahren
+
|Untermenü=Multiple Access Methods
|Vorherige Seite=Realisierung von OFDM-Systemen
+
|Vorherige Seite=Implementation of OFDM Systems
|Nächste Seite=Weitere OFDM–Anwendungen
+
|Nächste Seite=Further OFDM Applications
 
}}
 
}}
==Multiplexverfahren vs. Vielfachzugriffsverfahren==
+
==Multiplexing vs. multiple access methods==
Als erstes Systembeispiel wollen wir nun einen Blick auf die Mobilfunknetze der vierten Generation (4G) werfen, die als Nachfolger die früheren Mobilfunknetze, basierend auf
+
<br>
*TDMA/FDMA (siehe GSM, ''Global System for Mobile Communications''), bzw.
+
As a first example,&nbsp; let's now take a look at the fourth-generation&nbsp; $\rm (4G)$&nbsp; mobile communications networks,&nbsp; which are the successors to the earlier mobile communications networks based on
*CDMA (siehe UMTS, ''Universal Mobile Telecommunications System'')  
+
*$\rm TDMA/FDMA$, see &nbsp;[[Examples_of_Communication_Systems/Allgemeine_Beschreibung_von_GSM|$\rm GSM$]]&nbsp; ("Global System for Mobile Communications"),&nbsp; and
 +
*$\rm CDMA$, see &nbsp;[[Examples_of_Communication_Systems/Allgemeine_Beschreibung_von_UMTS|$\rm UMTS$]]&nbsp; ("Universal Mobile Telecommunications System").
  
  
abgelöst haben.  
+
*Another name often used synonymously with&nbsp; "4G"&nbsp; is &nbsp;[[Mobile_Communications/General_Information_on_the_LTE_Mobile_Communications_Standard|$\rm LTE$]]&nbsp; ("Long Term Evolution").&nbsp; Like &nbsp;[https://en.wikipedia.org/wiki/WiMAX $\text{WiMAX}$]&nbsp; ("Worldwide Interoperability for Microwave Access"),&nbsp; LTE uses &nbsp;[https://www.techtarget.com/searchnetworking/definition/orthogonal-frequency-division-multiple-access-OFDMA &nbsp;$\rm OFDMA$]&nbsp; ("Orthogonal Frequency Division Multiple Access")&nbsp; as its multiple access method.  
  
*Ein weiterer Name, der häufig synonym zu „4G” verwendet wird, ist Long Term Evolution (LTE). Ebenso wie WiMAX (''Worldwide Interoperability for Microwave Access'') verwendet LTE als Vielfachzugriffsverfahren OFDMA (''Orthogonal Frequency Division Multiple Access'').  
+
*The main difference between a pure&nbsp; "$\rm  multiplexing \; method$"&nbsp;  $($TDM,&nbsp; FDM,&nbsp; CDM,&nbsp; OFDM$)$&nbsp; and a&nbsp; "$\rm multiple \; access \; method$"&nbsp;  $($TDMA,&nbsp; FDMA,&nbsp; CDMA,&nbsp; OFDMA$)$&nbsp; is the user separation realized by resource allocation.&nbsp;  In the case of OFDMA,&nbsp; this means that not only time slots&nbsp; (TDMA)&nbsp; or spreading codes&nbsp; (CDMA)&nbsp; are allocated to the individual subscribers,&nbsp; but also different and&nbsp; "preferably"&nbsp; orthogonal subcarriers.
  
 +
*The realization of a suitable allocation mechanism is a non-trivial problem which can only be dealt with very superficially here.&nbsp; It makes sense that a method is not limited to only one&nbsp; (physical)&nbsp; layer,&nbsp; but works across layers.&nbsp; The term&nbsp; "layer"&nbsp; is to be understood here in the sense of the&nbsp; [https://en.wikipedia.org/wiki/OSI_model $\text{OSI reference model}$].&nbsp;
  
*Der wesentliche Unterschied zwischen einem reinen ''Multiplexverfahren'' (TDM, FDM, CDM, OFDM) und einem ''Vielfachzugriffsverfahren'' (TDMA, FDMA, CDMA, OFDMA) besteht in der durch Ressourcenzuweisung realisierten Benutzertrennung. Im Fall von OFDMA bedeutet dies, dass nicht nur Zeitschlitze (TDMA) oder Spreizcodes (CDMA) einzelnen Teilnehmern zugewiesen werden, sondern verschiedene und „möglichst” orthogonale Unterträger.  
+
*This is also necessitated by the changing requirements of a mobile communications network.&nbsp; Whereas&nbsp; &raquo;'''connection-oriented'''&laquo;&nbsp; services such as voice telephony were in the foreground at the beginning of mobile communications,&nbsp; today&nbsp; &raquo;'''packet-oriented'''&laquo;&nbsp; applications such as&nbsp; "Voice over IP" (VoIP),&nbsp; "video telephony"&nbsp; or&nbsp; "mobile data services"&nbsp; represent the main traffic load and are the cause of the increased demand on the available data rates.  
  
