Difference between revisions of "Digital Signal Transmission/Signals, Basis Functions and Vector Spaces"

From LNTwww
 
(63 intermediate revisions by 5 users not shown)
Line 1: Line 1:
 
   
 
   
 
{{Header
 
{{Header
|Untermenü=Verallgemeinerte Beschreibung digitaler Modulationsverfahren
+
|Untermenü=Generalized Description of Digital Modulation Methods
 
|Vorherige Seite=Viterbi–Empfänger
 
|Vorherige Seite=Viterbi–Empfänger
 
|Nächste Seite=Struktur des optimalen Empfängers
 
|Nächste Seite=Struktur des optimalen Empfängers
 
}}
 
}}
  
== # ÜBERBLICK ZUM VIERTEN HAUPTKAPITEL # ==
+
== # OVERVIEW OF THE FOURTH MAIN CHAPTER # ==
 
+
<br>
Das Hauptkapitel 4 liefert eine abstrahierte Beschreibung der Digitalsignalübertragung, die auf Basisfunktionen und Signalraumkonstellationen aufbaut. Dadurch ist es möglich, sehr unterschiedliche Konfigurationen – zum Beispiel Bandpass–Systeme und solche für das Basisband – in einheitlicher Form zu behandeln. Der jeweils optimale Empfänger besitzt in allen Fällen die gleiche Struktur.
+
The fourth main chapter provides an abstract description of digital signal transmission,&nbsp; which is based on basis functions and signal space constellations.&nbsp; This makes it possible to treat very different configurations &ndash; for example band-pass systems and those for the baseband &ndash; in a uniform way.&nbsp; The optimal receiver in each case has the same structure in all cases.
  
Im Einzelnen werden behandelt:
+
The following are dealt with in detail:
*die Bedeutung von Basisfunktionen und deren Auffinden nach dem Gram–Schmidt–Verfahren,
+
#&nbsp; The meaning of&nbsp; &raquo;basis functions&laquo;&nbsp; and finding them using the&nbsp; &raquo;Gram-Schmidt process&laquo;,
*die Struktur des optimalen Empfängers für die Basisbandübertragung,
+
#&nbsp; the&nbsp; &raquo;structure of the optimal receiver&laquo;&nbsp; for baseband transmission,
*das Theorem der Irrelevanz und dessen Bedeutung für die Herleitung optimaler Detektoren,
+
#&nbsp; the&nbsp; &raquo;theorem of irrelevance&laquo;&nbsp; and its importance for the derivation of optimal detectors,
*der optimale Empfänger für den AWGN–Kanal und Implementierungsaspekte,
+
#&nbsp; the&nbsp; &raquo;optimal receiver for the AWGN channel&laquo;&nbsp; and implementation aspects,
*die Systembeschreibung durch komplexes bzw. N–dimensionales Gaußsches Rauschen,
+
#&nbsp; the system description by&nbsp; &raquo;complex or &nbsp;$N$–dimensional Gaussian noise&laquo;,
*die Fehlerwahrscheinlichkeitsberechnung und –approximation bei sonst idealen Bedingungen,
+
#&nbsp; the&nbsp; &raquo;error probability calculation and approximation&laquo;&nbsp; under otherwise ideal conditions,
*die Anwendung der Signalraumbeschreibung auf Trägerfrequenzsysteme,
+
#&nbsp; the application of the signal space description to&nbsp; &raquo;carrier frequency systems&laquo;,
*ie unterschiedlichen Ergebnisse für OOK, M–ASK, M–PSK, M–QAM und M–FSK,
+
#&nbsp; the different results for&nbsp; &raquo;OOK, M-ASK, M-PSK, M-QAM and M-FSK&laquo;,
*die unterschiedlichen Ergebnisse für kohärente bzw. nichtkohärente Demodulation.
+
#&nbsp; the different results for&nbsp; &raquo;coherent and non-coherent demodulation&laquo;.
  
  
Nahezu alle Ergebnisse dieses Kapitels wurden bereits in früheren Abschnitten hergeleitet. Grundlegend neu ist jedoch die Herangehensweise:
+
Almost all results of this chapter have already been derived in previous sections.&nbsp; However,&nbsp; the approach is fundamentally new:
*Im LNTwww&ndash;Buch &bdquo;Modulationsverfahren&rdquo; sowie in den ersten drei Kapiteln dieses Buches wurden bereits bei den Herleitungen die spezifischen Systemeigenschaften berücksichtigt &ndash; zum Beispiel, ob die Übertragung des Digitalsignals im Basisband erfolgt oder ob eine digitale Amplituden&ndash;, Frequenz&ndash; oder Phasenmodulation vorliegt.<br>
+
*In the&nbsp; $\rm LNTwww$&nbsp; book&nbsp; "Modulation Methods"&nbsp; and in the first three chapters of this book,&nbsp; the specific system properties were already taken into account in the derivations &ndash; for example,&nbsp; whether the digital signal is transmitted in baseband or whether digital amplitude,&nbsp; frequency or phase modulation is present.<br>
*Hier sollen nun die Systeme dahingehend abstrahiert werden, dass sie einheitlich behandelt werden können. Der jeweils optimale Empfänger besitzt in allen Fällen die gleiche Struktur, und die Fehlerwahrscheinlichkeit lässt sich auch für nichtgaußverteiltes Rauschen angeben.<br><br>
 
  
Anzumerken ist, dass sich durch diese eher globale Vorgehensweise gewisse Systemunzulänglichkeiten nur sehr ungenau erfassen lassen, wie zum Beispiel
+
*Here the systems are to be abstracted in such a way that they can be treated uniformly.&nbsp; The optimal receiver in each case has the same structure in all cases,&nbsp; and the error probability can also be specified for non-Gaussian distributed noise.<br><br>
*der Einfluss eines  nichtoptimalen Empfangsfilters auf die Fehlerwahrscheinlichkeit,<br>
 
*ein falscher Schwellenwert (Schwellendrift) oder<br>
 
*Phasenjitter (Schwankungen der Abtastzeitpunkte).<br><br>
 
  
Insbesondere bei Vorhandensein von Impulsinterferenzen sollte also weiterhin entsprechend dem [[Digitalsignalübertragung/Ursachen_und_Auswirkungen_von_Impulsinterferenzen#.23_.C3.9CBERBLICK_ZUM_DRITTEN_HAUPTKAPITEL_.23|Hauptkapitel 3]] vorgegangen werden.<br>
+
It should be noted that this rather global approach means that certain system deficiencies can only be recorded very imprecisely,&nbsp; such as
 +
*the influence of a non-optimal receiver filter on the error probability,<br>
 +
*an incorrect threshold&nbsp; $($threshold drift$)$,&nbsp; or<br>
 +
*phase jitter&nbsp; $($fluctuations in sampling times$)$.<br><br>
  
Die Beschreibung basiert auf dem Skript [KöZ08]<ref name='KöZ08'>Kötter, R., Zeitler, G.: ''Nachrichtentechnik 2.'' Vorlesungsmanuskript, Lehrstuhl für Nachrichtentechnik, Technische Universität München, 2008.</ref> von [[Biografien_und_Bibliografien/Lehrstuhlinhaber_des_LNT#Prof._Dr._Ralf_K.C3.B6tter_.282007-2009.29|Ralf Kötter]] und [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Dr.-Ing._Georg_Zeitler_.28am_LNT_von_2007-2012.29|Georg Zeitler]], das sich stark an das Lehrbuch [WJ65]<ref name='WJ65'>Wozencraft, J. M.; Jacobs, I. M.: ''Principles of Communication Engineering.'' New York: John Wiley & Sons, 1965.</ref> anlehnt. [[Biografien_und_Bibliografien/Lehrstuhlinhaber_des_LNT#Prof._Dr._sc._techn._Gerhard_Kramer_.28seit_2010.29|Gerhard Kramer]], Lehrstuhlinhaber des LNT seit 2010, behandelt in seiner Vorlesung [Kra10]<ref>Kramer, G.: ''Nachrichtentechnik 2.'' Vorlesungsmanuskript, Lehrstuhl für Nachrichtentechnik, Technische Universität München, 2010.</ref> die gleiche Thematik mit sehr ähnlicher Nomenklatur.<br>
+
In particular in the presence of intersymbol interference,&nbsp; the procedure should therefore continue in accordance with the&nbsp; [[Digital_Signal_Transmission/Causes_and_Effects_of_Intersymbol_Interference#.23_OVERVIEW_OF_THE_THIRD_MAIN_CHAPTER_.23|third main chapter]].&nbsp; <br>
  
Um unseren eigenen Studenten an der TU München das Lesen nicht unnötig zu erschweren, halten wir uns weitestgehend an diese Nomenklatur, auch wenn diese von anderen LNTwww&ndash;Kapiteln abweicht.<br>
+
The description is based on the script&nbsp; [KöZ08]<ref name='KöZ08'>Kötter, R., Zeitler, G.:&nbsp; Lecture notes, Institute for Communications Engineering, Technical University of Munich, 2008.</ref> by&nbsp; [[Biographies_and_Bibliographies/Chair_holders_of_the_LNT_since_1962#Prof._Dr._Ralf_K.C3.B6tter_.282007-2009.29|Ralf Kötter]]&nbsp; and&nbsp; [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Dr.-Ing._Georg_Zeitler_.28at_LNT_from_2007-2012.29|Georg Zeitler]],&nbsp; which is closely based on the textbook [WJ65]<ref name='WJ65'>Wozencraft, J. M.; Jacobs, I. M.:&nbsp; Principles of Communication Engineering.&nbsp; New York: John Wiley & Sons, 1965.</ref>. [[Biographies_and_Bibliographies/Chair_holders_of_the_LNT_since_1962#Prof._Dr._sc._techn._Gerhard_Kramer_.28seit_2010.29|Gerhard Kramer]],&nbsp; who has held the chair at the LNT since 2010,&nbsp; treats the same topic with very similar nomenclature in his lecture [Kra17]<ref>Kramer, G.:&nbsp; Nachrichtentechnik 2. Lecture notes, Institute for Communications Engineering, Technical University of Munich, 2017.</ref>.&nbsp; In order not to make reading unnecessarily difficult for our own students at TU Munich,&nbsp; we stick to this nomenclature as far as possible,&nbsp; even if it deviates from other&nbsp; $\rm LNTwww$&nbsp; chapters.<br>
  
== Zur Nomenklatur im vierten Kapitel==
+
== Nomenclature in the fourth chapter==
 
<br>
 
<br>
Gegenüber den anderen Kapiteln in &bdquo;LNTwww&bdquo; ergeben sich hier folgende Nomenklaturunterschiede:
+
Compared to the other&nbsp; $\rm LNTwww$&nbsp; chapters,&nbsp; the following nomenclature changes arise here:
*Die zu übertragende [[Signaldarstellung/Prinzip_der_Nachrichtenübertragung#Nachricht_-_Information_-_Signal|Nachricht]] ist ein ganzzahliger Wert $m \in \{m_i\}$ mit $i = 0$, ... , $M-1$, wobei $M$ den Symbolumfang angibt. Wenn es die Beschreibung vereinfacht, wird $i = 1$, ... , $M$ &nbsp;induziert.<br>
+
*The&nbsp; [[Signal_Representation/Principles_of_Communication#Message_-_Information_-_Signal|"message"]]&nbsp; to be transmitted is an integer value&nbsp; $m \in \{m_i\}$&nbsp; with &nbsp;$i = 0$, ... , $M-1$,&nbsp; where &nbsp;$M$&nbsp; specifies the&nbsp; "symbol set size". <br>If it simplifies the description, &nbsp;$i = 1$, ... , $M$&nbsp; &nbsp; is induced.<br>
 
 
  
*Das Ergebnis des Entscheidungsprozesses beim Empfänger ist ebenfalls ein Integerwert mit dem gleichen Symbolalphabet wie beim Sender. Man bezeichnet dieses Ergebnis auch als den ''Schätzwert'':
+
*The result of the decision process at the receiver is also an integer with the same symbol alphabet as at the transmitter.&nbsp; <br>This result is also referred to as the&nbsp; "estimated value":
:$$\hat{m} \in \{m_i \}, \hspace{0.2cm} i = 0, 1, \text{...}\hspace{0.05cm} , M-1\hspace{0.2cm} ({\rm bzw.}\,\,i = 1, 2, \text{...}\hspace{0.05cm}, M) \hspace{0.05cm}.$$
+
:$$\hat{m} \in \{m_i \}, \hspace{0.2cm} i = 0, 1, \text{...}\hspace{0.05cm} , M-1\hspace{0.2cm} ({\rm or}\,\,i = 1, 2, \text{...}\hspace{0.05cm}, M) \hspace{0.05cm}.$$
  
 
+
*The&nbsp; [[Digital_Signal_Transmission/Redundancy-Free_Coding#Symbol_and_bit_error_probability|"symbol error probability"]]&nbsp; $\rm Pr(symbol\hspace{0.15cm}  error)$&nbsp; or&nbsp; $p_{\rm S}$&nbsp; is usually referred to as follows in this main chapter:
*Die [[Digitalsignalübertragung/Redundanzfreie_Codierung#Symbol.E2.80.93_und_Bitfehlerwahrscheinlichkeit|Symbolfehlerwahrscheinlichkeit]] $\rm Pr(Symbolfehler)$ oder auch $p_{\rm S}$ wird in diesem Hauptkapitel  meist wie folgt bezeichnet:
 
