Difference between revisions of "Digital Signal Transmission/Signals, Basis Functions and Vector Spaces"

From LNTwww
 
(74 intermediate revisions by 6 users not shown)
Line 1: Line 1:
 
   
 
   
 
{{Header
 
{{Header
|Untermenü=Verallgemeinerte Beschreibung digitaler Modulationsverfahren
+
|Untermenü=Generalized Description of Digital Modulation Methods
 
|Vorherige Seite=Viterbi–Empfänger
 
|Vorherige Seite=Viterbi–Empfänger
 
|Nächste Seite=Struktur des optimalen Empfängers
 
|Nächste Seite=Struktur des optimalen Empfängers
 
}}
 
}}
  
== Zur Nomenklatur im vierten Kapitel (1) ==
+
== # OVERVIEW OF THE FOURTH MAIN CHAPTER # ==
 
<br>
 
<br>
Nahezu alle Ergebnisse dieses Kapitels wurden bereits in früheren Abschnitten hergeleitet. Grundlegend neu ist jedoch die Herangehensweise:
+
The fourth main chapter provides an abstract description of digital signal transmission,&nbsp; which is based on basis functions and signal space constellations.&nbsp; This makes it possible to treat very different configurations &ndash; for example band-pass systems and those for the baseband &ndash; in a uniform way.&nbsp; The optimal receiver in each case has the same structure in all cases.
*Im Buch &bdquo;Modulationsverfahren&rdquo; sowie in den ersten drei Kapiteln dieses Buches wurden bereits bei den Herleitungen die spezifischen Systemeigenschaften berücksichtigt &ndash; zum Beispiel, ob die Übertragung des Digitalsignals im Basisband erfolgt oder ob eine digitale Amplituden&ndash;, Frequenz&ndash; oder Phasenmodulation vorliegt.<br>
 
  
*Hier sollen nun die Systeme dahingehend abstrahiert werden, dass sie einheitlich behandelt werden können. Der jeweils optimale Empfänger besitzt in allen Fällen die gleiche Struktur, und die Fehlerwahrscheinlichkeit lässt sich auch für nichtgaußverteiltes Rauschen angeben.<br><br>
+
The following are dealt with in detail:
 +
#&nbsp; The meaning of&nbsp; &raquo;basis functions&laquo;&nbsp; and finding them using the&nbsp; &raquo;Gram-Schmidt process&laquo;,
 +
#&nbsp; the&nbsp; &raquo;structure of the optimal receiver&laquo;&nbsp; for baseband transmission,
 +
#&nbsp; the&nbsp; &raquo;theorem of irrelevance&laquo;&nbsp; and its importance for the derivation of optimal detectors,
 +
#&nbsp; the&nbsp; &raquo;optimal receiver for the AWGN channel&laquo;&nbsp; and implementation aspects,
 +
#&nbsp; the system description by&nbsp; &raquo;complex or &nbsp;$N$–dimensional Gaussian noise&laquo;,
 +
#&nbsp; the&nbsp; &raquo;error probability calculation and approximation&laquo;&nbsp; under otherwise ideal conditions,
 +
#&nbsp; the application of the signal space description to&nbsp; &raquo;carrier frequency systems&laquo;,
 +
#&nbsp; the different results for&nbsp; &raquo;OOK, M-ASK, M-PSK, M-QAM and M-FSK&laquo;,
 +
#&nbsp; the different results for&nbsp; &raquo;coherent and non-coherent demodulation&laquo;.
  
Anzumerken ist, dass sich durch diese eher globale Vorgehensweise gewisse Systemunzulänglichkeiten nicht oder nur sehr ungenau erfassen lassen, wie beispielsweise
 
*der Einfluss eines  nichtoptimalen Empfangsfilters auf die Fehlerwahrscheinlichkeit,<br>
 
  
*ein falscher Schwellenwert (Schwellendrift) oder<br>
+
Almost all results of this chapter have already been derived in previous sections.&nbsp; However,&nbsp; the approach is fundamentally new:
 +
*In the&nbsp; $\rm LNTwww$&nbsp; book&nbsp; "Modulation Methods"&nbsp; and in the first three chapters of this book,&nbsp; the specific system properties were already taken into account in the derivations &ndash; for example,&nbsp; whether the digital signal is transmitted in baseband or whether digital amplitude,&nbsp; frequency or phase modulation is present.<br>
  
*Phasenjitter (Schwankungen der Abtastzeitpunkte).<br><br>
+
*Here the systems are to be abstracted in such a way that they can be treated uniformly.&nbsp; The optimal receiver in each case has the same structure in all cases,&nbsp; and the error probability can also be specified for non-Gaussian distributed noise.<br><br>
  
Insbesondere bei Vorhandensein von Impulsinterferenzen sollte also weiterhin entsprechend Kapitel 3 vorgegangen werden.<br>
+
It should be noted that this rather global approach means that certain system deficiencies can only be recorded very imprecisely,&nbsp; such as
 +
*the influence of a non-optimal receiver filter on the error probability,<br>
 +
*an incorrect threshold&nbsp; $($threshold drift$)$,&nbsp; or<br>
 +
*phase jitter&nbsp; $($fluctuations in sampling times$)$.<br><br>
  
Die Beschreibung basiert auf dem Skript Kötter, R., Zeitler, G.: ''Nachrichtentechnik 2.'' Vorlesungsmanuskript, Lehrstuhl für Nachrichtentechnik, Technische Universität München, 2008 von Ralf Kötter und Georg Zeitler, das sich stark an das Buch Wozencraft, J. M.; Jacobs, I. M.: ''Principles of Communication Engineering.'' New York: John Wiley & Sons, 1965 anlehnt. Gerhard Kramer, Lehrstuhlinhaber des LNT seit 2010, behandelt in seiner NT2&ndash;Vorlesung Kramer, G.: ''Nachrichtentechnik 2.'' Vorlesungsmanuskript, Lehrstuhl für Nachrichtentechnik, Technische Universität München, 2010 die gleiche Thematik mit sehr ähnlicher Nomenklatur.<br>
+
In particular in the presence of intersymbol interference,&nbsp; the procedure should therefore continue in accordance with the&nbsp; [[Digital_Signal_Transmission/Causes_and_Effects_of_Intersymbol_Interference#.23_OVERVIEW_OF_THE_THIRD_MAIN_CHAPTER_.23|third main chapter]].&nbsp; <br>
  
Um unseren eigenen Studenten an der TU München das Lesen nicht unnötig zu erschweren, halten wir uns weitestgehend an diese Nomenklatur, auch wenn diese von anderen <i>LNTwww</i>&ndash;Kapiteln abweicht.<br>
+
The description is based on the script&nbsp; [KöZ08]<ref name='KöZ08'>Kötter, R., Zeitler, G.:&nbsp; Lecture notes, Institute for Communications Engineering, Technical University of Munich, 2008.</ref> by&nbsp; [[Biographies_and_Bibliographies/Chair_holders_of_the_LNT_since_1962#Prof._Dr._Ralf_K.C3.B6tter_.282007-2009.29|Ralf Kötter]]&nbsp; and&nbsp; [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Dr.-Ing._Georg_Zeitler_.28at_LNT_from_2007-2012.29|Georg Zeitler]],&nbsp; which is closely based on the textbook [WJ65]<ref name='WJ65'>Wozencraft, J. M.; Jacobs, I. M.:&nbsp; Principles of Communication Engineering.&nbsp; New York: John Wiley & Sons, 1965.</ref>. [[Biographies_and_Bibliographies/Chair_holders_of_the_LNT_since_1962#Prof._Dr._sc._techn._Gerhard_Kramer_.28seit_2010.29|Gerhard Kramer]],&nbsp; who has held the chair at the LNT since 2010,&nbsp; treats the same topic with very similar nomenclature in his lecture [Kra17]<ref>Kramer, G.:&nbsp; Nachrichtentechnik 2. Lecture notes, Institute for Communications Engineering, Technical University of Munich, 2017.</ref>.&nbsp; In order not to make reading unnecessarily difficult for our own students at TU Munich,&nbsp; we stick to this nomenclature as far as possible,&nbsp; even if it deviates from other&nbsp; $\rm LNTwww$&nbsp; chapters.<br>
  