 +
==Some characteristics of mobile radio systems==
 +
<br>
 +
First of all,&nbsp; the special features of the mobile radio channel will be discussed very briefly.&nbsp; The figure shows a typical mobile radio scenario.&nbsp; More detailed information on this subject can be found in the book &nbsp;[[Mobile_Communications/Distance_Dependent_Attenuation_and_Shading|"Mobile Communications"]].
  
*Die Realisierung eines geeigneten Zuteilungsmechanismus’ stellt ein nicht triviales Problem dar, auf das hier nur sehr oberflächlich eingegangen werden kann. Sinnvollerweise beschränkt sich ein Verfahren nicht auf eine (die physikalische) Schicht, sondern arbeitet schichtenübergreifend. Der Begriff „Schicht” ist hier im Sinne des ''OSI–Referenzmodells'' zu verstehen.  
+
[[File:EN_Mob_T1_1_S1.png |right|frame| Characteristics of the mobile communications channel]]
 +
The main characteristics of the mobile communications channel are:
 +
*the distance-dependent attenuation&nbsp; ("path loss"),
 +
*refraction,&nbsp; scattering and reflection effects and thus multipath propagation,
 +
*possible shadowing by mountains,&nbsp; trees and houses,  
 +
*the Doppler effect due to the relative speed between transmitter and receiver.  
 +
<br><br><br><br><br><br><br>
 +
Regarding&nbsp; "attenuation"&nbsp; one distinguishes
 +
*between&nbsp; "time-dependent attenuation"&nbsp; (&nbsp; "time selective fading")
 +
*and&nbsp; "frequency-dependent attenuation"&nbsp; (&nbsp; "frequency selective fading").  
 +
<br clear=all>
 +
[[File:EN_Mod_T_5_7_S2_2neu.png |left|frame| Description of time-dependent and frequency-dependent attenuation]
 +
<br><br>The table on the left shows the respective descriptive quantities.&nbsp;  Please note: &nbsp;
  
 +
*The coherence bandwidth &nbsp;$f_{\rm coh}$&nbsp; is not the reciprocal of the coherence time &nbsp;$T_{\rm coh}$,&nbsp; although one might assume this due to comparable naming.
  
*Notwendig wird dies auch durch die sich verändernden Anforderungen an ein Mobilfunknetz. Standen in den Anfangsjahren der Mobilkommunikation ''verbindungsorientierte'' Dienste wie Sprachtelefonie im Vordergrund, stellen heute ''paketorientierte'' Anwendungen wie ''Voice over IP'' (VoIP), ''Videotelefonie'' oder ''mobile Datendienste'' die hauptsächliche Verkehrslast dar und sind die Ursache für den gestiegenen Anspruch an die zur Verfügung stehenden Datenraten.  
+
* $f_{\rm coh}$&nbsp; is a parameter for the frequency-dependent attenuation and results as the reciprocal of the &nbsp;[https://en.wikipedia.org/wiki/Delay_spread $\text{delay spread}$].
  