 
:$${\rm Pr}  ({\cal E}) = {\rm Pr} ( \hat{m} \ne m) = 1 -  {\rm Pr}  ({\cal C}),
 
:$${\rm Pr}  ({\cal E}) = {\rm Pr} ( \hat{m} \ne m) = 1 -  {\rm Pr}  ({\cal C}),
\hspace{0.4cm}\text{Komplementärereignis:}\hspace{0.2cm} {\rm Pr}  ({\cal C}) = {\rm Pr} ( \hat{m} = m) \hspace{0.05cm}.$$
+
\hspace{0.4cm}\text{complementary event:}\hspace{0.2cm} {\rm Pr}  ({\cal C}) = {\rm Pr} ( \hat{m} = m) \hspace{0.05cm}.$$
  
*Bei einer [[Stochastische_Signaltheorie/Wahrscheinlichkeitsdichtefunktion|Wahrscheinlichkeitsdichtefunktion]] (WDF) wird nun entsprechend $p_r(\rho)$ zwischen der ''Zufallsgröße'' &nbsp; &rArr; &nbsp; $r$ und der ''Realisierung'' &nbsp; &rArr; &nbsp; $\rho$  unterschieden. Bisher wurde für eine WDF die Bezeichnung $f_r(r)$ verwendet.<br>
+
*In a&nbsp; [[Theory_of_Stochastic_Signals/Probability_Density_Function|"probability density function"]]&nbsp; $\rm (PDF)$,&nbsp; a distinction is made between the&nbsp; "random variable" &nbsp; &rArr; &nbsp; $r$&nbsp; and the&nbsp; "realization" &nbsp; &rArr; &nbsp; $\rho$&nbsp; according to &nbsp; $p_r(\rho)$.&nbsp; <br>Formerly, &nbsp;$f_r(r)$&nbsp; was used for this PDF. <br>
  
 +
*With the notation &nbsp;$p_r(\rho)$,&nbsp; &nbsp;$r$&nbsp; and &nbsp;$\rho$&nbsp; are scalars.&nbsp; On the other hand,&nbsp; if random variable and realization are vectors&nbsp; (of suitable length),&nbsp; this is expressed in bold type: &nbsp; &nbsp; $p_{ \boldsymbol{ r}}(\boldsymbol{\rho})$&nbsp; with the vectors &nbsp;$ \boldsymbol{ r}$&nbsp; and &nbsp;$\boldsymbol{\rho}$.
  
*Mit der Schreibweise $p_r(\rho)$ geben $r$ und $\rho$ Skalare an. Sind dagegen Zufallsgröße und Realisierung Vektoren (geeigneter Länge), so wird dies durch Fettschrift ausgedrückt: &nbsp; &nbsp; $p_{ \boldsymbol{ r}}(\boldsymbol{\rho})$ mit den Vektoren $ \boldsymbol{ r}$ und $\boldsymbol{\rho}$.
+
*In order to avoid confusion with energy values,&nbsp; the&nbsp; "threshold value is"&nbsp; now called &nbsp;$G$&nbsp; instead of &nbsp;$E$.&nbsp; This is mainly referred to as the&nbsp; "decision threshold"&nbsp; in this chapter.  
  
 
+
*Based on the two real and energy-limited time functions &nbsp;$x(t)$&nbsp; and &nbsp;$y(t)$,&nbsp; the &nbsp;[https://de.wikipedia.org/wiki/Inneres_Produkt "inner product"]&nbsp; is:
*Um Verwechslungen mit Energiewerten zu vermeiden, heißt nun der Schwellenwert $G$ anstelle von $E$ und wird in diesem Kapitel vorwiegend als ''Entscheidungsgrenze'' bezeichnet.
 
 
 
 
 
*Ausgehend von den beiden reellen und energiebegrenzten Zeitfunktionen $x(t)$ und $y(t)$ erhält man für das [https://de.wikipedia.org/wiki/Inneres_Produkt innere Produkt]:
 
 
:$$<\hspace{-0.1cm}x(t), \hspace{0.05cm}y(t) \hspace{-0.1cm}> \hspace{0.15cm}= \int_{-\infty}^{+\infty}x(t) \cdot y(t)\,d \it t
 
:$$<\hspace{-0.1cm}x(t), \hspace{0.05cm}y(t) \hspace{-0.1cm}> \hspace{0.15cm}= \int_{-\infty}^{+\infty}x(t) \cdot y(t)\,d \it t
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
 
+
* This results in the&nbsp; [https://en.wikipedia.org/wiki/Euclidean_space#Euclidean_norm "Euclidean norm"]&nbsp; or&nbsp; "2&ndash;norm"&nbsp; $($or&nbsp; "norm"&nbsp; for short$)$:
* Daraus ergibt sich die [https://de.wikipedia.org/wiki/Euklidische_Norm Euklidische Norm] oder &bdquo;2&ndash;Norm&rdquo; (oder kurz &bdquo;Norm&rdquo;):
 
 
:$$||x(t) || = \sqrt{<\hspace{-0.1cm}x(t), \hspace{0.05cm}x(t) \hspace{-0.1cm}>}  
 
:$$||x(t) || = \sqrt{<\hspace{-0.1cm}x(t), \hspace{0.05cm}x(t) \hspace{-0.1cm}>}  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
 +
*Compared to the script &nbsp;[KöZ08]<ref name='KöZ08' />,&nbsp; the naming differs as follows:
 +
#The probability of the event &nbsp;$E$&nbsp; is &nbsp;${\rm Pr}(E)$&nbsp; instead of &nbsp;$P(E)$.&nbsp; <br>This nomenclature change was also made because in some equations&nbsp; "probabilities"&nbsp; and&nbsp; "powers"&nbsp; appear together.<br>
 +
#Band&ndash;pass signals are still marked with the index "BP" and not with a tilde as in&nbsp; [KöZ08]<ref name='KöZ08' />. <br>The corresponding&nbsp; "low-pass signal"&nbsp; is&nbsp; (usually)&nbsp; provided with the index&nbsp; "TP"&nbsp; $($from German&nbsp; "Tiefpass"$)$.<br>
  
Gegenüber dem Skript [KöZ08]<ref name='KöZ08' /> unterscheidet sich die Bezeichnungsweise hier wie folgt:
+
== Orthonormal basis functions ==
*Die Wahrscheinlichkeit des Ereignisses $E$ ist hier ${\rm Pr}(E)$ anstelle von $P(E)$. Diese Nomenklaturänderung wurde auch deshalb vorgenommen, da Wahrscheinlichkeiten und Leistungen in manchen Gleichungen gemeinsam vorkommen.<br>
 
*Bandpass&ndash;Signale werden weiterhin mit Index &bdquo;BP&rdquo; gekennzeichnet und nicht wie in  [KöZ08] mit einer Tilde. Das entsprechende Tiefpass&ndash;Signal ist (meist) mit dem Index &bdquo;TP&rdquo; versehen.<br>
 
 
 
== Orthonormale Basisfunktionen (1) ==
 
 
<br>
 
<br>
Wir gehen in diesem Kapitel von einem Satz {<i>s<sub>i</sub></i>(<i>t</i>)} möglicher Sendesignale aus, die den möglichen Nachrichten <i>m<sub>i</sub></i> eineindeutig zugeordnet werden können. Mit <i>i</i> = 1, ... , <i>M</i> gilt:
+
In this chapter,&nbsp; we assume a set &nbsp;$\{s_i(t)\}$&nbsp; of possible transmitted signals that are uniquely assigned to the possible messages &nbsp;$m_i$.&nbsp; With &nbsp;$i = 1$, ... , $M$&nbsp; holds:
 
+
:$$m \in \{m_i \}, \hspace{0.2cm} s(t) \in \{s_i(t) \}\hspace{-0.1cm}: \hspace{0.3cm} m = m_i  \hspace{0.1cm} \Leftrightarrow \hspace{0.1cm} s(t) = s_i(t) \hspace{0.05cm}.$$
:<math>m \in \{m_i \}, \hspace{0.2cm} s(t) \in \{s_i(t) \}\hspace{-0.1cm}: m = m_i  \hspace{0.1cm} \Leftrightarrow \hspace{0.1cm} s(t) = s_i(t) \hspace{0.05cm}.</math>
 
  
Weiter setzen wir für das Folgende voraus, dass die <i>M</i> Signale <i>s<sub>i</sub></i>(<i>t</i>) [http://en.lntwww.de/Signaldarstellung/Klassifizierung_von_Signalen#Energiebegrenzte_und_leistungsbegrenzte_Signale energiebegrenzt] sind, was meist gleichzeitig bedeutet, dass sie nur von endlicher Dauer sind.<br>
+
For what follows,&nbsp; we further assume that the&nbsp; $M$ signals&nbsp; $s_i(t)$&nbsp; are&nbsp; [[Signal_Representation/Signal_classification#Energy.E2.80.93Limited_and_Power.E2.80.93Limited_Signals| "energy-limited"]],&nbsp; which usually means at the same time that they are of finite duration.<br>
  
{{Satz}}''':''' Eine jede Menge {<i>s</i><sub>1</sub>(<i>t</i>), ... , <i>s<sub>M</sub></i>(<i>t</i>)} energiebegrenzter Signale lässt sich in N &#8804; M;  orthonormale Basisfunktionen <i>&phi;</i><sub>1</sub>(<i>t</i>), ... , <i>&phi;<sub>N</sub></i>(<i>t</i>) entwickeln, wobei gilt:
+
{{BlaueBox|TEXT= 
 +
$\text{Theorem:}$&nbsp; Any set&nbsp; $\{s_1(t), \hspace{0.05cm}  \text{...} \hspace{0.05cm} , s_M(t)\}$&nbsp; of energy-limited signals can be evolved into&nbsp; $N \le M$&nbsp'''orthonormal basis functions'''&nbsp; $\varphi_1(t), \hspace{0.05cm} \text{...} \hspace{0.05cm} , \varphi_N(t)$.&nbsp; It holds:
  
:<math>s_i(t) = \sum\limits_{j = 1}^{N}s_{ij} \cdot \varphi_j(t) ,
+
:$$s_i(t) = \sum\limits_{j = 1}^{N}s_{ij} \cdot \varphi_j(t) ,
\hspace{0.3cm}i = 1,\hspace{0.05cm} ...\hspace{0.1cm} , M, \hspace{0.3cm}j = 1,\hspace{0.05cm} ... \hspace{0.1cm}, N
+
\hspace{0.3cm}i = 1,\hspace{0.05cm} \text{...}\hspace{0.1cm} , M, \hspace{0.3cm}j = 1,\hspace{0.05cm} \text{...} \hspace{0.1cm}, N
\hspace{0.05cm}.</math>
+
\hspace{0.05cm}.$$
  
Jeweils zwei Basisfunktionen <i>&phi;<sub>j</sub></i>(<i>t</i>) und <i>&phi;<sub>k</sub></i>(<i>t</i>) müssen orthonormal zueinander sein, das heißt, es muss gelten (&delta;<sub><i>jk</i></sub> nennt man das Kronecker&ndash;Symbol):
+
*In each case, two basis functions&nbsp; $\varphi_j(t)$&nbsp; and &nbsp;$\varphi_k(t)$&nbsp; must be orthonormal to each other, that is, it must hold &nbsp; <br>$(\delta_{jk}$&nbsp; is called&nbsp; [https://en.wikipedia.org/wiki/Kronecker_delta "Kronecker symbol"]&nbsp; or&nbsp; "Kronecker delta"$)$:
  
:<math><\hspace{-0.1cm}\varphi_j(t), \hspace{0.05cm}\varphi_k(t) \hspace{-0.1cm}> = \int_{-\infty}^{+\infty}\varphi_j(t) \cdot \varphi_k(t)\,d \it t = {\rm \delta}_{jk} =
+
:$$<\hspace{-0.1cm}\varphi_j(t), \hspace{0.05cm}\varphi_k(t) \hspace{-0.1cm}> = \int_{-\infty}^{+\infty}\varphi_j(t) \cdot \varphi_k(t)\,d \it t = {\rm \delta}_{jk} =
 
\left\{ \begin{array}{c} 1 \\
 
\left\{ \begin{array}{c} 1 \\
 
  0  \end{array} \right.\quad
 
  0  \end{array} \right.\quad
\begin{array}{*{1}c} {\rm falls}\hspace{0.1cm}j = k
+
\begin{array}{*{1}c} {\rm if}\hspace{0.1cm}j = k
\\ {\rm falls}\hspace{0.1cm} j \ne k \\ \end{array}
+
\\ {\rm if}\hspace{0.1cm} j \ne k \\ \end{array}
  \hspace{0.05cm}.</math> {{end}}<br>
+
  \hspace{0.05cm}.$$}}<br>
  