== Zur Nomenklatur im vierten Kapitel (2) ==
+
== Nomenclature in the fourth chapter==
 
<br>
 
<br>
Gegenüber den anderen Kapiteln in <i>LNTwww</i> ergeben sich hier folgende Nomenklaturunterschiede:
+
Compared to the other&nbsp;  $\rm LNTwww$&nbsp; chapters,&nbsp; the following nomenclature changes arise here:
*Die zu übertragende Nachrich ist ein ganzzahliger Wert <i>m</i> &#8712; {<i>m<sub>i</sub></i>} mit &nbsp;<i>i</i> = 0, ... , <i>M</i> &ndash; 1, wobei <i>M</i> den Symbolumfang angibt. Wenn es die Beschreibung vereinfacht, wird &nbsp;<i>i</i> = 1, ... , <i>M</i> &nbsp;induziert.<br>
+
*The&nbsp; [[Signal_Representation/Principles_of_Communication#Message_-_Information_-_Signal|"message"]]&nbsp; to be transmitted is an integer value&nbsp; $m \in \{m_i\}$&nbsp; with &nbsp;$i = 0$, ... , $M-1$,&nbsp; where &nbsp;$M$&nbsp; specifies the&nbsp; "symbol set size". <br>If it simplifies the description, &nbsp;$i = 1$, ... , $M$&nbsp; &nbsp; is induced.<br>
  
*Das Ergebnis des Entscheidungsprozesses beim Empfänger ist ebenfalls ein Integerwert mit dem gleichen Symbolalphabet wie beim Sender. Man bezeichnet dieses Ergebnis auch als Schätzwert:
+
*The result of the decision process at the receiver is also an integer with the same symbol alphabet as at the transmitter.&nbsp; <br>This result is also referred to as the&nbsp; "estimated value":
 +
:$$\hat{m} \in \{m_i \}, \hspace{0.2cm} i = 0, 1, \text{...}\hspace{0.05cm} , M-1\hspace{0.2cm} ({\rm or}\,\,i = 1, 2, \text{...}\hspace{0.05cm}, M) \hspace{0.05cm}.$$
  
::<math>\hat{m} \in \{m_i \}, \hspace{0.2cm} i = 0, 1, ...\hspace{0.05cm} , M-1\hspace{0.2cm} ({\rm bzw.}\,\,i = 1, 2, ... \hspace{0.05cm}, M) \hspace{0.05cm}.</math>
+
*The&nbsp; [[Digital_Signal_Transmission/Redundancy-Free_Coding#Symbol_and_bit_error_probability|"symbol error probability"]]&nbsp; $\rm Pr(symbol\hspace{0.15cm}  error)$&nbsp; or&nbsp; $p_{\rm S}$&nbsp; is usually referred to as follows in this main chapter:
 +
:$${\rm Pr}  ({\cal E}) = {\rm Pr} ( \hat{m} \ne m) = 1 -  {\rm Pr}  ({\cal C}),
 +
\hspace{0.4cm}\text{complementary event:}\hspace{0.2cm} {\rm Pr} ({\cal C}) = {\rm Pr} ( \hat{m} = m) \hspace{0.05cm}.$$
  
*Die Symbolfehlerwahrscheinlichkeit wird meist wie folgt bezeichnet:
+
*In a&nbsp; [[Theory_of_Stochastic_Signals/Probability_Density_Function|"probability density function"]]&nbsp; $\rm (PDF)$,&nbsp; a distinction is made between the&nbsp; "random variable" &nbsp; &rArr; &nbsp; $r$&nbsp; and the&nbsp; "realization" &nbsp; &rArr; &nbsp; $\rho$&nbsp; according to &nbsp; $p_r(\rho)$.&nbsp; <br>Formerly,  &nbsp;$f_r(r)$&nbsp; was used for this PDF. <br>
  
::<math>{\rm Pr}  ({\cal E}) = {\rm Pr} ( \hat{m} \ne m) = 1 -  {\rm Pr}  ({\cal C}),
+
*With the notation &nbsp;$p_r(\rho)$,&nbsp; &nbsp;$r$&nbsp; and &nbsp;$\rho$&nbsp; are scalars.&nbsp; On the other hand,&nbsp; if random variable and realization are vectors&nbsp; (of suitable length),&nbsp; this is expressed in bold type: &nbsp; &nbsp; $p_{ \boldsymbol{ r}}(\boldsymbol{\rho})$&nbsp; with the vectors &nbsp;$ \boldsymbol{ r}$&nbsp; and &nbsp;$\boldsymbol{\rho}$.
\hspace{0.4cm}{\rm Komplement\ddot{a}rereignis\hspace{-0.1cm}:}\hspace{0.2cm} {\rm Pr} ({\cal C}) = {\rm Pr} ( \hat{m} = m) \hspace{0.05cm}.</math>
 
  
:Im Fließtext wird aufgrund des durch HTML eingeschränkten Zeichensatzes &bdquo;Pr(Symbolfehler)&rdquo; oder auch &bdquo;<i>p</i><sub>S</sub>&rdquo; verwendet.<br>
+
*In order to avoid confusion with energy values,&nbsp; the&nbsp; "threshold value is"&nbsp; now called &nbsp;$G$&nbsp; instead of &nbsp;$E$.&nbsp; This is mainly referred to as the&nbsp; "decision threshold"&nbsp; in this chapter.  
  
*Bei einer Wahrscheinlichkeitsdichtefunktion (WDF) wird nun entsprechend <i>p<sub>r</sub></i>(<i>&rho;</i>) zwischen der Zufallsgröße (<i>r</i>) und der Realisierung (<i>&rho;</i>) unterschieden. Bisher wurde für eine WDF die Bezeichnung &bdquo;<i>f<sub>r</sub></i>(<i>r</i>)&rdquo; verwendet &ndash; siehe Kapitel 3.1 im Buch &bdquo;Stochastische Signaltheorie&rdquo;.<br>
+
*Based on the two real and energy-limited time functions &nbsp;$x(t)$&nbsp; and &nbsp;$y(t)$,&nbsp; the &nbsp;[https://de.wikipedia.org/wiki/Inneres_Produkt "inner product"]&nbsp; is:
 +
:$$<\hspace{-0.1cm}x(t), \hspace{0.05cm}y(t) \hspace{-0.1cm}> \hspace{0.15cm}= \int_{-\infty}^{+\infty}x(t) \cdot y(t)\,d \it t
 +
\hspace{0.05cm}.$$
 +
* This results in the&nbsp; [https://en.wikipedia.org/wiki/Euclidean_space#Euclidean_norm "Euclidean norm"]&nbsp; or&nbsp; "2&ndash;norm"&nbsp; $($or&nbsp; "norm"&nbsp; for short$)$:
 +
:$$||x(t) || = \sqrt{<\hspace{-0.1cm}x(t), \hspace{0.05cm}x(t) \hspace{-0.1cm}>}
 +
\hspace{0.05cm}.$$
  
*Mit der Schreibweise <i>p<sub>r</sub></i>(<i>&rho;</i>) geben <i>r</i> und <i>&rho;</i> Skalare an. Sind dagegen Zufallsgröße und Realisierung Vektoren (geeigneter Länge), so wird dies durch Fettschrift ausgedrückt:
+
*Compared to the script &nbsp;[KöZ08]<ref name='KöZ08' />,&nbsp; the naming differs as follows:
 +
#The probability of the event &nbsp;$E$&nbsp; is &nbsp;${\rm Pr}(E)$&nbsp; instead of &nbsp;$P(E)$.&nbsp; <br>This nomenclature change was also made because in some equations&nbsp; "probabilities"&nbsp; and&nbsp; "powers"&nbsp; appear together.<br>
 +
#Band&ndash;pass signals are still marked with the index "BP" and not with a tilde as in&nbsp; [KöZ08]<ref name='KöZ08' />. <br>The corresponding&nbsp; "low-pass signal"&nbsp; is&nbsp; (usually)&nbsp; provided with the index&nbsp; "TP"&nbsp; $($from German&nbsp; "Tiefpass"$)$.<br>
  