==Einige Eigenschaften von Mobilfunksystemen==
+
* $T_{\rm coh}$&nbsp; on the other hand,&nbsp; describes the time-dependent attenuation and is the reciprocal of the &nbsp;[https://en.wikipedia.org/wiki/Fading $\text{Doppler spread}$].
Zuerst soll in aller Kürze auf die Besonderheiten des Mobilfunkkanals eingegangen werden. Die folgende Abbildung zeigt ein typisches Mobilfunkszenario. Genauere Informationen zu dieser Thematik finden Sie im Buch [[Mobile Kommunikation]].  
+
<br clear=all>
 +
==Determination of some OFDM parameters==
 +
<br>
 +
Now we will try to adapt the OFDM system to the channel in such a way that neither time nor frequency dependent fading occurs.&nbsp; For this,&nbsp; the following must apply:
 +
*Time-dependent fading is avoided&nbsp; (i.e.:&nbsp; the channel is time-invariant)&nbsp; if the frame duration&nbsp; ("Time of Interest")&nbsp; $T_{\rm R} = T + T_{\rm G})$&nbsp; is significantly smaller than the coherence time&nbsp; $T_{\rm coh}$:&nbsp;
 +
:$$T_{\rm R} \ll T_{\rm coh}.$$
 +
*Frequency selective fading&nbsp; (within a subcarrier)&nbsp; is avoided if the bandwidth of all carriers&nbsp; $(≈ f_0)$&nbsp; is significantly smaller than the coherence bandwidth&nbsp; $f_{\rm coh}$:&nbsp;
 +
:$$f_0 = {1}/{T} \ll f_{{\rm{coh}}} = {1}/{{T_{\rm{D}} }} \approx {1}/{{T_{\rm{G}} }}
 +
\hspace{1.0cm}({\rm e.g.\hspace{0.12cm} for }\hspace{0.15cm} \tau_{\rm min}= 0,\hspace{0.12cm}\tau_{\rm max}= T_{\rm G}\hspace{0.12cm}{\rm applies}).$$
 +
*Both requirements can be summarized by the following inequality with respect to the symbol duration&nbsp; $T$:&nbsp;
 +
:$$T_{\rm{G}} \ll T \ll T_{{\rm{coh}}} - T_{\rm{G}}.$$
 +
*However,&nbsp; the two requirements cannot be satisfied simultaneously: &nbsp; A larger&nbsp; $T$&nbsp; decreases the frequency selectivity,&nbsp; but at the same time makes the transmission more susceptible to Doppler spreading&nbsp; $($smaller ratio&nbsp; $T_{\rm coh}/T)$.  
  
  
[[File:P_ID1649__Mod_T_5_7_S2_1_ganz_neu.png | Eigenschaften des Mobilfunkkanals]]
+
{{GraueBox|TEXT=
 +
$\text{Example 1:}$&nbsp; Assuming a given coherence time &nbsp;$T_{\rm coh}$&nbsp; and maximum delay &nbsp;$τ_{\rm max}$&nbsp; through the channel,&nbsp; one could proceed as follows:
 +
#Determination of the preliminary guard interval to &nbsp;${T_{\rm G} }' ≥ τ_{\rm max}$,
 +
#Calculating the upper and lower bounds: &nbsp;${T_{\rm G} }' \ll T \ll T_{\rm coh} – {T_{\rm G} }'$,
 +
#Calculating the optimal symbol duration as a geometric mean:
 +
::$$T_{\rm opt} = \sqrt { {T_{\rm G} }' \cdot (T_{\rm coh} - {T_{\rm G} }') }.$$
 +
*The required number &nbsp;$N_{\rm user}$&nbsp; of subcarriers&nbsp; &ndash; and thus the minimum FFT support number &ndash;&nbsp; is obtained from this together with the data rate &nbsp;$R$&nbsp; and the number &nbsp;$M$&nbsp; of signal space points of the mapping used after rounding up:
 +
:$$N_{ {\rm{user} } } = \left\lceil {\frac{ {R \cdot (T + {T_{\rm G} }') } } { { {\rm{log}_2}(M)} } } \right\rceil \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 +
N_{ {\rm{FFT} } } = 2^{\left\lceil { {\rm{log}_2} (N_{ {\rm{use} } } )} \right\rceil }.$$
  
 +
*The value &nbsp;$N_{\rm FFT}$&nbsp; takes into account that the number of interpolation points of the FFT must be a power of two.&nbsp; The unused carriers due to the FFT adjustment are used as an additional guard band at the edges of the spectrum.
 +
*The resulting guard interval must now be adjusted to the new parameters:
 +
:$$T_{\rm{G} } = N_{\rm{G} } \cdot \frac{{T_{{\rm{opt} } } } } { {N_{ {\rm{FFT} } } }} \quad {\rm{with}}
 +
\quad N_{\rm{G} } = \left\lceil {\frac{ { {T_{\rm G} }' } } { {T_{ {\rm{opt} } } } } \cdot N_{ {\rm{FFT} } } } \right\rceil.$$
  
Wesentliche Eigenschaften des Mobilfunkkanals sind:
+
*The frame duration is given by &nbsp;$T_{\rm R} = T + T_{\rm G}$&nbsp; and the total number of samples in a frame is given by &nbsp;$N_{\rm total} = N_{\rm FFT} + N_{\rm G}$.&nbsp;
*die entfernungsabhängige Dämpfung (''Path Loss''),
+
*Finally,&nbsp; the number &nbsp;$N_{\rm user}$&nbsp; of the useful carriers must be calculated again with the above equation. }}
*Brechungs–, Streuungs– und Reflexionseffekte und damit Mehrwegeausbreitung,
 
*mögliche Abschattungen durch Berge, Bäume und Häuser,
 
*der Dopplereffekt durch die Relativgeschwindigkeit zwischen Sender und Empfänger.  
 