Der Parameter <i>N</i> gibt dabei an, wieviele Basisfunktionen <i>&phi;<sub>j</sub></i>(<i>t</i>) benötigt werden, um die <i>M</i> möglichen Sendesignale darzustellen. Mit anderen Worten: <i>N</i> ist die Dimension des Vektorraums, der von den <i>M</i> Signalen aufgespannt wird. Dabei gilt:
+
Here,&nbsp; the parameter&nbsp; $N$&nbsp; indicates how many basis functions&nbsp; $\varphi_j(t)$&nbsp; are needed to represent the&nbsp; $M$&nbsp; possible transmitted signals.&nbsp; In other words: &nbsp; $N$&nbsp; is the&nbsp; "dimension of the vector space"&nbsp; spanned by the&nbsp; $M$&nbsp; signals.&nbsp; Here,&nbsp; the following holds:
*Ist <i>N</i> = <i>M</i>, so sind alle Sendesignale zueinander orthogonal. Sie sind nicht notwendigerweise orthonormal, das heißt, die Energien <i>E<sub>i</sub></i> = &#9001;<i>s<sub>i</sub></i>(<i>t</i>),&nbsp; <i>s<sub>i</sub></i>(<i>t</i>)&#9002; können durchaus ungleich 1 sein.<br>
+
#If&nbsp; $N = M$,&nbsp; all transmitted signals are orthogonal to each other.  
*<i>N</i> < <i>M</i> ergibt sich, wenn mindestens ein Signal <i>s<sub>i</sub></i>(<i>t</i>) als Linearkombination von Basisfunktionen <i>&phi;<sub>j</sub></i>(<i>t</i>) dargestellt werden kann, die sich aus anderen Signalen <i>s<sub>j</sub></i>(<i>t</i>) &ne; <i>s<sub>i</sub></i>(<i>t</i>) ergeben haben.<br>
+
#They are not necessarily orthonormal,&nbsp; i.e. the energies&nbsp; $E_i = <\hspace{-0.1cm}s_i(t), \hspace{0.05cm}s_i(t) \hspace{-0.1cm}>$&nbsp; may well be unequal to one.<br>
 +
#$N < M$&nbsp; arises when at least one signal&nbsp; $s_i(t)$&nbsp; can be represented as linear combination of basis functions&nbsp; $\varphi_j(t)$&nbsp; that have resulted from other signals&nbsp; $s_j(t) \ne s_i(t)$.&nbsp; <br>
  
== Orthonormale Basisfunktionen (2) ==
 
<br>
 
{{Beispiel}}''':''' Wir betrachten <i>M</i> = 3 energiebegrenzte Signale gemäß der Grafik. Man erkennt sofort, dass
 
*<i>s</i><sub>1</sub>(<i>t</i>) und <i>s</i><sub>2</sub>(<i>t</i>) zueinander orthogonal sind,<br>
 
  
*die Energie <i>E</i><sub>1</sub> = <i>A</i><sup>2</sup> &middot; <i>T</i> = <i>E</i> ist und <i>E</i><sub>2</sub> = <i>E</i>/4 gilt,<br>
+
{{GraueBox|TEXT= 
 +
$\text{Example 1:}$&nbsp; We consider&nbsp; $M = 3$&nbsp; energy-limited signals according to the graph.&nbsp; One recognizes immediately:
 +
[[File:P ID1993 Dig T 4 1 S2 version1.png|right|frame|Representation of three transmitted signals by two basis functions|class=fit]]
  
*<i>&phi;</i><sub>1</sub>(<i>t</i>) und <i>&phi;</i><sub>2</sub>(<i>t</i>) jeweils formgleich mit <i>s</i><sub>1</sub>(<i>t</i>) bzw. <i>s</i><sub>2</sub>(<i>t</i>) sind und beide die Energie 1 besitzen:
+
*The signals&nbsp; $s_1(t)$&nbsp; and &nbsp;$s_2(t)$&nbsp; are orthogonal to each other.<br>
  
::<math>\varphi_1(t) \hspace{-0.15cm}  =  \hspace{-0.15cm}\frac{s_1(t)}{\sqrt{E_1}} = \frac{s_1(t)}{\sqrt{A^2 \cdot T}} = \frac{1}{\sqrt{ T}}  \cdot \frac{s_1(t)}{A}\hspace{0.95cm}\Rightarrow \hspace{0.1cm}s_1(t) = s_{11} \cdot \varphi_1(t)\hspace{0.05cm},\hspace{0.1cm}s_{11} = \sqrt{E}\hspace{0.05cm},</math>
+
*The energies are&nbsp; $E_1 = A^2 \cdot T = E$ &nbsp; and &nbsp; $E_2 = (A/2)^2 \cdot T = E/4$.<br>
::<math>\varphi_2(t) \hspace{-0.15cm}  =  \hspace{-0.15cm}\frac{s_2(t)}{\sqrt{E_2}} = \frac{s_2(t)}{\sqrt{(A/2)^2 \cdot T}} = \frac{1}{\sqrt{ T}}  \cdot \frac{s_2(t)}{A/2}\hspace{0.05cm}\hspace{0.1cm}\Rightarrow \hspace{0.1cm}s_2(t) = s_{21} \cdot \varphi_2(t)\hspace{0.05cm},\hspace{0.1cm}s_{21} = \frac{\sqrt{E}}{2}\hspace{0.05cm}.</math>
 
  
*<i>s</i><sub>3</sub>(<i>t</i>) durch die Basisfunktionen <i>&phi;</i><sub>1</sub>(<i>t</i>) und <i>&phi;</i><sub>2</sub>(<i>t</i>) ausgedrückt werden kann:
+
*The basis functions&nbsp; $\varphi_1(t)$&nbsp; and &nbsp;$\varphi_2(t)$&nbsp; are equal in form to&nbsp; $s_1(t)$&nbsp; and&nbsp;  $s_2(t)$,&nbsp; resp., and both have energy one:
  
::<math>s_3(t) \hspace{-0.1cm} \hspace{-0.1cm}s_{31} \cdot \varphi_1(t) + s_{32} \cdot \varphi_2(t)\hspace{0.05cm},</math>
+
:$$\varphi_1(t)=\frac{s_1(t)}{\sqrt{E_1} } = \frac{s_1(t)}{\sqrt{A^2 \cdot T} } = \frac{1}{\sqrt{ T} }  \cdot \frac{s_1(t)}{A}$$
::<math>s_{31} \hspace{-0.1cm} = \hspace{-0.1cm} {A}/{2} \cdot \sqrt {T}= {\sqrt{E}}/{2}\hspace{0.05cm}, \hspace{0.2cm}s_{32} = - A \cdot \sqrt {T} = -\sqrt{E}   \hspace{0.05cm}.</math>
+
:$$\hspace{0.5cm}\Rightarrow \hspace{0.1cm}s_1(t) = s_{11} \cdot \varphi_1(t)\hspace{0.05cm},\hspace{0.1cm}s_{11} = \sqrt{E}\hspace{0.05cm},$$
 +
:$$\varphi_2(t) =\frac{s_2(t)}{\sqrt{E_2} } = \frac{s_2(t)}{\sqrt{(A/2)^2 \cdot T} } = \frac{1}{\sqrt{ T} } \cdot \frac{s_2(t)}{A/2}\hspace{0.05cm}$$
 +
:$$\hspace{0.5cm}\Rightarrow \hspace{0.1cm}s_2(t) = s_{21} \cdot \varphi_2(t)\hspace{0.05cm},\hspace{0.1cm}s_{21} = {\sqrt{E} }/{2}\hspace{0.05cm}.$$
  
::[[File:P ID1993 Dig T 4 1 S2 version1.png|Darstellung der Sendesignale durch Basisfunktionen|class=fit]]<br>
+
*$s_3(t)$&nbsp; can be expressed by the previously determined basis functions&nbsp; $\varphi_1(t)$,&nbsp; $\varphi_2(t)$:&nbsp;
 +
:$$s_3(t) =s_{31} \cdot \varphi_1(t) + s_{32} \cdot \varphi_2(t)\hspace{0.05cm},$$
 +
:$$\hspace{0.5cm}\Rightarrow \hspace{0.1cm}
 +
s_{31} = {A}/{2} \cdot \sqrt {T}=  {\sqrt{E} }/{2}\hspace{0.05cm}, \hspace{0.2cm}s_{32} = - A \cdot \sqrt {T} = -\sqrt{E}  \hspace{0.05cm}.$$
  
Im rechten unteren Bild sind die Signale in einer 2D&ndash;Darstellung mit den Basisfunktionen <i>&phi;</i><sub>1</sub>(<i>t</i>) und <i>&phi;</i><sub>2</sub>(<i>t</i>) als Achsen dargestellt, wobei <i>E</i> = <i>A</i><sup>2</sup> &middot; <i>T</i> gilt und der Zusammenhang zu den anderen Grafiken durch die Farbgebung zu erkennen ist. Die vektoriellen Repräsentanten der Signale <i>s</i><sub>1</sub>(<i>t</i>), <i>s</i><sub>2</sub>(<i>t</i>) und <i>s</i><sub>3</sub>(<i>t</i>) in diesem zweidimensionellen Vektorraum lassen sich daraus wie folgt ablesen:
 
  
:<math>\mathbf{s}_1 = (\sqrt{ E}, \hspace{0.1cm}0), \hspace{0.2cm} \mathbf{s}_2 = (0, \hspace{0.1cm}\sqrt{ E}/2), \hspace{0.2cm} \mathbf{s}_3 = (\sqrt{ E}/2,\hspace{0.1cm}-\sqrt{ E} )    \hspace{0.05cm}.</math>{{end}}<br>
+
&rArr;  &nbsp; In the lower right image,&nbsp;  the signals are shown in a two-dimensional representation
 +
*with the basis functions&nbsp; $\varphi_1(t)$&nbsp; and &nbsp;$\varphi_2(t)$&nbsp; as axes,  
 +
*where&nbsp; $E = A^2 \cdot T$&nbsp; and the relation to the other graphs can be seen by the coloring.
  
== Das Verfahren nach Gram-Schmidt (1) ==
 
<br>
 
Im Beispiel auf der letzten Seite war die Angabe der beiden orthonormalen Basisfunktionen <i>&phi;</i><sub>1</sub>(<i>t</i>) und <i>&phi;</i><sub>2</sub>(<i>t</i>) sehr einfach, da diese formgleich mit <i>s</i><sub>1</sub>(<i>t</i>) und <i>s</i><sub>2</sub>(<i>t</i>) waren. Das Gram&ndash;Schmidt&ndash;Verfahren findet die Basisfunktionen <i>&phi;</i><sub>1</sub>(<i>t</i>), ... , <i>&phi;<sub>N</sub></i>(<i>t</i>) für beliebig vorgebbare Signale <i>s</i><sub>1</sub>(<i>t</i>), ... , <i>s<sub>M</sub></i>(<i>t</i>), und zwar wie folgt:
 
  
*Die erste Basisfunktion <i>&phi;</i><sub>1</sub>(<i>t</i>) ist formgleich mit <i>s</i><sub>1</sub>(<i>t</i>). Es gilt:
+
&rArr;  &nbsp; The vectorial representatives of the signals&nbsp; $s_1(t)$,&nbsp; $s_2(t)$&nbsp; and&nbsp; $s_3(t)$&nbsp; in the two-dimensional vector space can be read from this sketch as follows:
 +
:$$\mathbf{s}_1 = (\sqrt{ E}, \hspace{0.1cm}0), $$
 +
:$$\mathbf{s}_2 = (0, \hspace{0.1cm}\sqrt{ E}/2), $$
 +
:$$\mathbf{s}_3 = (\sqrt{ E}/2,\hspace{0.1cm}-\sqrt{ E} )   \hspace{0.05cm}.$$}}
 +
<br clear= all>
  
::<math>\varphi_1(t) = \frac{s_1(t)}{\sqrt{E_1}} = \frac{s_1(t)}{|| s_1(t)||}
+
== The Gram-Schmidt process==
\hspace{0.3cm}\Rightarrow \hspace{0.3cm} || \varphi_1(t) || = 1, \hspace{0.2cm}s_{11} =|| s_1(t)||,\hspace{0.2cm}s_{1j} = 0 \hspace{0.2cm}{\rm f{\rm \ddot{u}r }}\hspace{0.2cm} j \ge 2
+
<br>
\hspace{0.05cm}.</math>
+
In &nbsp;$\text{Example 1}$&nbsp; in the last section,&nbsp; the specification of the two orthonormal basis functions&nbsp; $\varphi_1(t)$&nbsp; and&nbsp; $\varphi_2(t)$&nbsp; was very easy,&nbsp; because they were of the same form as&nbsp; $s_1(t)$&nbsp; and&nbsp;  $s_2(t)$,&nbsp; respectively. The&nbsp; [https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process "Gram-Schmidt process"]&nbsp; finds the basis functions&nbsp; $\varphi_1(t)$, ... , $\varphi_N(t)$&nbsp; for arbitrary predefinable signals&nbsp; $s_1(t)$, ... , $s_M(t)$, as follows:
  
*Es wird nun angenommen, dass aus den Signalen <i>s</i><sub>1</sub>(<i>t</i>), ... , <i>s</i><sub><i>k</i>&ndash;1</sub>(<i>t</i>) bereits die Basisfunktionen <i>&phi;</i><sub>1</sub>(<i>t</i>), ... , <i>&phi;</i><sub><i>n</i>&ndash;1</sub>(<i>t</i>) berechnet wurden (<i>n</i> &#8804; <i>k</i>). Dann berechnen wir mittels <i>s<sub>k</sub></i>(<i>t</i>) die Hilfsfunktion
+
*The first basis function&nbsp; $\varphi_1(t)$&nbsp; is always equal in form to&nbsp; $s_1(t)$.&nbsp; It holds:
 +
:$$\varphi_1(t) = \frac{s_1(t)}{\sqrt{E_1}} = \frac{s_1(t)}{|| s_1(t)||}
 +
\hspace{0.3cm}\Rightarrow \hspace{0.3cm} || \varphi_1(t) || = 1, \hspace{0.2cm}s_{11} =|| s_1(t)||,\hspace{0.2cm}s_{1j} = 0 \hspace{0.2cm}{\rm f{\rm or }}\hspace{0.2cm} j \ge 2
 +
\hspace{0.05cm}.$$
  