::<math>p_{ \boldsymbol{ r}}(\boldsymbol{\rho}){\rm \hspace{0.15cm}mit \hspace{0.15cm}den \hspace{0.15cm}Vektoren\hspace{0.15cm}}
+
== Orthonormal basis functions ==
  \boldsymbol{ r}{\rm \hspace{0.15cm}und\hspace{0.15cm}}\boldsymbol{\rho}.\hspace{0.05cm}</math>
+
<br>
 +
In this chapter,&nbsp; we assume a set &nbsp;$\{s_i(t)\}$&nbsp; of possible transmitted signals that are uniquely assigned to the possible messages &nbsp;$m_i$.&nbsp; With &nbsp;$i = 1$, ... , $M$&nbsp; holds:
 +
:$$m \in \{m_i \}, \hspace{0.2cm} s(t) \in \{s_i(t) \}\hspace{-0.1cm}: \hspace{0.3cm} m = m_i \hspace{0.1cm} \Leftrightarrow \hspace{0.1cm} s(t) = s_i(t) \hspace{0.05cm}.$$
 +
 
 +
For what follows,&nbsp; we further assume that the&nbsp; $M$ signals&nbsp; $s_i(t)$&nbsp; are&nbsp; [[Signal_Representation/Signal_classification#Energy.E2.80.93Limited_and_Power.E2.80.93Limited_Signals| "energy-limited"]],&nbsp; which usually means at the same time that they are of finite duration.<br>
  
*Um Verwechslungen mit Energiewerten zu vermeiden, heißt nun der <i>Schwellenwert</i> <i>G</i> anstelle von <i>E</i> und wird in diesem Kapitel vorwiegend als Entscheidungsgrenze bezeichnet.
+
{{BlaueBox|TEXT= 
 +
$\text{Theorem:}$&nbsp; Any set&nbsp; $\{s_1(t), \hspace{0.05cm}  \text{...} \hspace{0.05cm} , s_M(t)\}$&nbsp; of energy-limited signals can be evolved into&nbsp; $N \le M$&nbsp;  '''orthonormal basis functions'''&nbsp; $\varphi_1(t),  \hspace{0.05cm} \text{...} \hspace{0.05cm} , \varphi_N(t)$.&nbsp; It holds:
  
*Ausgehend von den beiden reellen und energiebegrenzten Zeitfunktionen <i>x</i>(<i>t</i>) und <i>y</i>(<i>t</i>) erhält man für das innere Produkt
+
:$$s_i(t) = \sum\limits_{j = 1}^{N}s_{ij} \cdot \varphi_j(t) ,
 +
\hspace{0.3cm}i = 1,\hspace{0.05cm} \text{...}\hspace{0.1cm} , M, \hspace{0.3cm}j = 1,\hspace{0.05cm} \text{...} \hspace{0.1cm}, N
 +
\hspace{0.05cm}.$$
  
::<math><\hspace{-0.1cm}x(t), \hspace{0.05cm}y(t) \hspace{-0.1cm}> \hspace{0.15cm}= \int_{-\infty}^{+\infty}x(t) \cdot y(t)\,d \it t
+
*In each case, two basis functions&nbsp; $\varphi_j(t)$&nbsp; and &nbsp;$\varphi_k(t)$&nbsp; must be orthonormal to each other, that is, it must hold &nbsp; <br>$(\delta_{jk}$&nbsp; is called&nbsp; [https://en.wikipedia.org/wiki/Kronecker_delta "Kronecker symbol"]&nbsp; or&nbsp; "Kronecker delta"$)$:
\hspace{0.05cm},</math>
 
  
:und für die 2&ndash;Norm (oder kurz Norm):
+
:$$<\hspace{-0.1cm}\varphi_j(t), \hspace{0.05cm}\varphi_k(t) \hspace{-0.1cm}> = \int_{-\infty}^{+\infty}\varphi_j(t) \cdot \varphi_k(t)\,d \it t = {\rm \delta}_{jk} =
 +
\left\{ \begin{array}{c} 1 \\
 +
0  \end{array} \right.\quad
 +
\begin{array}{*{1}c} {\rm if}\hspace{0.1cm}j = k
 +
\\ {\rm if}\hspace{0.1cm} j \ne k \\ \end{array}
 +
\hspace{0.05cm}.$$}}<br>
  
::<math>||x(t) || = \sqrt{<\hspace{-0.1cm}x(t), \hspace{0.05cm}x(t) \hspace{-0.1cm}>}
+
Here,&nbsp; the parameter&nbsp; $N$&nbsp; indicates how many basis functions&nbsp; $\varphi_j(t)$&nbsp; are needed to represent the&nbsp; $M$&nbsp; possible transmitted signals.&nbsp; In other words: &nbsp; $N$&nbsp; is the&nbsp; "dimension of the vector space"&nbsp; spanned by the&nbsp; $M$&nbsp; signals.&nbsp; Here,&nbsp; the following holds:
\hspace{0.05cm}.</math>
+
#If&nbsp; $N = M$,&nbsp; all transmitted signals are orthogonal to each other.
 +
#They are not necessarily orthonormal,&nbsp; i.e. the energies&nbsp; $E_i = <\hspace{-0.1cm}s_i(t), \hspace{0.05cm}s_i(t) \hspace{-0.1cm}>$&nbsp; may well be unequal to one.<br>
 +
#$N < M$&nbsp; arises when at least one signal&nbsp; $s_i(t)$&nbsp; can be represented as linear combination of basis functions&nbsp; $\varphi_j(t)$&nbsp; that have resulted from other signals&nbsp; $s_j(t) \ne s_i(t)$.&nbsp; <br>
  
Gegenüber dem Skript Kötter, R., Zeitler, G.: ''Nachrichtentechnik 2''. Vorlesungsmanuskript, Lehrstuhl für Nachrichtentechnik, Technische Universität München, 2008 unterscheidet sich die Bezeichnungsweise hier wie folgt:
 
*Die Wahrscheinlichkeit des Ereignisses &bdquo;E&rdquo; ist Pr(&bdquo;E&rdquo;); in  Kötter, R., Zeitler, G.: ''Nachrichtentechnik 2''. Vorlesungsmanuskript, Lehrstuhl für Nachrichtentechnik, Technische Universität München, 2008 wird hier <i>P</i>(&bdquo;E&rdquo;) verwendet. Diese Nomenklaturänderung wurde auch deshalb vorgenommen, da Wahrscheinlichkeiten und Leistungen in manchen Gleichungen gemeinsam vorkommen.<br>
 
  
*Bandpass&ndash;Signale werden weiterhin mit Index &bdquo;BP&rdquo; gekennzeichnet und nicht wie in  Kötter, R., Zeitler, G.: ''Nachrichtentechnik 2''. Vorlesungsmanuskript, Lehrstuhl für Nachrichtentechnik, Technische Universität München, 2008 mit einer Tilde. Das entsprechende Tiefpass&ndash;Signal ist (meist) mit dem Index &bdquo;TP&rdquo; versehen.<br>
+
{{GraueBox|TEXT= 
 +
$\text{Example 1:}$&nbsp; We consider&nbsp; $M = 3$&nbsp; energy-limited signals according to the graph.&nbsp; One recognizes immediately:
 +
[[File:P ID1993 Dig T 4 1 S2 version1.png|right|frame|Representation of three transmitted signals by two basis functions|class=fit]]
  
== Orthonormale Basisfunktionen (1) ==
+
*The signals&nbsp; $s_1(t)$&nbsp; and &nbsp;$s_2(t)$&nbsp; are orthogonal to each other.<br>
<br>
+
 
Wir gehen in diesem Kapitel von einem Satz {<i>s<sub>i</sub></i>(<i>t</i>)} möglicher Sendesignale aus, die den möglichen Nachrichten <i>m<sub>i</sub></i> eineindeutig zugeordnet werden können. Mit <i>i</i> = 1, ... , <i>M</i> gilt:
+
*The energies are&nbsp; $E_1 = A^2 \cdot T = E$ &nbsp; and &nbsp; $E_2 = (A/2)^2 \cdot T = E/4$.<br>
  