  
 +
==Resource management in 4G networks==
 +
<br>
 +
A design parameter not considered so far is the choice of the respective modulation scheme of the individual subcarriers,&nbsp; which has a decisive influence on the error probability during transmission.&nbsp;
 +
[[File: P_ID1652__Mod_T_5_7_S4a_ganz_neu.png |right|frame| Multi-user diversity gain from [Vie17]<ref>Viering, I.:&nbsp; System Aspects in Communications.&nbsp; Lecture manuscript, Lehrstuhl für Nachrichtentechnik, TU München, 2017.</ref>. &nbsp; &nbsp; <br>We thank Ingo Viering for permission to use the diagram.]]
  
Dabei kann in Bezug auf die Dämpfung folgende Unterscheidung getroffen werden:  
+
[[File:EN_Mod_T_5_7_S5.png |right|frame| Cross-layer scheduler]]
  
 +
*In principle,&nbsp; it can be said that the robustness decreases with increasing &nbsp;${\rm log_2}(M)$,&nbsp; since this reduces the spacing of the possible signal space points.
  
[[File:P_ID1650__Mod_T_5_7_S2_2_neu.png | Kohärenzzeit und Kohärenzbandbreite]]
+
*However,&nbsp; a large symbol range &nbsp;$M$&nbsp; is the prerequisite for the desired high data rates,&nbsp; which is only possible in good channel states.&nbsp; The characteristics of the channel often differ greatly for the participants and change over time.
  
  
Bitte beachten Sie: Die Kohärenzbandbreite $f_{\rm coh}$ ist nicht der Kehrwert der Kohärenzzeit $T_{\rm coh}$, obwohl man das aufgrund der gleichen Indizierung vermuten könnte.
+
The aim of a suitable&nbsp; &raquo;'''scheduling procedure'''&laquo;&nbsp; is now,  
 +
*transmit only when the channel is good,&nbsp; and
 +
*to serve other subscribers during the dips in attenuation.
  
==Bestimmung einiger OFDM–Parameter==
 
Nun soll versucht werden, das OFDM–System derart an den Kanal anzupassen, dass weder zeit– noch frequenzabhängiges Fading auftritt. Dafür muss gelten:
 
*Das zeitabhängige Fading wird vermieden (das heißt, der Kanal ist zeitinvariant), wenn die Rahmendauer (''Time of Interest'') $T_{\rm R} = T + T_{\rm G}$ deutlich kleiner als die Kohärenzzeit $T_{\rm G}$ ist.
 
*Das frequenzselektive Fading (innerhalb eines Subträgers) vermeidet man, wenn die Bandbreite eines jeden Trägers $(≈ f_0)$ deutlich kleiner als die Kohärenzbandbreite $f_{\rm coh}$ ist:
 
$$f_0 = {1}/{T} < < f_{{\rm{coh}}} = {1}/{{T_{\rm{D}} }} \approx {1}/{{T_{\rm{G}} }}
 
\hspace{1.0cm}({\rm z.B.\hspace{0.12cm} f\ddot{u}r }\hspace{0.15cm} \tau_{\rm min}= 0,\hspace{0.12cm}\tau_{\rm max}= T_{\rm G}\hspace{0.12cm}{\rm zutreffend}).$$
 
Beide Forderungen lassen sich durch folgende Ungleichung zusammenfassen:
 
$$T_{\rm{G}} < < T < < T_{{\rm{coh}}} - T_{\rm{G}}.$$
 
  
Sie lassen sich aber nicht gleichzeitig erfüllen: ein größeres $T$ veringert zwar die Frequenzselektivität, macht aber gleichzeitig die Übertragung anfälliger für Doppler–Spreizungen (kleineres Verhältnis $T_{\rm coh}/T$).  
+
The gain in system throughput that can be achieved in this way is often referred to as&nbsp; [https://en.wikipedia.org/wiki/Diversity_scheme $\text{multi-user diversity gain}$].&nbsp;
  
 +
The diagram on the right shows the procedure.&nbsp; The blue line represents the desired &nbsp;"riding on the peaks"&nbsp; for the case of eight participants&nbsp; (eight fading processes).&nbsp; 
  