::<math>\theta_k(t) = s_k(t) - \sum\limits_{j = 1}^{n-1}s_{kj} \cdot \varphi_j(t) \hspace{0.4cm}{\rm mit}\hspace{0.4cm}
+
*It is now assumed that from the signals&nbsp; $s_1(t)$, ... , $s_{k-1}(t)$&nbsp; the basis functions&nbsp; $\varphi_1(t)$, ... , $\varphi_{n-1}(t)$&nbsp; have been calculated &nbsp;$(n \le k)$.&nbsp; Then,&nbsp; using&nbsp; $s_k(t)$,&nbsp; we compute the auxiliary function
s_{kj} = \hspace{0.1cm} < \hspace{-0.1cm} s_k(t), \hspace{0.05cm}\varphi_j(t) \hspace{-0.1cm} >, \hspace{0.2cm} j = 1, ... \hspace{0.1cm}, n-1\hspace{0.05cm}.</math>
+
:$$\theta_k(t) = s_k(t) - \sum\limits_{j = 1}^{n-1}s_{kj} \cdot \varphi_j(t) \hspace{0.4cm}{\rm with}\hspace{0.4cm}
 +
s_{kj} = \hspace{0.1cm} < \hspace{-0.1cm} s_k(t), \hspace{0.05cm}\varphi_j(t) \hspace{-0.1cm} >, \hspace{0.2cm} j = 1, \hspace{0.05cm} \text{...}\hspace{0.05cm}, n-1\hspace{0.05cm}.$$
  
*Ist <i>&theta;<sub>k</sub></i>(<i>t</i>) &equiv; 0 &nbsp;&#8658;&nbsp; ||<i>&theta;<sub>k</sub></i>(<i>t</i>)|| = 0, so liefert <i>s<sub>k</sub></i>(<i>t</i>) keine neue Basisfunktion. Vielmehr lässt sich dann <i>s<sub>k</sub></i>(<i>t</i>) durch die <i>n</i>&ndash;1 bereits vorher gefundenen Basisfunktionen <i>&phi;</i><sub>1</sub>(<i>t</i>), ... , <i>&phi;</i><sub><i>n</i>&ndash;1</sub>(<i>t</i>) ausdrücken:
+
*If&nbsp; $\theta_k(t) \equiv 0$ &nbsp; &#8658; &nbsp; $||\theta_k(t)|| = 0$,&nbsp; then&nbsp; $s_k(t)$&nbsp; does not yield a new basis function.&nbsp; Rather,&nbsp; $s_k(t)$&nbsp; can then be expressed by the&nbsp; $n-1$&nbsp; basis functions &nbsp;$\varphi_1(t)$, ... , $\varphi_{n-1}(t)$&nbsp; already found before:
 +
:$$s_k(t) = \sum\limits_{j = 1}^{n-1}s_{kj}\cdot \varphi_j(t) \hspace{0.05cm}.$$
  
::<math>s_k(t) = \sum\limits_{j = 1}^{n-1}s_{kj}\cdot \varphi_j(t) \hspace{0.05cm}.</math>
+
*A new basis function&nbsp; $($namely,&nbsp; the &nbsp;$n$&ndash;th$)$&nbsp; results if &nbsp;$||\theta_k(t)|| \ne 0$:&nbsp;
 +
:$$\varphi_n(t) = \frac{\theta_k(t)}{|| \theta_k(t)||}
 +
\hspace{0.3cm}\Rightarrow \hspace{0.3cm} || \varphi_n(t) || = 1\hspace{0.05cm}.$$
  
*Eine neue Basisfunktion (nämlich die <i>n</i>&ndash;te) ergibt sich, falls ||<i>&theta;<sub>k</sub></i>(<i>t</i>)|| &ne; 0 ist:
+
This process is continued until all&nbsp; $M$&nbsp; signals have been considered.&nbsp; Then all&nbsp; $N \le M$&nbsp; orthonormal basis functions&nbsp; $\varphi_j(t)$&nbsp; have been found.&nbsp; The special case&nbsp; $N = M$&nbsp; arises only if all&nbsp; $M$&nbsp; signals are linearly independent.<br>
  
::<math>\varphi_n(t) = \frac{\theta_k(t)}{|| \theta_k(t)||}
+
:*This process is now illustrated by an example.
\hspace{0.3cm}\Rightarrow \hspace{0.3cm} || \varphi_n(t) || = 1\hspace{0.05cm}.</math>
+
:*We also refer to the&nbsp; (German language)&nbsp; HTML5/JavaScript applet&nbsp; [https://www.lntwww.de/Applets:Das_Gram-Schmidt-Verfahren "Das Gram-Schmidt-Verfahren"] &nbsp; &rArr; &nbsp; "Gram–Schmidt process".
  
Diese Prozedur kann fortgesetzt werden, bis alle <i>M</i> Signale berücksichtigt wurden. Danach hat man alle <i>N</i> &#8804; <i>M</i> orthonormalen Basisfunktionen <i>&phi;<sub>j</sub></i>(<i>t</i>) gefunden. Der Sonderfall <i>N</i> = <i>M</i> ergibt sich nur dann, wenn alle <i>M</i> Signale linear voneinander unabhängig sind.<br>
 
  
Auf der nächsten Seite wird das Gram&ndash;Schmidt&ndash;Verfahren an einem einfachen Beispiel verdeutlicht. Wir verweisen auch auf das folgende Interaktionsmodul:<br>
+
{{GraueBox|TEXT= 
 +
$\text{Example 2:}$&nbsp; We consider the &nbsp;$M = 4$&nbsp; energy-limited signals &nbsp;$s_1(t)$, ... , $s_4(t)$.&nbsp; To simplify the calculations,&nbsp; both amplitude and time are normalized here.
  
[[:File:gram-schmidt.swf|Gram&ndash;Schmidt&ndash;Verfahren]]<br>
+
[[File:P ID1990 Dig T 4 1 S3 version1.png|center|frame|Gram-Schmidt process|class=fit]]
  
== Das Verfahren nach Gram-Schmidt (2) ==
+
One can see from these sketches:
<br>
+
*The basis function&nbsp; $\varphi_1(t)$&nbsp; is equal in form to&nbsp; $s_1(t)$.&nbsp; Because&nbsp; $E_1 = \vert \vert s_1(t) \vert \vert ^3 = 3 \cdot 0.5^2 = 0.75$,&nbsp; we get&nbsp; $s_{11} = \vert \vert s_1(t) \vert \vert = 0.866$. $\varphi_1(t)$&nbsp; itself has section-wise values&nbsp; $\pm 0.5/0.866 = \pm0.577$.
{{Beispiel}}''':''' Wir betrachten die <i>M</i> = 4 energiebegrenzten Signale <i>s</i><sub>1</sub>(<i>t</i>), ... , <i>s</i><sub>4</sub>(<i>t</i>) entsprechend der Grafik. Zur Vereinfachung der Berechnungen ist hier sowohl die Amplitude als auch die Zeit normiert. Man erkennt:  
 
*Die Basisfunktion <i>&phi;</i><sub>1</sub>(<i>t</i>) ist formgleich mit <i>s</i><sub>1</sub>(<i>t</i>). Wegen <i>E</i><sub>1</sub> = ||<i>s</i><sub>1</sub>(<i>t</i>)||<sup>2</sup> = 3 &middot; 0.5<sup>2</sup> = 0.75 ergibt sich <i>s</i><sub>11</sub> = ||<i>s</i><sub>1</sub>(<i>t</i>)|| = 0.866. <i>&phi;</i><sub>1</sub>(<i>t</i>) selbst besitzt abschnittsweise die Werte &plusmn;0.5/0.866 = &plusmn;0.577.
 
 
 
*Zur Berechnung der Hilfsfunktion <i>&theta;</i><sub>2</sub>(<i>t</i>) berechnen wir
 
 
 
::<math>s_{21}  \hspace{-0.1cm} = \hspace{-0.1cm}\hspace{0.1cm} < \hspace{-0.1cm} s_2(t), \hspace{0.05cm}\varphi_1(t) \hspace{-0.1cm} > \hspace{0.1cm} = 0 \cdot (+0.577) + 1 \cdot (-0.577)+ 0 \cdot (-0.577)= -0.577</math>
 
:::<math> \hspace{-0.1cm}\Rightarrow \hspace{-0.1cm}  \hspace{0.3cm}\theta_2(t) = s_2(t) - s_{21} \cdot \varphi_1(t) = (0.333, 0.667, -0.333)</math>
 
:::<math> \hspace{-0.1cm}\Rightarrow \hspace{-0.1cm}  \hspace{0.3cm}|| \theta_2(t) ||^2 = (1/3)^2 + (2/3)^2 + (-1/3)^2 = 0.667</math>
 
:::<math> \hspace{-0.1cm}\Rightarrow \hspace{-0.1cm}  \hspace{0.3cm} s_{22} = \sqrt{0.667} = 0.816,\hspace{0.2cm}
 
\varphi_2(t) = \theta_2(t)/s_{22} = (0.408, 0.816, -0.408)\hspace{0.05cm}. </math>
 
  
*Die inneren Produkte zwischen <i>s</i><sub>3</sub>(<i>t</i>) mit <i>&phi;</i><sub>1</sub>(<i>t</i>) bzw. <i>&phi;</i><sub>2</sub>(<i>t</i>) liefern folgende Ergebnisse:
+
*To calculate the auxiliary function&nbsp; $\theta_2(t)$,&nbsp; we compute
  
::<math>s_{31\hspace{0.1cm} = \hspace{0.1cm} < \hspace{-0.1cm} s_3(t), \hspace{0.07cm}\varphi_1(t) \hspace{-0.1cm} > \hspace{0.1cm} = 0.5 \cdot (+0.577) + 0.5 \cdot (-0.577)- 0.5 \cdot (-0.577)= 0.289</math>
+
:$$s_{21}  = \hspace{0.1cm} < \hspace{-0.1cm} s_2(t), \hspace{0.05cm}\varphi_1(t) \hspace{-0.1cm} > \hspace{0.1cm} = 0 \cdot (+0.577) + 1 \cdot (-0.577)+ 0 \cdot (-0.577)= -0.577$$
::<math>s_{32}  \hspace{0.1cm} = \hspace{0.1cm} < \hspace{-0.1cm} s_3(t), \hspace{0.07cm}\varphi_2(t) \hspace{-0.1cm} > \hspace{0.1cm} = 0.5 \cdot (+0.408) + 0.5 \cdot (+0.816)- 0.5 \cdot (-0.408)= 0.816</math>
+
:$$ \Rightarrow  \hspace{0.3cm}\theta_2(t) = s_2(t) - s_{21} \cdot \varphi_1(t) = (0.333, 0.667, -0.333)
:::<math> \hspace{0.1cm}\Rightarrow \hspace{-0.1cm} \hspace{0.3cm}\theta_3(t) = s_3(t) - 0.289 \cdot \varphi_1(t)- 0.816 \cdot \varphi_2(t) = 0\hspace{0.05cm}.</math>
+
\hspace{0.3cm}\Rightarrow  \hspace{0.3cm}\vert \vert \theta_2(t) \vert \vert^2 = (1/3)^2 + (2/3)^2 + (-1/3)^2 = 0.667$$
 +
:$$ \Rightarrow  \hspace{0.3cm} s_{22} = \sqrt{0.667} = 0.816,\hspace{0.3cm}
 +
\varphi_2(t) = \theta_2(t)/s_{22} = (0.408,\ 0.816,\ -0.408)\hspace{0.05cm}. $$
  
:Das bedeutet: Die grüne Funktion <i>s</i><sub>3</sub>(<i>t</i>) liefert keine neue Basisfunktion <i>&phi;</i><sub>3</sub>(<i>t</i>), im Gegensatz zur Funktion <i>s</i><sub>4</sub>(<i>t</i>). Die numerischen Ergebnisse hierfür können der Grafik entnommen werden.<br>
+
*The inner products between&nbsp; $s_3(t)$&nbsp; with&nbsp; $\varphi_1(t)$&nbsp; or &nbsp;$\varphi_2(t)$&nbsp; give the following results:
 +
:$$s_{31}  \hspace{0.1cm} =  \hspace{0.1cm} < \hspace{-0.1cm} s_3(t), \hspace{0.07cm}\varphi_1(t) \hspace{-0.1cm} > \hspace{0.1cm} = 0.5 \cdot (+0.577) + 0.5 \cdot (-0.577)- 0.5 \cdot (-0.577)= 0.289$$
 +
:$$s_{32}  \hspace{0.1cm} =  \hspace{0.1cm} < \hspace{-0.1cm} s_3(t), \hspace{0.07cm}\varphi_2(t) \hspace{-0.1cm} > \hspace{0.1cm} = 0.5 \cdot (+0.408) + 0.5 \cdot (+0.816)- 0.5 \cdot (-0.408)= 0.816$$
 +
:$$\Rightarrow  \hspace{0.3cm}\theta_3(t) = s_3(t) - 0.289 \cdot \varphi_1(t)- 0.816 \cdot \varphi_2(t) = 0\hspace{0.05cm}.$$
  