:<math>m \in \{m_i \}, \hspace{0.2cm} s(t) \in \{s_i(t) \}\hspace{-0.1cm}: m = m_i  \hspace{0.1cm} \Leftrightarrow \hspace{0.1cm} s(t) = s_i(t) \hspace{0.05cm}.</math>
+
*The basis functions&nbsp; $\varphi_1(t)$&nbsp; and &nbsp;$\varphi_2(t)$&nbsp; are equal in form to&nbsp; $s_1(t)$&nbsp; and&nbsp;  $s_2(t)$,&nbsp; resp., and both have energy one:
  
Weiter setzen wir für das Folgende voraus, dass die <i>M</i> Signale <i>s<sub>i</sub></i>(<i>t</i>) energiebegrenzt sind, was meist gleichzeitig bedeutet, dass sie nur von endlicher Dauer sind.<br>
+
:$$\varphi_1(t)=\frac{s_1(t)}{\sqrt{E_1} } = \frac{s_1(t)}{\sqrt{A^2 \cdot T} } = \frac{1}{\sqrt{ T} }  \cdot \frac{s_1(t)}{A}$$
 +
:$$\hspace{0.5cm}\Rightarrow \hspace{0.1cm}s_1(t) = s_{11} \cdot \varphi_1(t)\hspace{0.05cm},\hspace{0.1cm}s_{11} = \sqrt{E}\hspace{0.05cm},$$
 +
:$$\varphi_2(t) =\frac{s_2(t)}{\sqrt{E_2} } = \frac{s_2(t)}{\sqrt{(A/2)^2 \cdot T} } = \frac{1}{\sqrt{ T} }  \cdot \frac{s_2(t)}{A/2}\hspace{0.05cm}$$
 +
:$$\hspace{0.5cm}\Rightarrow \hspace{0.1cm}s_2(t) = s_{21} \cdot \varphi_2(t)\hspace{0.05cm},\hspace{0.1cm}s_{21} = {\sqrt{E} }/{2}\hspace{0.05cm}.$$
  
{{Satz}}''':''' Eine jede Menge {<i>s</i><sub>1</sub>(<i>t</i>), ... , <i>s<sub>M</sub></i>(<i>t</i>)} energiebegrenzter Signale lässt sich in N &#8804; M;  orthonormale Basisfunktionen <i>&phi;</i><sub>1</sub>(<i>t</i>), ... , <i>&phi;<sub>N</sub></i>(<i>t</i>) entwickeln, wobei gilt:
+
*$s_3(t)$&nbsp; can be expressed by the previously determined basis functions&nbsp; $\varphi_1(t)$,&nbsp; $\varphi_2(t)$:&nbsp;  
 +
:$$s_3(t) =s_{31} \cdot \varphi_1(t) + s_{32} \cdot \varphi_2(t)\hspace{0.05cm},$$
 +
:$$\hspace{0.5cm}\Rightarrow \hspace{0.1cm}
 +
s_{31} = {A}/{2} \cdot \sqrt {T}=  {\sqrt{E} }/{2}\hspace{0.05cm}, \hspace{0.2cm}s_{32} = - A \cdot \sqrt {T} = -\sqrt{E}  \hspace{0.05cm}.$$
  
:<math>s_i(t) = \sum\limits_{j = 1}^{N}s_{ij} \cdot \varphi_j(t) ,
 
\hspace{0.3cm}i = 1,\hspace{0.05cm} ...\hspace{0.1cm} , M, \hspace{0.3cm}j = 1,\hspace{0.05cm} ... \hspace{0.1cm}, N
 
\hspace{0.05cm}.</math>
 
  
Jeweils zwei Basisfunktionen <i>&phi;<sub>j</sub></i>(<i>t</i>) und <i>&phi;<sub>k</sub></i>(<i>t</i>) müssen orthonormal zueinander sein, das heißt, es muss gelten (&delta;<sub><i>jk</i></sub> nennt man das Kronecker&ndash;Symbol):
+
&rArr; &nbsp; In the lower right image,&nbsp;  the signals are shown in a two-dimensional representation
 +
*with the basis functions&nbsp; $\varphi_1(t)$&nbsp; and &nbsp;$\varphi_2(t)$&nbsp; as axes,  
 +
*where&nbsp; $E = A^2 \cdot T$&nbsp; and the relation to the other graphs can be seen by the coloring.
  
:<math><\hspace{-0.1cm}\varphi_j(t), \hspace{0.05cm}\varphi_k(t) \hspace{-0.1cm}> = \int_{-\infty}^{+\infty}\varphi_j(t) \cdot \varphi_k(t)\,d \it t = {\rm \delta}_{jk} =
 
\left\{ \begin{array}{c} 1 \\
 
0  \end{array} \right.\quad
 
\begin{array}{*{1}c} {\rm falls}\hspace{0.1cm}j = k
 
\\ {\rm falls}\hspace{0.1cm} j \ne k \\ \end{array}
 
\hspace{0.05cm}.</math> {{end}}<br>
 
  
Der Parameter <i>N</i> gibt dabei an, wieviele Basisfunktionen <i>&phi;<sub>j</sub></i>(<i>t</i>) benötigt werden, um die <i>M</i> möglichen Sendesignale darzustellen. Mit anderen Worten: <i>N</i> ist die Dimension des Vektorraums, der von den <i>M</i> Signalen aufgespannt wird. Dabei gilt:
+
&rArr;  &nbsp; The vectorial representatives of the signals&nbsp; $s_1(t)$,&nbsp; $s_2(t)$&nbsp; and&nbsp; $s_3(t)$&nbsp; in the two-dimensional vector space can be read from this sketch as follows:
*Ist <i>N</i> = <i>M</i>, so sind alle Sendesignale zueinander orthogonal. Sie sind nicht notwendigerweise orthonormal, das heißt, die Energien <i>E<sub>i</sub></i> = &#9001;<i>s<sub>i</sub></i>(<i>t</i>),&nbsp; <i>s<sub>i</sub></i>(<i>t</i>)&#9002; können durchaus ungleich 1 sein.<br>
+
:$$\mathbf{s}_1 = (\sqrt{ E}, \hspace{0.1cm}0), $$
*<i>N</i> < <i>M</i> ergibt sich, wenn mindestens ein Signal <i>s<sub>i</sub></i>(<i>t</i>) als Linearkombination von Basisfunktionen <i>&phi;<sub>j</sub></i>(<i>t</i>) dargestellt werden kann, die sich aus anderen Signalen <i>s<sub>j</sub></i>(<i>t</i>) &ne; <i>s<sub>i</sub></i>(<i>t</i>) ergeben haben.<br>
+
:$$\mathbf{s}_2 = (0, \hspace{0.1cm}\sqrt{ E}/2), $$
 +
:$$\mathbf{s}_3 = (\sqrt{ E}/2,\hspace{0.1cm}-\sqrt{ E} )   \hspace{0.05cm}.$$}}
 +
<br clear= all>
  
== Orthonormale Basisfunktionen (2) ==
+
== The Gram-Schmidt process==
 
<br>
 
<br>
{{Beispiel}}''':''' Wir betrachten <i>M</i> = 3 energiebegrenzte Signale gemäß der Grafik. Man erkennt sofort, dass
+
In &nbsp;$\text{Example 1}$&nbsp; in the last section,&nbsp; the specification of the two orthonormal basis functions&nbsp; $\varphi_1(t)$&nbsp; and&nbsp; $\varphi_2(t)$&nbsp; was very easy,&nbsp; because they were of the same form as&nbsp; $s_1(t)$&nbsp; and&nbsp;  $s_2(t)$,&nbsp; respectively. The&nbsp; [https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process "Gram-Schmidt process"]&nbsp; finds the basis functions&nbsp; $\varphi_1(t)$, ... , $\varphi_N(t)$&nbsp; for arbitrary predefinable signals&nbsp; $s_1(t)$, ... , $s_M(t)$, as follows:
*<i>s</i><sub>1</sub>(<i>t</i>) und <i>s</i><sub>2</sub>(<i>t</i>) zueinander orthogonal sind,<br>
+
 