{{Beispiel}}
+
<br>When implementing a channel-adaptive scheduler,&nbsp; however,&nbsp; information from higher layers should also be included,&nbsp; since long waiting times &nbsp; (large delays)&nbsp; must be avoided depending on the &nbsp;"Quality of Service"&nbsp; $\rm (QoS)$&nbsp; requirements and traffic type.&nbsp; The diagram on the right shows a schematic representation of such a &nbsp; "cross–layer approach".&nbsp;
Unter der Annahme einer gegebenen Kohärenzzeit $T_{\rm coh}$ und einer gemessenen maximalen Verzögerung $τ_{\rm max}$ durch den Kanal könnte man wie folgt vorgehen:
+
*The scheduler is located in the MAC layer&nbsp; ("Medium Access Control Layer")&nbsp; and communicates with the other&nbsp; (not necessarily neighboring)&nbsp; layers.&nbsp; It should be noted that this approach contradicts the modularity principle envisaged in the OSI model.  
*Festlegung des vorläufigen Guard–Intervalls zu ${T_{\rm G} }' ≥ τ_{\rm max}$,  
+
*A similar approach has already been implemented as part of the extension of the UMTS network to include the&nbsp;[[Examples_of_Communication_Systems/Weiterentwicklungen_von_UMTS#High.E2.80.93Speed_Downlink_Packet_Access|$\rm HSDPA$]]&nbsp; ("High Speed Downlink Packet Access") standard,&nbsp; which has increased the maximum data rate in the 3G network&nbsp; (downstream)&nbsp; from&nbsp; $\text{384 kbit/s}$&nbsp; to the theoretical value&nbsp; $\text{14.4 Mbit/s}$.
*Berechnung der oberen und unteren Grenze: ${T_{\rm G} }' << T << T_{\rm coh} – {T_{\rm G} }'$,
 
*Berechnung der optimalen Symboldauer als geometrisches Mittel:
 
$$T_{{\rm{opt}}} = \sqrt {T_{\rm{G}} ' \cdot (T_{{\rm{coh}}} - T_{\rm{G}} ')}.$$
 
Die notwendige Anzahl $N_{\rm Nutz}$ an Unterträgern – und damit auch die minimale FFT–Stützstellenzahl – ergibt sich aus der Datenrate $R$ und der Anzahl $M$ der Signalraumpunkte des verwendeten Mappings nach Aufrundung:
 
$$N_{{\rm{Nutz}}} = \left\lceil {\frac{{R \cdot (T + T_{\rm{G}} ')}} {{{\rm{log}_2}(M)}}} \right\rceil \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
N_{{\rm{FFT}}} = 2^{\left\lceil {{\rm{log}_2} (N_{{\rm{Nutz}}} )} \right\rceil }.$$
 
  
Der Wert $N_{\rm FFT}$ berücksichtigt dabei, dass die Stützstellenzahl der FFT eine Zweierpotenz sein muss. Die wegen der FFT–Anpassung ungenutzten Träger verwendet man an den Rändern des Spektrums als zusätzliches Schutzband.
 
  
Das resultierende Guard–Intervall muss nun an die neuen Parameter angeglichen werden:
+
This section was only intended to provide a rough outlook on possible future mobile communications networks.&nbsp; It should be noted that the improved adaptivity required for very high data rates is only made possible by the use of a multi-carrier system such as OFDM/OFDMA.
$$T_{\rm{G}} = N_{\rm{G}} \cdot \frac{{T_{{\rm{opt}}} }} {{N_{{\rm{FFT}}} }} \quad {\rm{mit}}
 
\quad N_{\rm{G}} = \left\lceil {\frac{{T_{\rm{G}} '}} {{T_{{\rm{opt}}} }} \cdot N_{{\rm{FFT}}} } \right\rceil.$$
 
  
Die Rahmendauer ergibt sich zu $T_{\rm R} = T + T_{\rm G}$ und die Gesamtzahl der Abtastwerte eines Rahmens zu $N_{\rm gesamt} = N_{\rm FFT} + N_{\rm G}$. Abschließend muss noch mit obiger Gleichung die Anzahl $N_{\rm Nutz}$ der Nutzträger erneut berechnet werden.
 