:[[File:P ID1990 Dig T 4 1 S3 version1.png|Zum Gram-Schmidt-Verfahren|class=fit]]{{end}}<br>
+
*This means: &nbsp; The green function&nbsp; $s_3(t)$&nbsp; does not yield a new basis function&nbsp; $\varphi_3(t)$,&nbsp; in contrast to the function&nbsp; $s_4(t)$.&nbsp; The numerical results for this can be taken from the graph.}}
  
== Basisfunktionen komplexer Zeitsignale ==
+
== Basis functions of complex time signals ==
 
<br>
 
<br>
In der Nachrichtentechnik hat man es oft mit komplexen Zeitfunktionen zu tun,
+
In Communications Engineering,&nbsp; one often has to deal with complex time functions,
*nicht etwa, weil es komplexe Signale in der Realität gibt, sondern<br>
+
*not because there are complex signals in reality,&nbsp; but<br>
  
*weil die Beschreibung eines BP&ndash;Signals im äquivalenten TP&ndash;Bereich zu komplexen Signalen führt.<br><br>
+
*because the description of a band-pass signal in the equivalent low-pass range leads to complex signals.<br><br>
  
Die Bestimmung der <i>N</i> &#8804; <i>M</i> komplexwertigen Basisfunktionen <i>&xi;<sub>k</sub></i>(<i>t</i>) aus den <i>M</i> komplexen Signalen <i>s<sub>i</sub></i>(<i>t</i>) kann ebenfalls mit dem [http://en.lntwww.de/index.php?title=Digitalsignal%C3%BCbertragung/Signale,_Basisfunktionen_und_Vektorr%C3%A4ume#Das_Verfahren_nach_Gram-Schmidt_.281.29 Gram&ndash;Schmidt&ndash;Verfahren] erfolgen, doch ist nun zu berücksichtigen, dass das innere Produkt zweier komplexer Signale <i>x</i>(<i>t</i>) und <i>y</i>(<i>t</i>) wie folgt zu berechnen ist:
+
The determination of the&nbsp; $N \le M$&nbsp; '''complex-valued basis functions'''&nbsp; $\xi_k(t)$&nbsp; from the &nbsp;$M$&nbsp; complex signals&nbsp; $s_i(t)$&nbsp; can also be done using the&nbsp; [[Digital_Signal_Transmission/Signals,_Basis_Functions_and_Vector_Spaces#The_Gram-Schmidt_process| "Gram–Schmidt process"]],&nbsp; but it must now be taken into account that the inner product of two complex signals&nbsp; $x(t)$&nbsp; and&nbsp; $y(t)$&nbsp; must be calculated as follows:
 
+
:$$< \hspace{-0.1cm}x(t), \hspace{0.1cm}y(t)\hspace{-0.1cm} > \hspace{0.1cm} = \int_{-\infty}^{+\infty}x(t) \cdot y^{\star}(t)\,d \it t
:<math>< \hspace{-0.1cm}x(t), \hspace{0.1cm}y(t)\hspace{-0.1cm} > \hspace{0.1cm} = \int_{-\infty}^{+\infty}x(t) \cdot y^{\star}(t)\,d \it t
+
  \hspace{0.05cm}.$$
  \hspace{0.05cm}.</math>
 
 
 
Die entsprechenden Gleichungen lauten nun mit &nbsp;<i>i</i> = 1, ... , <i>M</i>&nbsp; und &nbsp;<i>k</i> = 1, ... , <i>N</i>:
 
  
:<math>s_i(t) = \sum\limits_{k = 1}^{N}s_{ik} \cdot \xi_k(t),\hspace{0.2cm}s_i(t) \in {\cal C},\hspace{0.2cm}s_{ik} \in {\cal C}
+
The corresponding equations are now with&nbsp; $i = 1, \text{..}. , M$&nbsp; and &nbsp;$k = 1, \text{..}. , N$:
,\hspace{0.2cm}\xi_k(t) \in {\cal C} \hspace{0.05cm},</math>
+
:$$s_i(t) = \sum\limits_{k = 1}^{N}s_{ik} \cdot \xi_k(t),\hspace{0.2cm}s_i(t) \in {\cal C},\hspace{0.2cm}s_{ik} \in {\cal C}
 +
,\hspace{0.2cm}\xi_k(t) \in {\cal C} \hspace{0.05cm},$$
  
:<math>< \hspace{-0.1cm}\xi_k(t),\hspace{0.1cm} \xi_j(t)\hspace{-0.1cm} > \hspace{0.1cm} = \int_{-\infty}^{+\infty}\xi_k(t) \cdot \xi_j^{\star}(t)\,d \it t
+
:$$< \hspace{-0.1cm}\xi_k(t),\hspace{0.1cm} \xi_j(t)\hspace{-0.1cm} > \hspace{0.1cm} = \int_{-\infty}^{+\infty}\xi_k(t) \cdot \xi_j^{\star}(t)\,d \it t
 
  = {\rm \delta}_{ik} =
 
  = {\rm \delta}_{ik} =
 
\left\{ \begin{array}{c} 1 \\
 
\left\{ \begin{array}{c} 1 \\
 
  0  \end{array} \right.\quad
 
  0  \end{array} \right.\quad
\begin{array}{*{1}c}{\rm falls}\hspace{0.15cm} k = j
+
\begin{array}{*{1}c}{\rm if}\hspace{0.25cm} k = j
\\ {\rm falls}\hspace{0.15cm} k \ne j \\ \end{array}\hspace{0.05cm}.</math>
+
\\ {\rm if}\hspace{0.25cm} k \ne j \\ \end{array}\hspace{0.05cm}.$$
 +
 
 +
Of course,&nbsp; any complex quantity can also be expressed by two real quantities,&nbsp; namely real part and imaginary part.&nbsp; Thus,&nbsp; the following equations are obtained here:
 +
:$$s_{i}(t)  = s_{{\rm I}\hspace{0.02cm}i}(t) + {\rm j} \cdot s_{{\rm Q}\hspace{0.02cm}i}(t),
 +
\hspace{0.2cm} s_{{\rm I}\hspace{0.02cm}i}(t) = {\rm Re}\big [s_{i}(t)\big], \hspace{0.2cm} s_{{\rm Q}\hspace{0.02cm}i}(t) = {\rm Im} \big [s_{i}(t)\big ],$$
  
Natürlich lässt sich jede komplexe Größe auch durch zwei reelle Größen &ndash; nämlich durch den Realteil und den Imaginärteil &ndash; ausdrücken. Somit erhält man hier folgende Gleichungen:
+
:$$\xi_{k}(t)  = \varphi_k(t) + {\rm j} \cdot \psi_k(t),
 +
\hspace{0.2cm} \varphi_k(t) = {\rm Re}\big [\xi_{k}(t)\big ], \hspace{0.2cm} \psi_k(t) = {\rm Im} \big [\xi_{k}(t)\big ],$$
  
:<math>s_{i}(t)  \hspace{-0.1cm} =  \hspace{-0.1cm} s_{{\rm I}i}(t) + {\rm j} \cdot s_{{\rm Q}i}(t),
+
:$$\hspace{0.35cm} s_{ik} = s_{{\rm I}\hspace{0.02cm}ik} + {\rm j} \cdot s_{{\rm Q}\hspace{0.02cm}ik},
\hspace{0.2cm} s_{{\rm I}i}(t) = {\rm Re} [s_{i}(t)], \hspace{0.2cm} s_{{\rm Q}i}(t) = {\rm Im} [s_{i}(t)],</math>
+
\hspace{0.2cm} s_{{\rm I}ik} = {\rm Re} \big [s_{ik}\big ], \hspace{0.2cm} s_{{\rm Q}ik} = {\rm Im} \big [s_{ik}\big ],$$
  
:<math>\xi_{k}(t) \hspace{-0.1cm} \hspace{-0.1cm} \varphi_k(t) + {\rm j} \cdot \psi_k(t),
+
:$$ \hspace{0.35cm} s_{{\rm I}\hspace{0.02cm}ik={\rm Re}\big [\hspace{0.01cm} < \hspace{-0.1cm} s_i(t), \hspace{0.15cm}\varphi_k(t) \hspace{-0.1cm} > \hspace{0.1cm}\big ], \hspace{0.2cm}s_{{\rm Q}\hspace{0.02cm}ik}  = {\rm Re}\big [\hspace{0.01cm} < \hspace{-0.1cm} s_i(t), \hspace{0.15cm}{\rm j} \cdot \psi_k(t) \hspace{-0.1cm} > \hspace{0.1cm}\big ]
\hspace{0.2cm} \varphi_k(t) = {\rm Re} [\xi_{k}(t)], \hspace{0.2cm} \psi_k(t) = {\rm Im} [\xi_{k}(t)],</math>
+
\hspace{0.05cm}. $$
  
:<math>\hspace{0.35cm} s_{ik}  \hspace{-0.1cm} =  \hspace{-0.1cm} s_{{\rm I}ik} + {\rm j} \cdot s_{{\rm Q}ik},
+
The nomenclature arises from the main application for complex basis functions, namely&nbsp; [[Modulation_Methods/Quadrature_Amplitude_Modulation#General_description_and_signal_space_allocation|"quadrature amplitude modulation"]]&nbsp; $\rm (QAM)$.  
\hspace{0.2cm} s_{{\rm I}ik} = {\rm Re} [s_{ik}], \hspace{0.2cm} s_{{\rm Q}ik} = {\rm Im} [s_{ik}],</math>
+
*The subscript&nbsp; "I"&nbsp; stands for inphase component and indicates the real part,
  
:<math> \hspace{0.35cm} s_{{\rm I}ik}  \hspace{-0.1cm} =  \hspace{-0.1cm}{\rm Re}[\hspace{0.1cm} < \hspace{-0.1cm} s_i(t), \hspace{0.15cm}\varphi_k(t) \hspace{-0.1cm} > \hspace{0.1cm}],  \hspace{0.2cm}s_{{\rm Q}ik}  = {\rm Re}[\hspace{0.1cm} < \hspace{-0.1cm} s_i(t), \hspace{0.15cm}{\rm j} \cdot \psi_k(t) \hspace{-0.1cm} > \hspace{0.1cm}]
+
*while the quadrature component&nbsp; (imaginary part)&nbsp; is indicated by the index&nbsp; "Q".<br>
\hspace{0.05cm}. </math>
 
  
Die Nomenklatur ergibt sich aus der Hauptanwendung für komplexe Basisfunktionen, nämlich der [http://en.lntwww.de/Modulationsverfahren/Quadratur%E2%80%93Amplitudenmodulation#Allgemeine_Beschreibung_und_Signalraumzuordnung_.281.29 Quadratur&ndash;Amplitudenmodulation] (QAM). Der Index &bdquo;I&rdquo;  steht für Inphasekomponente und gibt den Realteil an, während die Quadraturkomponente (Imaginärteil) mit dem Index &bdquo;Q&rdquo; gekennzeichnet ist.<br>
 
  
Um Verwechslungen mit der imaginären Einheit zu vermeiden, sind hier die komplexen Basisfunktionen <i>&xi;<sub>k</sub></i>(<i>t</i>) mit &bdquo;<i>k</i>&rdquo; induziert und nicht mit &bdquo;<i>j</i>&rdquo;.<br>
+
To avoid confusion with the imaginary unit&nbsp; "$\rm j$",&nbsp; here the complex basis functions&nbsp; $\xi_{k}(t)$&nbsp; were induced with&nbsp; $k$&nbsp; and not with&nbsp; $j$.<br>
  
== Dimension der Basisfunktionen (1) ==
+
== Dimension of the basis functions ==
 
<br>
 
<br>
Bei der Basisbandübertragung sind die möglichen Sendesignale (Betrachtung nur einer Symboldauer)  
+
In baseband transmission, the possible transmitted signals&nbsp; $($considering only one symbol duration$)$&nbsp; are
:<math>s_i(t) = a_i \cdot g_s(t), \hspace{0.2cm} i = 0,  ...\hspace{0.05cm} , M-1,</math>
+
:$$s_i(t) = a_i \cdot g_s(t), \hspace{0.2cm} i = 0,  \text{...}\hspace{0.05cm} , M-1,$$
  
<br>wobei <i>g<sub>s</sub></i>(<i>t</i>) den Sendegrundimpuls angibt und die <i>a<sub>i</sub></i> in Kapitel 1 und Kapitel 2 als die möglichen Amplitudenkoeffizienten bezeichnet wurden. Anzumerken ist, dass im bisherigen Kapitel 4.1 für die Laufvariable <i>i</i> die Werte 1 bis <i>M</i> vorausgesetzt wurden und nicht wie hier 0 bis <i>M</i> &ndash; 1.<br>
+
where&nbsp; $g_s(t)$&nbsp; indicates the&nbsp; "basic transmission pulse"&nbsp; and the&nbsp; $a_i$&nbsp; were denoted  in the first three main chapters as the possible&nbsp; "amplitude coefficients".&nbsp; It should be noted that from now on the values&nbsp; $0$&nbsp; to&nbsp; $M-1$&nbsp; are assumed for the indexing variable&nbsp; $i$.&nbsp;<br>
  