 +
*The first basis function&nbsp; $\varphi_1(t)$&nbsp; is always equal in form to&nbsp; $s_1(t)$.&nbsp; It holds:
 +
:$$\varphi_1(t) = \frac{s_1(t)}{\sqrt{E_1}} = \frac{s_1(t)}{|| s_1(t)||}
 +
\hspace{0.3cm}\Rightarrow \hspace{0.3cm} || \varphi_1(t) || = 1, \hspace{0.2cm}s_{11} =|| s_1(t)||,\hspace{0.2cm}s_{1j} = 0 \hspace{0.2cm}{\rm f{\rm or }}\hspace{0.2cm} j \ge 2
 +
\hspace{0.05cm}.$$
 +
 
 +
*It is now assumed that from the signals&nbsp; $s_1(t)$, ... , $s_{k-1}(t)$&nbsp; the basis functions&nbsp; $\varphi_1(t)$, ... , $\varphi_{n-1}(t)$&nbsp; have been calculated &nbsp;$(n \le k)$.&nbsp; Then,&nbsp; using&nbsp; $s_k(t)$,&nbsp; we compute the auxiliary function
 +
:$$\theta_k(t) = s_k(t) - \sum\limits_{j = 1}^{n-1}s_{kj} \cdot \varphi_j(t) \hspace{0.4cm}{\rm with}\hspace{0.4cm}
 +
s_{kj} = \hspace{0.1cm} < \hspace{-0.1cm} s_k(t), \hspace{0.05cm}\varphi_j(t) \hspace{-0.1cm} >, \hspace{0.2cm} j = 1, \hspace{0.05cm} \text{...}\hspace{0.05cm}, n-1\hspace{0.05cm}.$$
  
*die Energie <i>E</i><sub>1</sub> = <i>A</i><sup>2</sup> &middot; <i>T</i> = <i>E</i> ist und <i>E</i><sub>2</sub> = <i>E</i>/4 gilt,<br>
+
*If&nbsp; $\theta_k(t) \equiv 0$ &nbsp; &#8658; &nbsp; $||\theta_k(t)|| = 0$,&nbsp; then&nbsp; $s_k(t)$&nbsp; does not yield a new basis function.&nbsp; Rather,&nbsp; $s_k(t)$&nbsp; can then be expressed by the&nbsp; $n-1$&nbsp; basis functions &nbsp;$\varphi_1(t)$, ... , $\varphi_{n-1}(t)$&nbsp; already found before:
 +
:$$s_k(t) = \sum\limits_{j = 1}^{n-1}s_{kj}\cdot \varphi_j(t)  \hspace{0.05cm}.$$
  
*<i>&phi;</i><sub>1</sub>(<i>t</i>) und <i>&phi;</i><sub>2</sub>(<i>t</i>) jeweils formgleich mit <i>s</i><sub>1</sub>(<i>t</i>) bzw. <i>s</i><sub>2</sub>(<i>t</i>) sind und beide die Energie 1 besitzen:
+
*A new basis function&nbsp; $($namely,&nbsp; the &nbsp;$n$&ndash;th$)$&nbsp; results if &nbsp;$||\theta_k(t)|| \ne 0$:&nbsp;  
 +
:$$\varphi_n(t) =  \frac{\theta_k(t)}{|| \theta_k(t)||}
 +
\hspace{0.3cm}\Rightarrow \hspace{0.3cm} || \varphi_n(t) || = 1\hspace{0.05cm}.$$
  
::<math>\varphi_1(t) \hspace{-0.15cm}  =  \hspace{-0.15cm}\frac{s_1(t)}{\sqrt{E_1}} = \frac{s_1(t)}{\sqrt{A^2 \cdot T}} = \frac{1}{\sqrt{ T}}  \cdot \frac{s_1(t)}{A}\hspace{0.95cm}\Rightarrow \hspace{0.1cm}s_1(t) = s_{11} \cdot \varphi_1(t)\hspace{0.05cm},\hspace{0.1cm}s_{11} = \sqrt{E}\hspace{0.05cm},</math>
+
This process is continued until all&nbsp; $M$&nbsp; signals have been considered.&nbsp; Then all&nbsp; $N \le M$&nbsp; orthonormal basis functions&nbsp; $\varphi_j(t)$&nbsp; have been found.&nbsp; The special case&nbsp; $N = M$&nbsp; arises only if all&nbsp; $M$&nbsp; signals are linearly independent.<br>
::<math>\varphi_2(t) \hspace{-0.15cm}  =  \hspace{-0.15cm}\frac{s_2(t)}{\sqrt{E_2}} = \frac{s_2(t)}{\sqrt{(A/2)^2 \cdot T}} = \frac{1}{\sqrt{ T}}  \cdot \frac{s_2(t)}{A/2}\hspace{0.05cm}\hspace{0.1cm}\Rightarrow \hspace{0.1cm}s_2(t) = s_{21} \cdot \varphi_2(t)\hspace{0.05cm},\hspace{0.1cm}s_{21} = \frac{\sqrt{E}}{2}\hspace{0.05cm}.</math>
 
  
*<i>s</i><sub>3</sub>(<i>t</i>) durch die Basisfunktionen <i>&phi;</i><sub>1</sub>(<i>t</i>) und <i>&phi;</i><sub>2</sub>(<i>t</i>) ausgedrückt werden kann:
+
:*This process is now illustrated by an example.
 +
:*We also refer to the&nbsp; (German language)&nbsp; HTML5/JavaScript applet&nbsp; [https://www.lntwww.de/Applets:Das_Gram-Schmidt-Verfahren "Das Gram-Schmidt-Verfahren"] &nbsp; &rArr; &nbsp; "Gram–Schmidt process".
  
::<math>s_3(t) \hspace{-0.1cm}  =  \hspace{-0.1cm}s_{31} \cdot \varphi_1(t) + s_{32} \cdot \varphi_2(t)\hspace{0.05cm},</math>
 
::<math>s_{31} \hspace{-0.1cm}  =  \hspace{-0.1cm} {A}/{2} \cdot \sqrt {T}=  {\sqrt{E}}/{2}\hspace{0.05cm}, \hspace{0.2cm}s_{32} = - A \cdot \sqrt {T} = -\sqrt{E}  \hspace{0.05cm}.</math>
 
  
::[[File:P ID1993 Dig T 4 1 S2 version1.png|Darstellung der Sendesignale durch Basisfunktionen|class=fit]]<br>
+
{{GraueBox|TEXT= 
 +
$\text{Example 2:}$&nbsp; We consider the &nbsp;$M = 4$&nbsp; energy-limited signals &nbsp;$s_1(t)$, ... , $s_4(t)$.&nbsp; To simplify the calculations,&nbsp; both amplitude and time are normalized here.
  
Im rechten unteren Bild sind die Signale in einer 2D&ndash;Darstellung mit den Basisfunktionen <i>&phi;</i><sub>1</sub>(<i>t</i>) und <i>&phi;</i><sub>2</sub>(<i>t</i>) als Achsen dargestellt, wobei <i>E</i> = <i>A</i><sup>2</sup> &middot; <i>T</i> gilt und der Zusammenhang zu den anderen Grafiken durch die Farbgebung zu erkennen ist. Die vektoriellen Repräsentanten der Signale <i>s</i><sub>1</sub>(<i>t</i>), <i>s</i><sub>2</sub>(<i>t</i>) und <i>s</i><sub>3</sub>(<i>t</i>) in diesem zweidimensionellen Vektorraum lassen sich daraus wie folgt ablesen:
+
[[File:P ID1990 Dig T 4 1 S3 version1.png|center|frame|Gram-Schmidt process|class=fit]]
  
:<math>\mathbf{s}_1 = (\sqrt{ E}, \hspace{0.1cm}0), \hspace{0.2cm} \mathbf{s}_2 = (0, \hspace{0.1cm}\sqrt{ E}/2), \hspace{0.2cm} \mathbf{s}_3 = (\sqrt{ E}/2,\hspace{0.1cm}-\sqrt{ E} )   \hspace{0.05cm}.</math>{{end}}<br>
+
One can see from these sketches:
 +
*The basis function&nbsp; $\varphi_1(t)$&nbsp; is equal in form to&nbsp; $s_1(t)$.&nbsp; Because&nbsp; $E_1 = \vert \vert s_1(t) \vert \vert ^3 = 3 \cdot 0.5^2 = 0.75$,&nbsp; we get&nbsp; $s_{11} = \vert \vert s_1(t) \vert \vert = 0.866$. $\varphi_1(t)$&nbsp; itself has section-wise values&nbsp; $\pm 0.5/0.866 = \pm0.577$.
  