{{end}}
 
  
==Ressourcenverwaltung in 4G–Netzen (1)==
+
==Exercise for the chapter==
Ein bisher noch nicht betrachteter Design–Parameter ist die Wahl des jeweiligen Modulationsverfahrens der einzelnen Unterträger. Dieser hat jedoch entscheidenden Einfluss auf die Fehlerwahrscheinlichkeit bei der Übertragung. Prinzipiell kann man sagen, dass die Robustheit mit steigendem ${\rm log_2}(M)$ abnimmt, da dadurch der Abstand der möglichen Signalraumpunkte verringert wird.  
+
<br>
 +
[[Aufgaben:Exercise_5.9:_Selection_of_OFDM_Parameters|Exercise 5.9: &nbsp; Selection of OFDM Parameters]]
  
Ein großer Symbolumfang $M$ ist jedoch die Vorraussetzung für die gewünschten hohen Datenraten, was aber nur in guten Kanalzuständen möglich ist. Die Eigenschaften des Kanals unterscheiden sich dabei für die Teilnehmer oft sehr stark und ändern sich über der Zeit.
+
==References==
 
 
Ziel eines geeigneten '''Scheduling–Verfahrens''' ist es nun,
 
*möglichst nur bei gutem Kanal zu senden und
 
*in den Dämpfungseinbrüchen andere Teilnehmer zu bedienen.
 
 
 
 
 
Den damit erzielbaren Gewinn an Systemdurchsatz bezeichnet man oft als Multi–User Diversity Gain. Die folgende Grafik aus [Vie08]<ref>Viering, I.: ''System Aspects in Communications''. Vorlesungsmanuskript. Lehrstuhl für Nachrichtentechnik, Technische Universität München, 2016.</ref> zeigt das prinzipielle Vorgehen, wobei die blaue Linie das gewünschte ''Riding on the Peaks'' für den Fall von 8 Teilnehmern und dadurch 8 Fading–Prozessen darstellt.
 
 
 
 
 
[[File: P_ID1652__Mod_T_5_7_S4a_ganz_neu.png | Multi-User Diversity Gain; Quelle: I. Viering: Manuskript zu System Aspects in Communications]]
 
 
 
==Ressourcenverwaltung in 4G–Netzen (2)==
 
[[File:P_ID1653__Mod_T_5_7_S5_neu.png | Cross-Layer-Scheduler | rechts]]
 
Bei der Realisierung eines kanaladaptiven Schedulers sollten aber auch Informationen aus höheren Schichten mit einbezogen werden, da je nach ''Quality of Service'' (QoS)–Anforderung und Verkehrsart lange Wartezeiten (große Verzögerungen) vermieden werden müssen. In der Grafik ist ein solcher schichtenübergreifender Ansatz (''Cross–Layer Approach'') schematisch dargestellt.
 
 
 
Der Scheduler ist dabei im MAC–Layer (''Medium Access Control Layer'') angesiedelt und kommuniziert mit den anderen (nicht notwendigerweise benachbarten) Schichten. An dieser Stelle sei angemerkt, dass diese Vorgehensweise dem im OSI–Modell vorgesehenen Modularitätsprinzip widerspricht.
 
 
 
Ein ähnlicher Ansatz wurde bereits im Rahmen der Erweiterung des UMTS–Netzes um den Standard HSDPA (''High Speed Downlink Packet Access'') umgesetzt, wodurch die maximale Datenrate im 3G–Netz (Downstream) von 384 kbit/s auf theoretisch 14.4 Mbit/s gesteigert werden konnte.
 
 
 
Dieser Abschnitt sollte nur einen groben Ausblick über mögliche zukünftige Mobilfunknetze darstellen. Festzuhalten bleibt, dass gerade die für noch höhere Datenraten benötigte verbesserte Adaptivität erst durch den Einsatz eines Mehrträgersystems wie OFDM/OFDMA ermöglicht wird.
 
 
 
 
 
==Aufgaben zum Kapitel==
 
 
 
[[Aufgaben: 5.9 OFDM–Sender mittels IDFT|Aufgabe 5.9: &nbsp; OFDM–Sender mittels IDFT]]
 
 
 
==Quellenverzeichnis==
 
<references/>
 
  
 
{{Display}}
 
{{Display}}

Latest revision as of 15:43, 30 January 2023

Multiplexing vs. multiple access methods


As a first example,  let's now take a look at the fourth-generation  $\rm (4G)$  mobile communications networks,  which are the successors to the earlier mobile communications networks based on

  • $\rm TDMA/FDMA$, see  $\rm GSM$  ("Global System for Mobile Communications"),  and
  • $\rm CDMA$, see  $\rm UMTS$  ("Universal Mobile Telecommunications System").