Nach der Beschreibung dieses Kapitels handelt es sich unabhängig von der Stufenzahl <i>M</i> um ein eindimensionales Modulationsverfahren (<i>N</i> = 1), wobei bei der Basisbandübertragung
+
According to the description of this chapter,&nbsp; this is a one-dimensional modulation process&nbsp; $(N = 1)$,&nbsp; regardless of the level number&nbsp; $M$.
*die Basisfunktion <i>&phi;</i><sub>1</sub>(<i>t</i>) gleich dem energienormierten Sendegrundimpuls <i>g<sub>s</sub></i>(<i>t</i>) ist:
 
  
::<math>\varphi_1(t) ={g_s(t)}/{\sqrt{E_{gs}}} \hspace{0.3cm}{\rm mit}\hspace{0.3cm}
+
{{BlaueBox|TEXT= 
 +
$\text{In the case of baseband transmission:}$
 +
*The basis function&nbsp; $\varphi_1(t)$&nbsp; is equal to the energy-normalized basic transmission pulse&nbsp; $g_s(t)$:&nbsp;
 +
:$$\varphi_1(t) ={g_s(t)}/{\sqrt{E_{gs} } } \hspace{0.3cm}{\rm with}\hspace{0.3cm}
 
E_{gs} = \int_{-\infty}^{+\infty}g_s^2(t)\,d \it t   
 
E_{gs} = \int_{-\infty}^{+\infty}g_s^2(t)\,d \it t   
\hspace{0.05cm},</math>
+
\hspace{0.05cm}.$$
 +
 
 +
*The dimensionless amplitude coefficients&nbsp; $a_i$&nbsp; are to be converted into the signal space points&nbsp; $s_i$&nbsp; which have the unit "root of energy".<br>}}
 +
 
 +
 
 +
{{GraueBox|TEXT= 
 +
$\text{Example 3:}$&nbsp;
 +
The graph shows one-dimensional signal space constellations&nbsp; $(N=1)$&nbsp; for baseband transmission, viz.
 +
[[File:EN_Dig_T_4_1_S5_neu.png|right|frame|One-dimensional modulation processes|class=fit]]
 +
# &nbsp; binary unipolar (top) &nbsp; &rArr; &nbsp; $M = 2$,
 +
# &nbsp; binary bipolar (center) &nbsp; &rArr; &nbsp; $M = 2$, and
 +
# &nbsp; quaternary bipolar (bottom) &nbsp; &rArr; &nbsp; $M = 4$.
  
*die dimensionslosen Amplitudenkoeffizienten <i>a<sub>i</sub></i> in die Signalraumpunkte <i>s<sub>i</sub></i> umgerechnet werden können, die die Einheit &bdquo;Wurzel aus Energie&rdquo; aufweisen.<br><br>
 
  
Die Grafik zeigt die Signalraumkonstellationen für die binäre unipolare (oben), die binäre bipolare (Mitte) sowie die quaternäre bipolare (unten) Basisbandübertragung. Rechts sind am Beispiel &bdquo;Rechteckimpuls&rdquo; die zwei bzw. vier möglichen Sendesignale <i>s<sub>i</sub></i>(<i>t</i>) angegeben. Man kann daraus auch den Zusammenhang zwischen Signalenergie <i>E</i> und Impulsamplitude <i>A</i> erkennen. Die jeweils linken Darstellungen auf der <i>&phi;</i><sub>1</sub>&ndash;Achse gelten aber unabhängig von der Form des Sendegrundimpulses <i>g<sub>s</sub></i>(<i>t</i>), nicht nur für Rechtecke.<br>
+
The graph simultaneously describes the one-dimensional carrier frequency systems
 +
# &nbsp; [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation#On.E2.80.93off_keying_.282.E2.80.93ASK.29|"Two-level Amplitude Shift Keying"]]&nbsp; $\text{(2&ndash;ASK)}$,
 +
# &nbsp;  [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation#Binary_phase_shift_keying_.28BPSK.29|"Binary Phase Shift Keying"]]&nbsp; $\text{(BPSK)}$,
 +
#&nbsp; [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation#M.E2.80.93level_amplitude_shift_keying_.28M.E2.80.93ASK.29|"Four-level Amplitude Shift Keying"]]&nbsp; $\text{(4&ndash;ASK)}$.<br>
  
[[File:P ID1991 Dig T 4 1 S5a version2.png|Eindimensionale Modulationsverfahren|class=fit]]<br>
+
<u>Note:</u>
 +
*The signals&nbsp; $s_i(t)$&nbsp; and the basis function &nbsp;$\varphi_1(t)$&nbsp; always refer to the equivalent low-pass range.
  
*Die Grafik beschreibt gleichzeitig die eindimensionalen Trägerfrequenzsysteme On&ndash;Off&ndash;Keying (oben), BPSK bzw. 2&ndash;ASK (Mitte) und 4&ndash;ASK (unten).<br>
+
*In the band-pass region,&nbsp; $\varphi_1(t)$&nbsp; is a harmonic oscillation limited to the time domain&nbsp; $0 \le t \le T$.
  
*Die Signale <i>s<sub>i</sub></i>(<i>t</i>) und die Basisfunktion <i>&phi;</i><sub>1</sub>(<i>t</i>) beziehen sich dann auf den äquivalenten TP&ndash;Bereich. Im BP&ndash;Bereich ist <i>&phi;</i><sub>1</sub>(<i>t</i>) eine auf den Zeitbereich 0 &#8804; <i>t</i> &#8804; <i>T</i> begrenzte harmonische Schwingung.<br>
+
*In the graph on the right,&nbsp; the two or four possible signals&nbsp; $s_i(t)$&nbsp; are given for the example&nbsp; "rectangular pulse".
  
== Dimension der Basisfunktionen (2) ==
+
*From this,&nbsp; one can see the relationship between pulse amplitude&nbsp; $A$&nbsp; and signal energy&nbsp; $E = A^2 \cdot T$.&nbsp;}}
<br>
+
<br clear =all>
Zu den zweidimensionalen Modulationsverfahren (<i>N</i> = 2) gehören
+
{{GraueBox|TEXT= 
*<i>M</i>&ndash;stufiges <i>Phase Shift Keying</i> (<i>M</i>&ndash;PSK),<br>
+
$\text{Example 4:}$
*Quadratur&ndash;Amplitudenmodulation (4&ndash;QAM, 16&ndash;QAM, 64&ndash;QAM, ...),<br>
+
The two-dimensional modulation processes  include:
*binäres (orthogonales) <i>Frequency Shift Keying</i> (2&ndash;FSK).<br><br>
+
[[File:P ID1992 Dig T 4 1 S5b version1.png|right|frame|Two-dimensional signal space constellations for multi-level PSK and QAM|class=fit]]
 +
#[[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation#Multi-level_phase.E2.80.93shift_keying_.28M.E2.80.93PSK.29|"<i>M</i>&ndash;level Phase Shift Keying"]]&nbsp; (M&ndash;PSK),<br>
 +
#[[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation#Quadrature_amplitude_modulation_.28M-QAM.29|"Quadrature amplitude modulation"]]&nbsp; (4&ndash;QAM, 16&ndash;QAM, ...),<br>
 +
#[[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation#Binary_frequency_shift_keying_.282.E2.80.93FSK.29|"Binary (orthogonal) frequency shift keying"]]&nbsp; (2&ndash;FSK).<br>
  
Allgemein ist bei orthogonaler FSK die Anzahl <i>N</i> der Basisfunktionen <i>&phi;<sub>k</sub></i>(<i>t</i>) gleich der Anzahl <i>M</i> der möglichen Sendesignale <i>s<sub>i</sub></i>(<i>t</i>). <i>N</i> = 2 ist deshalb nur für <i>M</i> = 2 möglich.<br>
 
  
[[File:P ID1992 Dig T 4 1 S5b version1.png|Signalraumkonstellationen für <i>M</i>-PSK und QAM|class=fit]]<br>
+
In general,&nbsp; for orthogonal FSK&nbsp; the number&nbsp; $N$&nbsp; of basis functions&nbsp; $\varphi_k(t)$&nbsp; is equal to the number&nbsp; $M$&nbsp; of possible transmitted signals&nbsp; $s_i(t)$ &nbsp; &rArr;  &nbsp; $N=2$&nbsp; is only possible for&nbsp; $M=2$.&nbsp;
  
Die linke Grafik zeigt die 8&ndash;PSK&ndash;Konstellation. Beschränkt man sich auf die rot umrandeten Punkte, so liegt eine 4&ndash;PSK (<i>Quaternary Phase Shift Keying</i>, QPSK) vor.<br>
+
The graph describes two-dimensional modulation processes in the band-pass&nbsp; (left)&nbsp; and in the equivalent low-pass range&nbsp; (right):
 +
*The left graph shows&nbsp; "8&ndash;PSK".&nbsp; If we restrict us to the red points only &nbsp; &rArr; &nbsp; "4&ndash;PSK"&nbsp;  is present&nbsp; ("Quaternary Phase Shift Keying",&nbsp; QPSK).<br>
  
Die rechte Grafik bezieht sich auf die 16&ndash;QAM beziehungsweise &ndash; wenn man nur die rot umrandeten Signalraumpunkte betrachtet &ndash; auf die 4&ndash;QAM. Ein Vergleich der beiden Bilder zeigt, dass die 4&ndash;QAM mit der QPSK bei entsprechender Achsenskalierung identisch ist.<br>
+
*The right-hand diagram refers to&nbsp; "16&ndash;QAM"&nbsp; or &ndash; if only the signal space points outlined in red are considered &ndash; to&nbsp; "4&ndash;QAM".
 +
 +
*A comparison of the two images  with appropriate axis scaling shows that&nbsp; "4&ndash;QAM"&nbsp; is identical to&nbsp; "QPSK".<br>
  
Die Grafiken beschreiben die Modulationsverfahren sowohl im Bandpass&ndash; als auch im äquivalenten Tiefpassbereich:
+
*When considered as a band-pass system, the basis function&nbsp; $\varphi_1(t)$&nbsp; is cosinusoidal and &nbsp; $\varphi_2(t)$&nbsp; $($minus$)$ sinusoidal &ndash; compare&nbsp; [[Aufgaben:Exercise_4.2:_AM/PM_Oscillations|"Exercise 4.2"]].<br>
*Bei der Betrachtung als Bandpass&ndash;System sind die Basisfunktionen <i>&phi;</i><sub>1</sub>(<i>t</i>) und <i>&phi;</i><sub>2</sub>(<i>t</i>) cosinusförmig bzw. (minus&ndash;)sinusförmig &ndash; vergleiche hierzu Aufgabe A4.2.<br>
 
  
*Dagegen ist nach der Transformation der QAM&ndash;Systeme in den äquivalenten Tiefpassbereich die Basisfunktion <i>&phi;</i><sub>1</sub>(<i>t</i>) gleich dem energienormierten (Energie 1) Sendegrundimpuls <i>g<sub>s</sub></i>(<i>t</i>), während <i>&phi;</i><sub>2</sub>(<i>t</i>) = j &middot; <i>&phi;</i><sub>1</sub>(<i>t</i>) zu setzen ist. Sie finden Näheres hierzu in der Aufgabe Z4.2.<br>
+
*On the other hand,&nbsp; after transforming the QAM systems into the equivalent low-pass range, &nbsp; $\varphi_1(t)$&nbsp; is equal to the energy-normalized&nbsp; $($i.e., with energy "1"$)$&nbsp; basic transmission pulse&nbsp; $g_s(t)$,&nbsp; while &nbsp; $\varphi_2(t)={\rm  j} \cdot \varphi_1(t)$.&nbsp; For more details,&nbsp; please refer to &nbsp;[[Aufgaben:Exercise_4.2Z:_Eight-step_Phase_Shift_Keying|"Exercise 4.2Z"]].}}<br>
 +
<br>
  
== Aufgaben ==
+
== Exercises for the chapter ==
 
<br>
 
<br>
[[Aufgaben:4.1 Gram-Schmidt-Verfahren|A4.1 Gram-Schmidt-Verfahren]]
+
[[Aufgaben:Exercise_4.1:_About_the_Gram-Schmidt_Process|Exercise 4.1: About the Gram-Schmidt Method]]
  
[[Zusatzaufgaben:4.1 Andere Basisfunktionen]]
+
[[Aufgaben:Exercise_4.1Z:_Other_Basis_Functions|Exercise 4.1Z: Other Basis Functions]]
  
[[Aufgaben:4.2 AM/PM-Schwingungen|A4.2 AM/PM-Schwingungen]]
+
[[Aufgaben:Aufgabe_4.2:_AM/PM-Schwingungen|Exercise 4.2: AM/PM Oscillations]]
  
[[Zusatzaufgaben:4.2 Achtstufiges Phase Shift Keying]]
+
[[Aufgaben:Exercise_4.2Z:_Eight-level_Phase_Shift_Keying|Exercise 4.2Z: Eight-level Phase Shift Keying]]
  
[[Aufgaben:4.3 Unterschiedliche Frequenzen|A4.3 Unterschiedliche Frequenzen]]
+
[[Aufgaben:Aufgabe_4.3:_Unterschiedliche_Frequenzen|Exercise 4.3: Different Frequencies]]
  
==Quellenverzeichnis==
+
==References==
  
 
<references/>
 
<references/>

Latest revision as of 12:11, 5 April 2023

# OVERVIEW OF THE FOURTH MAIN CHAPTER #


The fourth main chapter provides an abstract description of digital signal transmission,  which is based on basis functions and signal space constellations.  This makes it possible to treat very different configurations – for example band-pass systems and those for the baseband – in a uniform way.  The optimal receiver in each case has the same structure in all cases.