== Das Verfahren nach Gram-Schmidt (1) ==
+
*To calculate the auxiliary function&nbsp; $\theta_2(t)$,&nbsp; we compute
 +
 
 +
:$$s_{21}  = \hspace{0.1cm} < \hspace{-0.1cm} s_2(t), \hspace{0.05cm}\varphi_1(t) \hspace{-0.1cm} > \hspace{0.1cm} = 0 \cdot (+0.577) + 1 \cdot (-0.577)+ 0 \cdot (-0.577)= -0.577$$
 +
:$$ \Rightarrow  \hspace{0.3cm}\theta_2(t) = s_2(t) - s_{21} \cdot \varphi_1(t) = (0.333, 0.667, -0.333)
 +
\hspace{0.3cm}\Rightarrow  \hspace{0.3cm}\vert \vert \theta_2(t) \vert \vert^2 = (1/3)^2 + (2/3)^2 + (-1/3)^2 = 0.667$$
 +
:$$ \Rightarrow  \hspace{0.3cm} s_{22} = \sqrt{0.667} = 0.816,\hspace{0.3cm}
 +
\varphi_2(t) = \theta_2(t)/s_{22} = (0.408,\ 0.816,\ -0.408)\hspace{0.05cm}. $$
 +
 
 +
*The inner products between&nbsp; $s_3(t)$&nbsp; with&nbsp; $\varphi_1(t)$&nbsp; or &nbsp;$\varphi_2(t)$&nbsp; give the following results:
 +
:$$s_{31}  \hspace{0.1cm} =  \hspace{0.1cm} < \hspace{-0.1cm} s_3(t), \hspace{0.07cm}\varphi_1(t) \hspace{-0.1cm} > \hspace{0.1cm} = 0.5 \cdot (+0.577) + 0.5 \cdot (-0.577)- 0.5 \cdot (-0.577)= 0.289$$
 +
:$$s_{32}  \hspace{0.1cm} =  \hspace{0.1cm} < \hspace{-0.1cm} s_3(t), \hspace{0.07cm}\varphi_2(t) \hspace{-0.1cm} > \hspace{0.1cm} = 0.5 \cdot (+0.408) + 0.5 \cdot (+0.816)- 0.5 \cdot (-0.408)= 0.816$$
 +
:$$\Rightarrow  \hspace{0.3cm}\theta_3(t) = s_3(t) - 0.289 \cdot \varphi_1(t)- 0.816 \cdot \varphi_2(t) = 0\hspace{0.05cm}.$$
 +
 
 +
*This means: &nbsp; The green function&nbsp; $s_3(t)$&nbsp; does not yield a new basis function&nbsp; $\varphi_3(t)$,&nbsp; in contrast to the function&nbsp; $s_4(t)$.&nbsp; The numerical results for this can be taken from the graph.}}
 +
 
 +
== Basis functions of complex time signals ==
 
<br>
 
<br>
Im Beispiel auf der letzten Seite war die Angabe der beiden orthonormalen Basisfunktionen <i>&phi;</i><sub>1</sub>(<i>t</i>) und <i>&phi;</i><sub>2</sub>(<i>t</i>) sehr einfach, da diese formgleich mit <i>s</i><sub>1</sub>(<i>t</i>) und <i>s</i><sub>2</sub>(<i>t</i>) waren. Das Gram&ndash;Schmidt&ndash;Verfahren findet die Basisfunktionen <i>&phi;</i><sub>1</sub>(<i>t</i>), ... , <i>&phi;<sub>N</sub></i>(<i>t</i>) für beliebig vorgebbare Signale <i>s</i><sub>1</sub>(<i>t</i>), ... , <i>s<sub>M</sub></i>(<i>t</i>), und zwar wie folgt:
+
In Communications Engineering,&nbsp; one often has to deal with complex time functions,
 +
*not because there are complex signals in reality,&nbsp; but<br>
  
*Die erste Basisfunktion <i>&phi;</i><sub>1</sub>(<i>t</i>) ist formgleich mit <i>s</i><sub>1</sub>(<i>t</i>). Es gilt:
+
*because the description of a band-pass signal in the equivalent low-pass range leads to complex signals.<br><br>
  
::<math>\varphi_1(t) = \frac{s_1(t)}{\sqrt{E_1}} = \frac{s_1(t)}{|| s_1(t)||}
+
The determination of the&nbsp; $N \le M$&nbsp; '''complex-valued basis functions'''&nbsp; $\xi_k(t)$&nbsp; from the &nbsp;$M$&nbsp; complex signals&nbsp; $s_i(t)$&nbsp; can also be done using the&nbsp; [[Digital_Signal_Transmission/Signals,_Basis_Functions_and_Vector_Spaces#The_Gram-Schmidt_process| "Gram–Schmidt process"]],&nbsp; but it must now be taken into account that the inner product of two complex signals&nbsp; $x(t)$&nbsp; and&nbsp; $y(t)$&nbsp; must be calculated as follows:
\hspace{0.3cm}\Rightarrow \hspace{0.3cm} || \varphi_1(t) || = 1, \hspace{0.2cm}s_{11} =|| s_1(t)||,\hspace{0.2cm}s_{1j} = 0 \hspace{0.2cm}{\rm f{\rm \ddot{u}r }}\hspace{0.2cm} j \ge 2
+
:$$< \hspace{-0.1cm}x(t), \hspace{0.1cm}y(t)\hspace{-0.1cm} > \hspace{0.1cm} = \int_{-\infty}^{+\infty}x(t) \cdot y^{\star}(t)\,d \it t
\hspace{0.05cm}.</math>
+
\hspace{0.05cm}.$$
  
*Es wird nun angenommen, dass aus den Signalen <i>s</i><sub>1</sub>(<i>t</i>), ... , <i>s</i><sub><i>k</i>&ndash;1</sub>(<i>t</i>) bereits die Basisfunktionen <i>&phi;</i><sub>1</sub>(<i>t</i>), ... , <i>&phi;</i><sub><i>n</i>&ndash;1</sub>(<i>t</i>) berechnet wurden (<i>n</i> &#8804; <i>k</i>). Dann berechnen wir mittels <i>s<sub>k</sub></i>(<i>t</i>) die Hilfsfunktion
+
The corresponding equations are now with&nbsp; $i = 1, \text{..}. , M$&nbsp; and &nbsp;$k = 1, \text{..}. , N$:
 +
:$$s_i(t) = \sum\limits_{k = 1}^{N}s_{ik} \cdot \xi_k(t),\hspace{0.2cm}s_i(t) \in {\cal C},\hspace{0.2cm}s_{ik} \in {\cal C}
 +
,\hspace{0.2cm}\xi_k(t) \in {\cal C} \hspace{0.05cm},$$
  
::<math>\theta_k(t) = s_k(t) - \sum\limits_{j = 1}^{n-1}s_{kj} \cdot \varphi_j(t) \hspace{0.4cm}{\rm mit}\hspace{0.4cm}
+
:$$< \hspace{-0.1cm}\xi_k(t),\hspace{0.1cm} \xi_j(t)\hspace{-0.1cm} > \hspace{0.1cm} = \int_{-\infty}^{+\infty}\xi_k(t) \cdot \xi_j^{\star}(t)\,d \it t
s_{kj} = \hspace{0.1cm} < \hspace{-0.1cm} s_k(t), \hspace{0.05cm}\varphi_j(t) \hspace{-0.1cm} >, \hspace{0.2cm} j = 1, ... \hspace{0.1cm}, n-1\hspace{0.05cm}.</math>
+
= {\rm \delta}_{ik} =
 +
\left\{ \begin{array}{c} 1 \\
 +
0 \end{array} \right.\quad
 +
\begin{array}{*{1}c}{\rm if}\hspace{0.25cm} k = j
 +
\\ {\rm if}\hspace{0.25cm} k \ne j \\ \end{array}\hspace{0.05cm}.$$
  