  • Another name often used synonymously with  "4G"  is  $\rm LTE$  ("Long Term Evolution").  Like  $\text{WiMAX}$  ("Worldwide Interoperability for Microwave Access"),  LTE uses   $\rm OFDMA$  ("Orthogonal Frequency Division Multiple Access")  as its multiple access method.
  • The main difference between a pure  "$\rm multiplexing \; method$"  $($TDM,  FDM,  CDM,  OFDM$)$  and a  "$\rm multiple \; access \; method$"  $($TDMA,  FDMA,  CDMA,  OFDMA$)$  is the user separation realized by resource allocation.  In the case of OFDMA,  this means that not only time slots  (TDMA)  or spreading codes  (CDMA)  are allocated to the individual subscribers,  but also different and  "preferably"  orthogonal subcarriers.
  • The realization of a suitable allocation mechanism is a non-trivial problem which can only be dealt with very superficially here.  It makes sense that a method is not limited to only one  (physical)  layer,  but works across layers.  The term  "layer"  is to be understood here in the sense of the  $\text{OSI reference model}$
  • This is also necessitated by the changing requirements of a mobile communications network.  Whereas  »connection-oriented«  services such as voice telephony were in the foreground at the beginning of mobile communications,  today  »packet-oriented«  applications such as  "Voice over IP" (VoIP),  "video telephony"  or  "mobile data services"  represent the main traffic load and are the cause of the increased demand on the available data rates.

Some characteristics of mobile radio systems


First of all,  the special features of the mobile radio channel will be discussed very briefly.  The figure shows a typical mobile radio scenario.  More detailed information on this subject can be found in the book  "Mobile Communications".

Characteristics of the mobile communications channel

The main characteristics of the mobile communications channel are:

  • the distance-dependent attenuation  ("path loss"),
  • refraction,  scattering and reflection effects and thus multipath propagation,
  • possible shadowing by mountains,  trees and houses,
  • the Doppler effect due to the relative speed between transmitter and receiver.








Regarding  "attenuation"  one distinguishes

  • between  "time-dependent attenuation"  (  "time selective fading")
  • and  "frequency-dependent attenuation"  (  "frequency selective fading").


[[File:EN_Mod_T_5_7_S2_2neu.png |left|frame| Description of time-dependent and frequency-dependent attenuation]

The table on the left shows the respective descriptive quantities.  Please note:  

  • The coherence bandwidth  $f_{\rm coh}$  is not the reciprocal of the coherence time  $T_{\rm coh}$,  although one might assume this due to comparable naming.
  • $f_{\rm coh}$  is a parameter for the frequency-dependent attenuation and results as the reciprocal of the  $\text{delay spread}$.
  • $T_{\rm coh}$  on the other hand,  describes the time-dependent attenuation and is the reciprocal of the  $\text{Doppler spread}$.


Determination of some OFDM parameters


Now we will try to adapt the OFDM system to the channel in such a way that neither time nor frequency dependent fading occurs.  For this,  the following must apply:

  • Time-dependent fading is avoided  (i.e.:  the channel is time-invariant)  if the frame duration  ("Time of Interest")  $T_{\rm R} = T + T_{\rm G})$  is significantly smaller than the coherence time  $T_{\rm coh}$: 
$$T_{\rm R} \ll T_{\rm coh}.$$
  • Frequency selective fading  (within a subcarrier)  is avoided if the bandwidth of all carriers  $(≈ f_0)$  is significantly smaller than the coherence bandwidth  $f_{\rm coh}$: 
$$f_0 = {1}/{T} \ll f_{{\rm{coh}}} = {1}/{{T_{\rm{D}} }} \approx {1}/{{T_{\rm{G}} }} \hspace{1.0cm}({\rm e.g.\hspace{0.12cm} for }\hspace{0.15cm} \tau_{\rm min}= 0,\hspace{0.12cm}\tau_{\rm max}= T_{\rm G}\hspace{0.12cm}{\rm applies}).$$
  • Both requirements can be summarized by the following inequality with respect to the symbol duration  $T$: 
$$T_{\rm{G}} \ll T \ll T_{{\rm{coh}}} - T_{\rm{G}}.$$
  • However,  the two requirements cannot be satisfied simultaneously:   A larger  $T$  decreases the frequency selectivity,  but at the same time makes the transmission more susceptible to Doppler spreading  $($smaller ratio  $T_{\rm coh}/T)$.