The following are dealt with in detail:

  1.   The meaning of  »basis functions«  and finding them using the  »Gram-Schmidt process«,
  2.   the  »structure of the optimal receiver«  for baseband transmission,
  3.   the  »theorem of irrelevance«  and its importance for the derivation of optimal detectors,
  4.   the  »optimal receiver for the AWGN channel«  and implementation aspects,
  5.   the system description by  »complex or  $N$–dimensional Gaussian noise«,
  6.   the  »error probability calculation and approximation«  under otherwise ideal conditions,
  7.   the application of the signal space description to  »carrier frequency systems«,
  8.   the different results for  »OOK, M-ASK, M-PSK, M-QAM and M-FSK«,
  9.   the different results for  »coherent and non-coherent demodulation«.


Almost all results of this chapter have already been derived in previous sections.  However,  the approach is fundamentally new:

  • In the  $\rm LNTwww$  book  "Modulation Methods"  and in the first three chapters of this book,  the specific system properties were already taken into account in the derivations – for example,  whether the digital signal is transmitted in baseband or whether digital amplitude,  frequency or phase modulation is present.
  • Here the systems are to be abstracted in such a way that they can be treated uniformly.  The optimal receiver in each case has the same structure in all cases,  and the error probability can also be specified for non-Gaussian distributed noise.

It should be noted that this rather global approach means that certain system deficiencies can only be recorded very imprecisely,  such as

  • the influence of a non-optimal receiver filter on the error probability,
  • an incorrect threshold  $($threshold drift$)$,  or
  • phase jitter  $($fluctuations in sampling times$)$.

In particular in the presence of intersymbol interference,  the procedure should therefore continue in accordance with the  third main chapter

The description is based on the script  [KöZ08][1] by  Ralf Kötter  and  Georg Zeitler,  which is closely based on the textbook [WJ65][2]. Gerhard Kramer,  who has held the chair at the LNT since 2010,  treats the same topic with very similar nomenclature in his lecture [Kra17][3].  In order not to make reading unnecessarily difficult for our own students at TU Munich,  we stick to this nomenclature as far as possible,  even if it deviates from other  $\rm LNTwww$  chapters.

Nomenclature in the fourth chapter


Compared to the other  $\rm LNTwww$  chapters,  the following nomenclature changes arise here:

  • The  "message"  to be transmitted is an integer value  $m \in \{m_i\}$  with  $i = 0$, ... , $M-1$,  where  $M$  specifies the  "symbol set size".
    If it simplifies the description,  $i = 1$, ... , $M$    is induced.
  • The result of the decision process at the receiver is also an integer with the same symbol alphabet as at the transmitter. 
    This result is also referred to as the  "estimated value":
$$\hat{m} \in \{m_i \}, \hspace{0.2cm} i = 0, 1, \text{...}\hspace{0.05cm} , M-1\hspace{0.2cm} ({\rm or}\,\,i = 1, 2, \text{...}\hspace{0.05cm}, M) \hspace{0.05cm}.$$
  • The  "symbol error probability"  $\rm Pr(symbol\hspace{0.15cm} error)$  or  $p_{\rm S}$  is usually referred to as follows in this main chapter:
$${\rm Pr} ({\cal E}) = {\rm Pr} ( \hat{m} \ne m) = 1 - {\rm Pr} ({\cal C}), \hspace{0.4cm}\text{complementary event:}\hspace{0.2cm} {\rm Pr} ({\cal C}) = {\rm Pr} ( \hat{m} = m) \hspace{0.05cm}.$$
  • In a  "probability density function"  $\rm (PDF)$,  a distinction is made between the  "random variable"   ⇒   $r$  and the  "realization"   ⇒   $\rho$  according to   $p_r(\rho)$. 
    Formerly,  $f_r(r)$  was used for this PDF.
  • With the notation  $p_r(\rho)$,   $r$  and  $\rho$  are scalars.  On the other hand,  if random variable and realization are vectors  (of suitable length),  this is expressed in bold type:     $p_{ \boldsymbol{ r}}(\boldsymbol{\rho})$  with the vectors  $ \boldsymbol{ r}$  and  $\boldsymbol{\rho}$.
  • In order to avoid confusion with energy values,  the  "threshold value is"  now called  $G$  instead of  $E$.  This is mainly referred to as the  "decision threshold"  in this chapter.
  • Based on the two real and energy-limited time functions  $x(t)$  and  $y(t)$,  the  "inner product"  is:
$$<\hspace{-0.1cm}x(t), \hspace{0.05cm}y(t) \hspace{-0.1cm}> \hspace{0.15cm}= \int_{-\infty}^{+\infty}x(t) \cdot y(t)\,d \it t \hspace{0.05cm}.$$
  • This results in the  "Euclidean norm"  or  "2–norm"  $($or  "norm"  for short$)$:
$$||x(t) || = \sqrt{<\hspace{-0.1cm}x(t), \hspace{0.05cm}x(t) \hspace{-0.1cm}>} \hspace{0.05cm}.$$
  • Compared to the script  [KöZ08][1],  the naming differs as follows:
  1. The probability of the event  $E$  is  ${\rm Pr}(E)$  instead of  $P(E)$. 
    This nomenclature change was also made because in some equations  "probabilities"  and  "powers"  appear together.
  2. Band–pass signals are still marked with the index "BP" and not with a tilde as in  [KöZ08][1].
    The corresponding  "low-pass signal"  is  (usually)  provided with the index  "TP"  $($from German  "Tiefpass"$)$.

Orthonormal basis functions


In this chapter,  we assume a set  $\{s_i(t)\}$  of possible transmitted signals that are uniquely assigned to the possible messages  $m_i$.  With  $i = 1$, ... , $M$  holds:

$$m \in \{m_i \}, \hspace{0.2cm} s(t) \in \{s_i(t) \}\hspace{-0.1cm}: \hspace{0.3cm} m = m_i \hspace{0.1cm} \Leftrightarrow \hspace{0.1cm} s(t) = s_i(t) \hspace{0.05cm}.$$

For what follows,  we further assume that the  $M$ signals  $s_i(t)$  are  "energy-limited",  which usually means at the same time that they are of finite duration.

$\text{Theorem:}$  Any set  $\{s_1(t), \hspace{0.05cm} \text{...} \hspace{0.05cm} , s_M(t)\}$  of energy-limited signals can be evolved into  $N \le M$  orthonormal basis functions  $\varphi_1(t), \hspace{0.05cm} \text{...} \hspace{0.05cm} , \varphi_N(t)$.  It holds:

$$s_i(t) = \sum\limits_{j = 1}^{N}s_{ij} \cdot \varphi_j(t) , \hspace{0.3cm}i = 1,\hspace{0.05cm} \text{...}\hspace{0.1cm} , M, \hspace{0.3cm}j = 1,\hspace{0.05cm} \text{...} \hspace{0.1cm}, N \hspace{0.05cm}.$$
  • In each case, two basis functions  $\varphi_j(t)$  and  $\varphi_k(t)$  must be orthonormal to each other, that is, it must hold  
    $(\delta_{jk}$  is called  "Kronecker symbol"  or  "Kronecker delta"$)$:
$$<\hspace{-0.1cm}\varphi_j(t), \hspace{0.05cm}\varphi_k(t) \hspace{-0.1cm}> = \int_{-\infty}^{+\infty}\varphi_j(t) \cdot \varphi_k(t)\,d \it t = {\rm \delta}_{jk} = \left\{ \begin{array}{c} 1 \\ 0 \end{array} \right.\quad \begin{array}{*{1}c} {\rm if}\hspace{0.1cm}j = k \\ {\rm if}\hspace{0.1cm} j \ne k \\ \end{array} \hspace{0.05cm}.$$


Here,  the parameter  $N$  indicates how many basis functions  $\varphi_j(t)$  are needed to represent the  $M$  possible transmitted signals.  In other words:   $N$  is the  "dimension of the vector space"  spanned by the  $M$  signals.  Here,  the following holds:

  1. If  $N = M$,  all transmitted signals are orthogonal to each other.
  2. They are not necessarily orthonormal,  i.e. the energies  $E_i = <\hspace{-0.1cm}s_i(t), \hspace{0.05cm}s_i(t) \hspace{-0.1cm}>$  may well be unequal to one.
  3. $N < M$  arises when at least one signal  $s_i(t)$  can be represented as linear combination of basis functions  $\varphi_j(t)$  that have resulted from other signals  $s_j(t) \ne s_i(t)$. 


$\text{Example 1:}$  We consider  $M = 3$  energy-limited signals according to the graph.  One recognizes immediately:

Representation of three transmitted signals by two basis functions
  • The signals  $s_1(t)$  and  $s_2(t)$  are orthogonal to each other.
  • The energies are  $E_1 = A^2 \cdot T = E$   and   $E_2 = (A/2)^2 \cdot T = E/4$.
  • The basis functions  $\varphi_1(t)$  and  $\varphi_2(t)$  are equal in form to  $s_1(t)$  and  $s_2(t)$,  resp., and both have energy one:
$$\varphi_1(t)=\frac{s_1(t)}{\sqrt{E_1} } = \frac{s_1(t)}{\sqrt{A^2 \cdot T} } = \frac{1}{\sqrt{ T} } \cdot \frac{s_1(t)}{A}$$
$$\hspace{0.5cm}\Rightarrow \hspace{0.1cm}s_1(t) = s_{11} \cdot \varphi_1(t)\hspace{0.05cm},\hspace{0.1cm}s_{11} = \sqrt{E}\hspace{0.05cm},$$
$$\varphi_2(t) =\frac{s_2(t)}{\sqrt{E_2} } = \frac{s_2(t)}{\sqrt{(A/2)^2 \cdot T} } = \frac{1}{\sqrt{ T} } \cdot \frac{s_2(t)}{A/2}\hspace{0.05cm}$$
$$\hspace{0.5cm}\Rightarrow \hspace{0.1cm}s_2(t) = s_{21} \cdot \varphi_2(t)\hspace{0.05cm},\hspace{0.1cm}s_{21} = {\sqrt{E} }/{2}\hspace{0.05cm}.$$
  • $s_3(t)$  can be expressed by the previously determined basis functions  $\varphi_1(t)$,  $\varphi_2(t)$: 
$$s_3(t) =s_{31} \cdot \varphi_1(t) + s_{32} \cdot \varphi_2(t)\hspace{0.05cm},$$
$$\hspace{0.5cm}\Rightarrow \hspace{0.1cm} s_{31} = {A}/{2} \cdot \sqrt {T}= {\sqrt{E} }/{2}\hspace{0.05cm}, \hspace{0.2cm}s_{32} = - A \cdot \sqrt {T} = -\sqrt{E} \hspace{0.05cm}.$$


⇒   In the lower right image,  the signals are shown in a two-dimensional representation

  • with the basis functions  $\varphi_1(t)$  and  $\varphi_2(t)$  as axes,
  • where  $E = A^2 \cdot T$  and the relation to the other graphs can be seen by the coloring.


⇒   The vectorial representatives of the signals  $s_1(t)$,  $s_2(t)$  and  $s_3(t)$  in the two-dimensional vector space can be read from this sketch as follows:

$$\mathbf{s}_1 = (\sqrt{ E}, \hspace{0.1cm}0), $$
$$\mathbf{s}_2 = (0, \hspace{0.1cm}\sqrt{ E}/2), $$
$$\mathbf{s}_3 = (\sqrt{ E}/2,\hspace{0.1cm}-\sqrt{ E} ) \hspace{0.05cm}.$$


The Gram-Schmidt process


In  $\text{Example 1}$  in the last section,  the specification of the two orthonormal basis functions  $\varphi_1(t)$  and  $\varphi_2(t)$  was very easy,  because they were of the same form as  $s_1(t)$  and  $s_2(t)$,  respectively. The  "Gram-Schmidt process"  finds the basis functions  $\varphi_1(t)$, ... , $\varphi_N(t)$  for arbitrary predefinable signals  $s_1(t)$, ... , $s_M(t)$, as follows:

  • The first basis function  $\varphi_1(t)$  is always equal in form to  $s_1(t)$.  It holds:
$$\varphi_1(t) = \frac{s_1(t)}{\sqrt{E_1}} = \frac{s_1(t)}{|| s_1(t)||} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} || \varphi_1(t) || = 1, \hspace{0.2cm}s_{11} =|| s_1(t)||,\hspace{0.2cm}s_{1j} = 0 \hspace{0.2cm}{\rm f{\rm or }}\hspace{0.2cm} j \ge 2 \hspace{0.05cm}.$$
  • It is now assumed that from the signals  $s_1(t)$, ... , $s_{k-1}(t)$  the basis functions  $\varphi_1(t)$, ... , $\varphi_{n-1}(t)$  have been calculated  $(n \le k)$.  Then,  using  $s_k(t)$,  we compute the auxiliary function
$$\theta_k(t) = s_k(t) - \sum\limits_{j = 1}^{n-1}s_{kj} \cdot \varphi_j(t) \hspace{0.4cm}{\rm with}\hspace{0.4cm} s_{kj} = \hspace{0.1cm} < \hspace{-0.1cm} s_k(t), \hspace{0.05cm}\varphi_j(t) \hspace{-0.1cm} >, \hspace{0.2cm} j = 1, \hspace{0.05cm} \text{...}\hspace{0.05cm}, n-1\hspace{0.05cm}.$$
  • If  $\theta_k(t) \equiv 0$   ⇒   $||\theta_k(t)|| = 0$,  then  $s_k(t)$  does not yield a new basis function.  Rather,  $s_k(t)$  can then be expressed by the  $n-1$  basis functions  $\varphi_1(t)$, ... , $\varphi_{n-1}(t)$  already found before:
$$s_k(t) = \sum\limits_{j = 1}^{n-1}s_{kj}\cdot \varphi_j(t) \hspace{0.05cm}.$$
  • A new basis function  $($namely,  the  $n$–th$)$  results if  $||\theta_k(t)|| \ne 0$: 
$$\varphi_n(t) = \frac{\theta_k(t)}{|| \theta_k(t)||} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} || \varphi_n(t) || = 1\hspace{0.05cm}.$$

This process is continued until all  $M$  signals have been considered.  Then all  $N \le M$  orthonormal basis functions  $\varphi_j(t)$  have been found.  The special case  $N = M$  arises only if all  $M$  signals are linearly independent.