*Ist <i>&theta;<sub>k</sub></i>(<i>t</i>) &equiv; 0 &nbsp;&#8658;&nbsp; ||<i>&theta;<sub>k</sub></i>(<i>t</i>)|| = 0, so liefert <i>s<sub>k</sub></i>(<i>t</i>) keine neue Basisfunktion. Vielmehr lässt sich dann <i>s<sub>k</sub></i>(<i>t</i>) durch die <i>n</i>&ndash;1 bereits vorher gefundenen Basisfunktionen <i>&phi;</i><sub>1</sub></i>(<i>t</i>), ... , <i>&phi;</i><sub><i>n</i>&ndash;1</sub>(<i>t</i>) ausdrücken:
+
Of course,&nbsp; any complex quantity can also be expressed by two real quantities,&nbsp; namely real part and imaginary part.&nbsp; Thus,&nbsp; the following equations are obtained here:
 +
:$$s_{i}(t) = s_{{\rm I}\hspace{0.02cm}i}(t) + {\rm j} \cdot s_{{\rm Q}\hspace{0.02cm}i}(t),
 +
\hspace{0.2cm} s_{{\rm I}\hspace{0.02cm}i}(t) = {\rm Re}\big [s_{i}(t)\big], \hspace{0.2cm} s_{{\rm Q}\hspace{0.02cm}i}(t) = {\rm Im} \big [s_{i}(t)\big ],$$
  
::<math>s_k(t) = \sum\limits_{j = 1}^{n-1}s_{kj}\cdot \varphi_j(t) \hspace{0.05cm}.</math>
+
:$$\xi_{k}(t) = \varphi_k(t) + {\rm j} \cdot \psi_k(t),
 +
\hspace{0.2cm} \varphi_k(t) = {\rm Re}\big [\xi_{k}(t)\big ], \hspace{0.2cm} \psi_k(t) = {\rm Im} \big [\xi_{k}(t)\big ],$$
  
*Eine neue Basisfunktion (nämlich die <i>n</i>&ndash;te) ergibt sich, falls ||<i>&theta;<sub>k</sub></i>(<i>t</i>)|| &ne; 0 ist:
+
:$$\hspace{0.35cm} s_{ik}  = s_{{\rm I}\hspace{0.02cm}ik} + {\rm j} \cdot s_{{\rm Q}\hspace{0.02cm}ik},
 +
\hspace{0.2cm} s_{{\rm I}ik} = {\rm Re} \big [s_{ik}\big ], \hspace{0.2cm} s_{{\rm Q}ik} = {\rm Im} \big [s_{ik}\big ],$$
  
::<math>\varphi_n(t) \frac{\theta_k(t)}{|| \theta_k(t)||}
+
:$$ \hspace{0.35cm} s_{{\rm I}\hspace{0.02cm}ik}  ={\rm Re}\big [\hspace{0.01cm} < \hspace{-0.1cm} s_i(t), \hspace{0.15cm}\varphi_k(t) \hspace{-0.1cm} > \hspace{0.1cm}\big ],  \hspace{0.2cm}s_{{\rm Q}\hspace{0.02cm}ik}  = {\rm Re}\big [\hspace{0.01cm} < \hspace{-0.1cm} s_i(t), \hspace{0.15cm}{\rm j} \cdot \psi_k(t) \hspace{-0.1cm} > \hspace{0.1cm}\big ]
\hspace{0.3cm}\Rightarrow \hspace{0.3cm} || \varphi_n(t) || = 1\hspace{0.05cm}.</math>
+
\hspace{0.05cm}. $$
  
Diese Prozedur kann fortgesetzt werden, bis alle <i>M</i> Signale berücksichtigt wurden. Danach hat man alle <i>N</i> &#8804; <i>M</i> orthonormalen Basisfunktionen <i>&phi;<sub>j</sub></i>(<i>t</i>) gefunden. Der Sonderfall <i>N</i> = <i>M</i> ergibt sich nur dann, wenn alle <i>M</i> Signale linear voneinander unabhängig sind.<br>
+
The nomenclature arises from the main application for complex basis functions, namely&nbsp; [[Modulation_Methods/Quadrature_Amplitude_Modulation#General_description_and_signal_space_allocation|"quadrature amplitude modulation"]]&nbsp; $\rm (QAM)$.  
 +
*The subscript&nbsp; "I"&nbsp; stands for inphase component and indicates the real part,
  
Auf der nächsten Seite wird das Gram&ndash;Schmidt&ndash;Verfahren an einem einfachen Beispiel verdeutlicht. Wir verweisen auch auf das folgende Interaktionsmodul:<br>
+
*while the quadrature component&nbsp; (imaginary part)&nbsp; is indicated by the index&nbsp; "Q".<br>
  
[[:File:gram-schmidt.swf|Gram&ndash;Schmidt&ndash;Verfahren]]<br>
 
  
== Das Verfahren nach Gram-Schmidt (2) ==
+
To avoid confusion with the imaginary unit&nbsp; "$\rm j$",&nbsp; here the complex basis functions&nbsp; $\xi_{k}(t)$&nbsp; were induced with&nbsp; $k$&nbsp; and not with&nbsp; $j$.<br>
 +
 
 +
== Dimension of the basis functions ==
 
<br>
 
<br>
{{Beispiel}}''':''' Wir betrachten die <i>M</i> = 4 energiebegrenzten Signale <i>s</i><sub>1</sub>(<i>t</i>), ... , <i>s</i><sub>4</sub>(<i>t</i>) entsprechend der Grafik. Zur Vereinfachung der Berechnungen ist hier sowohl die Amplitude als auch die Zeit normiert. Man erkennt:
+
In baseband transmission, the possible transmitted signals&nbsp; $($considering only one symbol duration$)$&nbsp; are
*Die Basisfunktion <i>&phi;</i><sub>1</sub>(<i>t</i>) ist formgleich mit <i>s</i><sub>1</sub>(<i>t</i>). Wegen <i>E</i><sub>1</sub> = ||<i>s</i><sub>1</sub>(<i>t</i>)||<sup>2</sup> = 3 &middot; 0.5<sup>2</sup> = 0.75 ergibt sich <i>s</i><sub>11</sub> = ||<i>s</i><sub>1</sub>(<i>t</i>)|| = 0.866. <i>&phi;</i><sub>1</sub>(<i>t</i>) selbst besitzt abschnittsweise die Werte &plusmn;0.5/0.866 = &plusmn;0.577.
+
:$$s_i(t) = a_i \cdot g_s(t), \hspace{0.2cm} i = 0,  \text{...}\hspace{0.05cm} , M-1,$$
  
*Zur Berechnung der Hilfsfunktion <i>&theta;</i><sub>2</sub>(<i>t</i>) berechnen wir
+
where&nbsp; $g_s(t)$&nbsp; indicates the&nbsp; "basic transmission pulse"&nbsp; and the&nbsp; $a_i$&nbsp; were denoted  in the first three main chapters as the possible&nbsp; "amplitude coefficients".&nbsp; It should be noted that from now on the values&nbsp; $0$&nbsp; to&nbsp; $M-1$&nbsp; are assumed for the indexing variable&nbsp; $i$.&nbsp;<br>
  
::<math>s_{21}  \hspace{-0.1cm} =  \hspace{-0.1cm}\hspace{0.1cm} < \hspace{-0.1cm} s_2(t), \hspace{0.05cm}\varphi_1(t) \hspace{-0.1cm} > \hspace{0.1cm} = 0 \cdot (+0.577) + 1 \cdot (-0.577)+ 0 \cdot (-0.577)= -0.577</math>
+
According to the description of this chapter,&nbsp; this is a one-dimensional modulation process&nbsp; $(N = 1)$,&nbsp; regardless of the level number&nbsp; $M$.
:::<math> \hspace{-0.1cm}\Rightarrow \hspace{-0.1cm}  \hspace{0.3cm}\theta_2(t) = s_2(t) - s_{21} \cdot \varphi_1(t) = (0.333, 0.667, -0.333)</math>
 
:::<math> \hspace{-0.1cm}\Rightarrow \hspace{-0.1cm}  \hspace{0.3cm}|| \theta_2(t) ||^2 = (1/3)^2 + (2/3)^2 + (-1/3)^2 = 0.667</math>
 