$\text{Example 1:}$  Assuming a given coherence time  $T_{\rm coh}$  and maximum delay  $τ_{\rm max}$  through the channel,  one could proceed as follows:

  1. Determination of the preliminary guard interval to  ${T_{\rm G} }' ≥ τ_{\rm max}$,
  2. Calculating the upper and lower bounds:  ${T_{\rm G} }' \ll T \ll T_{\rm coh} – {T_{\rm G} }'$,
  3. Calculating the optimal symbol duration as a geometric mean:
$$T_{\rm opt} = \sqrt { {T_{\rm G} }' \cdot (T_{\rm coh} - {T_{\rm G} }') }.$$
  • The required number  $N_{\rm user}$  of subcarriers  – and thus the minimum FFT support number –  is obtained from this together with the data rate  $R$  and the number  $M$  of signal space points of the mapping used after rounding up:
$$N_{ {\rm{user} } } = \left\lceil {\frac{ {R \cdot (T + {T_{\rm G} }') } } { { {\rm{log}_2}(M)} } } \right\rceil \hspace{0.3cm}\Rightarrow \hspace{0.3cm} N_{ {\rm{FFT} } } = 2^{\left\lceil { {\rm{log}_2} (N_{ {\rm{use} } } )} \right\rceil }.$$
  • The value  $N_{\rm FFT}$  takes into account that the number of interpolation points of the FFT must be a power of two.  The unused carriers due to the FFT adjustment are used as an additional guard band at the edges of the spectrum.
  • The resulting guard interval must now be adjusted to the new parameters:
$$T_{\rm{G} } = N_{\rm{G} } \cdot \frac{{T_{{\rm{opt} } } } } { {N_{ {\rm{FFT} } } }} \quad {\rm{with}} \quad N_{\rm{G} } = \left\lceil {\frac{ { {T_{\rm G} }' } } { {T_{ {\rm{opt} } } } } \cdot N_{ {\rm{FFT} } } } \right\rceil.$$
  • The frame duration is given by  $T_{\rm R} = T + T_{\rm G}$  and the total number of samples in a frame is given by  $N_{\rm total} = N_{\rm FFT} + N_{\rm G}$. 
  • Finally,  the number  $N_{\rm user}$  of the useful carriers must be calculated again with the above equation.

Resource management in 4G networks


A design parameter not considered so far is the choice of the respective modulation scheme of the individual subcarriers,  which has a decisive influence on the error probability during transmission. 

Multi-user diversity gain from [Vie17][1].    
We thank Ingo Viering for permission to use the diagram.
Cross-layer scheduler
  • In principle,  it can be said that the robustness decreases with increasing  ${\rm log_2}(M)$,  since this reduces the spacing of the possible signal space points.
  • However,  a large symbol range  $M$  is the prerequisite for the desired high data rates,  which is only possible in good channel states.  The characteristics of the channel often differ greatly for the participants and change over time.


The aim of a suitable  »scheduling procedure«  is now,

  • transmit only when the channel is good,  and
  • to serve other subscribers during the dips in attenuation.


The gain in system throughput that can be achieved in this way is often referred to as  $\text{multi-user diversity gain}$

The diagram on the right shows the procedure.  The blue line represents the desired  "riding on the peaks"  for the case of eight participants  (eight fading processes). 


When implementing a channel-adaptive scheduler,  however,  information from higher layers should also be included,  since long waiting times   (large delays)  must be avoided depending on the  "Quality of Service"  $\rm (QoS)$  requirements and traffic type.  The diagram on the right shows a schematic representation of such a   "cross–layer approach". 

  • The scheduler is located in the MAC layer  ("Medium Access Control Layer")  and communicates with the other  (not necessarily neighboring)  layers.  It should be noted that this approach contradicts the modularity principle envisaged in the OSI model.
  • A similar approach has already been implemented as part of the extension of the UMTS network to include the $\rm HSDPA$  ("High Speed Downlink Packet Access") standard,  which has increased the maximum data rate in the 3G network  (downstream)  from  $\text{384 kbit/s}$  to the theoretical value  $\text{14.4 Mbit/s}$.


This section was only intended to provide a rough outlook on possible future mobile communications networks.  It should be noted that the improved adaptivity required for very high data rates is only made possible by the use of a multi-carrier system such as OFDM/OFDMA.


Exercise for the chapter


Exercise 5.9:   Selection of OFDM Parameters

References

  1. Viering, I.:  System Aspects in Communications.  Lecture manuscript, Lehrstuhl für Nachrichtentechnik, TU München, 2017.