  • This process is now illustrated by an example.
  • We also refer to the  (German language)  HTML5/JavaScript applet  "Das Gram-Schmidt-Verfahren"   ⇒   "Gram–Schmidt process".


$\text{Example 2:}$  We consider the  $M = 4$  energy-limited signals  $s_1(t)$, ... , $s_4(t)$.  To simplify the calculations,  both amplitude and time are normalized here.

Gram-Schmidt process

One can see from these sketches:

  • The basis function  $\varphi_1(t)$  is equal in form to  $s_1(t)$.  Because  $E_1 = \vert \vert s_1(t) \vert \vert ^3 = 3 \cdot 0.5^2 = 0.75$,  we get  $s_{11} = \vert \vert s_1(t) \vert \vert = 0.866$. $\varphi_1(t)$  itself has section-wise values  $\pm 0.5/0.866 = \pm0.577$.
  • To calculate the auxiliary function  $\theta_2(t)$,  we compute
$$s_{21} = \hspace{0.1cm} < \hspace{-0.1cm} s_2(t), \hspace{0.05cm}\varphi_1(t) \hspace{-0.1cm} > \hspace{0.1cm} = 0 \cdot (+0.577) + 1 \cdot (-0.577)+ 0 \cdot (-0.577)= -0.577$$
$$ \Rightarrow \hspace{0.3cm}\theta_2(t) = s_2(t) - s_{21} \cdot \varphi_1(t) = (0.333, 0.667, -0.333) \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\vert \vert \theta_2(t) \vert \vert^2 = (1/3)^2 + (2/3)^2 + (-1/3)^2 = 0.667$$
$$ \Rightarrow \hspace{0.3cm} s_{22} = \sqrt{0.667} = 0.816,\hspace{0.3cm} \varphi_2(t) = \theta_2(t)/s_{22} = (0.408,\ 0.816,\ -0.408)\hspace{0.05cm}. $$
  • The inner products between  $s_3(t)$  with  $\varphi_1(t)$  or  $\varphi_2(t)$  give the following results:
$$s_{31} \hspace{0.1cm} = \hspace{0.1cm} < \hspace{-0.1cm} s_3(t), \hspace{0.07cm}\varphi_1(t) \hspace{-0.1cm} > \hspace{0.1cm} = 0.5 \cdot (+0.577) + 0.5 \cdot (-0.577)- 0.5 \cdot (-0.577)= 0.289$$
$$s_{32} \hspace{0.1cm} = \hspace{0.1cm} < \hspace{-0.1cm} s_3(t), \hspace{0.07cm}\varphi_2(t) \hspace{-0.1cm} > \hspace{0.1cm} = 0.5 \cdot (+0.408) + 0.5 \cdot (+0.816)- 0.5 \cdot (-0.408)= 0.816$$
$$\Rightarrow \hspace{0.3cm}\theta_3(t) = s_3(t) - 0.289 \cdot \varphi_1(t)- 0.816 \cdot \varphi_2(t) = 0\hspace{0.05cm}.$$
  • This means:   The green function  $s_3(t)$  does not yield a new basis function  $\varphi_3(t)$,  in contrast to the function  $s_4(t)$.  The numerical results for this can be taken from the graph.

Basis functions of complex time signals


In Communications Engineering,  one often has to deal with complex time functions,

  • not because there are complex signals in reality,  but
  • because the description of a band-pass signal in the equivalent low-pass range leads to complex signals.

The determination of the  $N \le M$  complex-valued basis functions  $\xi_k(t)$  from the  $M$  complex signals  $s_i(t)$  can also be done using the  "Gram–Schmidt process",  but it must now be taken into account that the inner product of two complex signals  $x(t)$  and  $y(t)$  must be calculated as follows:

$$< \hspace{-0.1cm}x(t), \hspace{0.1cm}y(t)\hspace{-0.1cm} > \hspace{0.1cm} = \int_{-\infty}^{+\infty}x(t) \cdot y^{\star}(t)\,d \it t \hspace{0.05cm}.$$

The corresponding equations are now with  $i = 1, \text{..}. , M$  and  $k = 1, \text{..}. , N$:

$$s_i(t) = \sum\limits_{k = 1}^{N}s_{ik} \cdot \xi_k(t),\hspace{0.2cm}s_i(t) \in {\cal C},\hspace{0.2cm}s_{ik} \in {\cal C} ,\hspace{0.2cm}\xi_k(t) \in {\cal C} \hspace{0.05cm},$$
$$< \hspace{-0.1cm}\xi_k(t),\hspace{0.1cm} \xi_j(t)\hspace{-0.1cm} > \hspace{0.1cm} = \int_{-\infty}^{+\infty}\xi_k(t) \cdot \xi_j^{\star}(t)\,d \it t = {\rm \delta}_{ik} = \left\{ \begin{array}{c} 1 \\ 0 \end{array} \right.\quad \begin{array}{*{1}c}{\rm if}\hspace{0.25cm} k = j \\ {\rm if}\hspace{0.25cm} k \ne j \\ \end{array}\hspace{0.05cm}.$$

Of course,  any complex quantity can also be expressed by two real quantities,  namely real part and imaginary part.  Thus,  the following equations are obtained here:

$$s_{i}(t) = s_{{\rm I}\hspace{0.02cm}i}(t) + {\rm j} \cdot s_{{\rm Q}\hspace{0.02cm}i}(t), \hspace{0.2cm} s_{{\rm I}\hspace{0.02cm}i}(t) = {\rm Re}\big [s_{i}(t)\big], \hspace{0.2cm} s_{{\rm Q}\hspace{0.02cm}i}(t) = {\rm Im} \big [s_{i}(t)\big ],$$
$$\xi_{k}(t) = \varphi_k(t) + {\rm j} \cdot \psi_k(t), \hspace{0.2cm} \varphi_k(t) = {\rm Re}\big [\xi_{k}(t)\big ], \hspace{0.2cm} \psi_k(t) = {\rm Im} \big [\xi_{k}(t)\big ],$$
$$\hspace{0.35cm} s_{ik} = s_{{\rm I}\hspace{0.02cm}ik} + {\rm j} \cdot s_{{\rm Q}\hspace{0.02cm}ik}, \hspace{0.2cm} s_{{\rm I}ik} = {\rm Re} \big [s_{ik}\big ], \hspace{0.2cm} s_{{\rm Q}ik} = {\rm Im} \big [s_{ik}\big ],$$
$$ \hspace{0.35cm} s_{{\rm I}\hspace{0.02cm}ik} ={\rm Re}\big [\hspace{0.01cm} < \hspace{-0.1cm} s_i(t), \hspace{0.15cm}\varphi_k(t) \hspace{-0.1cm} > \hspace{0.1cm}\big ], \hspace{0.2cm}s_{{\rm Q}\hspace{0.02cm}ik} = {\rm Re}\big [\hspace{0.01cm} < \hspace{-0.1cm} s_i(t), \hspace{0.15cm}{\rm j} \cdot \psi_k(t) \hspace{-0.1cm} > \hspace{0.1cm}\big ] \hspace{0.05cm}. $$

The nomenclature arises from the main application for complex basis functions, namely  "quadrature amplitude modulation"  $\rm (QAM)$.

  • The subscript  "I"  stands for inphase component and indicates the real part,
  • while the quadrature component  (imaginary part)  is indicated by the index  "Q".


To avoid confusion with the imaginary unit  "$\rm j$",  here the complex basis functions  $\xi_{k}(t)$  were induced with  $k$  and not with  $j$.

Dimension of the basis functions


In baseband transmission, the possible transmitted signals  $($considering only one symbol duration$)$  are

$$s_i(t) = a_i \cdot g_s(t), \hspace{0.2cm} i = 0, \text{...}\hspace{0.05cm} , M-1,$$

where  $g_s(t)$  indicates the  "basic transmission pulse"  and the  $a_i$  were denoted in the first three main chapters as the possible  "amplitude coefficients".  It should be noted that from now on the values  $0$  to  $M-1$  are assumed for the indexing variable  $i$. 

According to the description of this chapter,  this is a one-dimensional modulation process  $(N = 1)$,  regardless of the level number  $M$.

$\text{In the case of baseband transmission:}$

  • The basis function  $\varphi_1(t)$  is equal to the energy-normalized basic transmission pulse  $g_s(t)$: 
$$\varphi_1(t) ={g_s(t)}/{\sqrt{E_{gs} } } \hspace{0.3cm}{\rm with}\hspace{0.3cm} E_{gs} = \int_{-\infty}^{+\infty}g_s^2(t)\,d \it t \hspace{0.05cm}.$$
  • The dimensionless amplitude coefficients  $a_i$  are to be converted into the signal space points  $s_i$  which have the unit "root of energy".


$\text{Example 3:}$  The graph shows one-dimensional signal space constellations  $(N=1)$  for baseband transmission, viz.

One-dimensional modulation processes
  1.   binary unipolar (top)   ⇒   $M = 2$,
  2.   binary bipolar (center)   ⇒   $M = 2$, and
  3.   quaternary bipolar (bottom)   ⇒   $M = 4$.


The graph simultaneously describes the one-dimensional carrier frequency systems

  1.   "Two-level Amplitude Shift Keying"  $\text{(2–ASK)}$,
  2.   "Binary Phase Shift Keying"  $\text{(BPSK)}$,
  3.   "Four-level Amplitude Shift Keying"  $\text{(4–ASK)}$.

Note:

  • The signals  $s_i(t)$  and the basis function  $\varphi_1(t)$  always refer to the equivalent low-pass range.
  • In the band-pass region,  $\varphi_1(t)$  is a harmonic oscillation limited to the time domain  $0 \le t \le T$.
  • In the graph on the right,  the two or four possible signals  $s_i(t)$  are given for the example  "rectangular pulse".
  • From this,  one can see the relationship between pulse amplitude  $A$  and signal energy  $E = A^2 \cdot T$. 


$\text{Example 4:}$ The two-dimensional modulation processes include:

Two-dimensional signal space constellations for multi-level PSK and QAM
  1. "M–level Phase Shift Keying"  (M–PSK),
  2. "Quadrature amplitude modulation"  (4–QAM, 16–QAM, ...),
  3. "Binary (orthogonal) frequency shift keying"  (2–FSK).


In general,  for orthogonal FSK  the number  $N$  of basis functions  $\varphi_k(t)$  is equal to the number  $M$  of possible transmitted signals  $s_i(t)$   ⇒   $N=2$  is only possible for  $M=2$. 

The graph describes two-dimensional modulation processes in the band-pass  (left)  and in the equivalent low-pass range  (right):

  • The left graph shows  "8–PSK".  If we restrict us to the red points only   ⇒   "4–PSK"  is present  ("Quaternary Phase Shift Keying",  QPSK).
  • The right-hand diagram refers to  "16–QAM"  or – if only the signal space points outlined in red are considered – to  "4–QAM".
  • A comparison of the two images with appropriate axis scaling shows that  "4–QAM"  is identical to  "QPSK".
  • When considered as a band-pass system, the basis function  $\varphi_1(t)$  is cosinusoidal and   $\varphi_2(t)$  $($minus$)$ sinusoidal – compare  "Exercise 4.2".
  • On the other hand,  after transforming the QAM systems into the equivalent low-pass range,   $\varphi_1(t)$  is equal to the energy-normalized  $($i.e., with energy "1"$)$  basic transmission pulse  $g_s(t)$,  while   $\varphi_2(t)={\rm j} \cdot \varphi_1(t)$.  For more details,  please refer to  "Exercise 4.2Z".



Exercises for the chapter


Exercise 4.1: About the Gram-Schmidt Method

Exercise 4.1Z: Other Basis Functions

Exercise 4.2: AM/PM Oscillations

Exercise 4.2Z: Eight-level Phase Shift Keying

Exercise 4.3: Different Frequencies

References

  1. 1.0 1.1 1.2 Kötter, R., Zeitler, G.:  Lecture notes, Institute for Communications Engineering, Technical University of Munich, 2008.
  2. Wozencraft, J. M.; Jacobs, I. M.:  Principles of Communication Engineering.  New York: John Wiley & Sons, 1965.
  3. Kramer, G.:  Nachrichtentechnik 2. Lecture notes, Institute for Communications Engineering, Technical University of Munich, 2017.