:::<math> \hspace{-0.1cm}\Rightarrow \hspace{-0.1cm}  \hspace{0.3cm} s_{22} = \sqrt{0.667} = 0.816,\hspace{0.2cm}
 
\varphi_2(t) = \theta_2(t)/s_{22} = (0.408, 0.816, -0.408)\hspace{0.05cm}. </math>
 
  
*Die inneren Produkte zwischen <i>s</i><sub>3</sub>(<i>t</i>) mit <i>&phi;</i><sub>1</sub>(<i>t</i>) bzw. <i>&phi;</i><sub>2</sub>(<i>t</i>) liefern folgende Ergebnisse:
+
{{BlaueBox|TEXT= 
 +
$\text{In the case of baseband transmission:}$
 +
*The basis function&nbsp; $\varphi_1(t)$&nbsp; is equal to the energy-normalized basic transmission pulse&nbsp; $g_s(t)$:&nbsp;  
 +
:$$\varphi_1(t) ={g_s(t)}/{\sqrt{E_{gs} } } \hspace{0.3cm}{\rm with}\hspace{0.3cm}
 +
E_{gs} = \int_{-\infty}^{+\infty}g_s^2(t)\,d \it t 
 +
\hspace{0.05cm}.$$
  
::<math>s_{31}  \hspace{0.1cm} =  \hspace{0.1cm} < \hspace{-0.1cm} s_3(t), \hspace{0.07cm}\varphi_1(t) \hspace{-0.1cm} > \hspace{0.1cm} = 0.5 \cdot (+0.577) + 0.5 \cdot (-0.577)- 0.5 \cdot (-0.577)= 0.289</math>
+
*The dimensionless amplitude coefficients&nbsp; $a_i$&nbsp; are to be converted into the signal space points&nbsp; $s_i$&nbsp; which have the unit "root of energy".<br>}}
::<math>s_{32}  \hspace{0.1cm} =  \hspace{0.1cm} < \hspace{-0.1cm} s_3(t), \hspace{0.07cm}\varphi_2(t) \hspace{-0.1cm} > \hspace{0.1cm} = 0.5 \cdot (+0.408) + 0.5 \cdot (+0.816)- 0.5 \cdot (-0.408)= 0.816</math>
 
:::<math> \hspace{0.1cm}\Rightarrow \hspace{-0.1cm}  \hspace{0.3cm}\theta_3(t) = s_3(t) - 0.289 \cdot \varphi_1(t)- 0.816 \cdot \varphi_2(t) = 0\hspace{0.05cm}.</math>
 
  
:Das bedeutet: Die grüne Funktion <i>s</i><sub>3</sub>(<i>t</i>) liefert keine neue Basisfunktion <i>&phi;</i><sub>3</sub>(<i>t</i>), im Gegensatz zur Funktion <i>s</i><sub>4</sub>(<i>t</i>). Die numerischen Ergebnisse hierfür können der Grafik entnommen werden.<br>
 
  
:[[File:P ID1990 Dig T 4 1 S3 version1.png|Zum Gram-Schmidt-Verfahren|class=fit]]{{end}}<br>
+
{{GraueBox|TEXT= 
 +
$\text{Example 3:}$&nbsp;
 +
The graph shows one-dimensional signal space constellations&nbsp; $(N=1)$&nbsp; for baseband transmission, viz.
 +
[[File:EN_Dig_T_4_1_S5_neu.png|right|frame|One-dimensional modulation processes|class=fit]]
 +
# &nbsp; binary unipolar (top) &nbsp; &rArr; &nbsp; $M = 2$,
 +
# &nbsp; binary bipolar (center) &nbsp; &rArr; &nbsp; $M = 2$, and
 +
# &nbsp; quaternary bipolar (bottom) &nbsp; &rArr; &nbsp; $M = 4$.
  
== Basisfunktionen komplexer Zeitsignale ==
 
<br>
 
In der Nachrichtentechnik hat man es oft mit komplexen Zeitfunktionen zu tun,
 
*nicht etwa, weil es komplexe Signale in der Realität gibt, sondern<br>
 
  
*weil die Beschreibung eines BP&ndash;Signals im äquivalenten TP&ndash;Bereich zu komplexen Signalen führt.<br><br>
+
The graph simultaneously describes the one-dimensional carrier frequency systems
 +
# &nbsp; [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation#On.E2.80.93off_keying_.282.E2.80.93ASK.29|"Two-level Amplitude Shift Keying"]]&nbsp; $\text{(2&ndash;ASK)}$, 
 +
# &nbsp;  [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation#Binary_phase_shift_keying_.28BPSK.29|"Binary Phase Shift Keying"]]&nbsp; $\text{(BPSK)}$,
 +
#&nbsp; [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation#M.E2.80.93level_amplitude_shift_keying_.28M.E2.80.93ASK.29|"Four-level Amplitude Shift Keying"]]&nbsp; $\text{(4&ndash;ASK)}$.<br>
 +
 
 +
<u>Note:</u>
 +
*The signals&nbsp; $s_i(t)$&nbsp; and the basis function &nbsp;$\varphi_1(t)$&nbsp; always refer to the equivalent low-pass range.
 +
 
 +
*In the band-pass region,&nbsp; $\varphi_1(t)$&nbsp; is a harmonic oscillation limited to the time domain&nbsp; $0 \le t \le T$.
 +
 
 +
*In the graph on the right,&nbsp; the two or four possible signals&nbsp; $s_i(t)$&nbsp; are given for the example&nbsp; "rectangular pulse".
  
Die Bestimmung der <i>N</i> &#8804; <i>M</i> komplexwertigen Basisfunktionen <i>&xi;<sub>k</sub></i>(<i>t</i>) aus den <i>M</i> komplexen Signalen <i>s<sub>i</sub></i>(<i>t</i>) kann ebenfalls mit dem [http://en.lntwww.de/index.php?title=Digitalsignal%C3%BCbertragung/Signale,_Basisfunktionen_und_Vektorr%C3%A4ume&action=submit#Das_Verfahren_nach_Gram-Schmidt_.281.29 Gram&ndash;Schmidt&ndash;Verfahren] erfolgen, doch ist nun zu berücksichtigen, dass das innere Produkt zweier komplexer Signale <i>x</i>(<i>t</i>) und <i>y</i>(<i>t</i>) wie folgt zu berechnen ist:
+
*From this,&nbsp; one can see the relationship between pulse amplitude&nbsp; $A$&nbsp; and signal energy&nbsp; $E = A^2 \cdot T$.&nbsp;}}
 +
<br clear =all>
 +
{{GraueBox|TEXT= 
 +
$\text{Example 4:}$
 +
The two-dimensional modulation processes  include:
 +
[[File:P ID1992 Dig T 4 1 S5b version1.png|right|frame|Two-dimensional signal space constellations for multi-level PSK and QAM|class=fit]]
 +
#[[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation#Multi-level_phase.E2.80.93shift_keying_.28M.E2.80.93PSK.29|"<i>M</i>&ndash;level Phase Shift Keying"]]&nbsp; (M&ndash;PSK),<br>
 +
#[[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation#Quadrature_amplitude_modulation_.28M-QAM.29|"Quadrature amplitude modulation"]]&nbsp; (4&ndash;QAM, 16&ndash;QAM, ...),<br>
 +
#[[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation#Binary_frequency_shift_keying_.282.E2.80.93FSK.29|"Binary (orthogonal) frequency shift keying"]]&nbsp; (2&ndash;FSK).<br>
  
:<math>< \hspace{-0.1cm}x(t), \hspace{0.1cm}y(t)\hspace{-0.1cm} > \hspace{0.1cm} = \int_{-\infty}^{+\infty}x(t) \cdot y^{\star}(t)\,d \it t
 
\hspace{0.05cm}.</math>
 
  
Die entsprechenden Gleichungen lauten nun mit &nbsp;<i>i</i> = 1, ... , <i>M</i>&nbsp; und &nbsp;<i>k</i> = 1, ... , <i>N</i>:
+
In general,&nbsp; for orthogonal FSK&nbsp; the number&nbsp; $N$&nbsp; of basis functions&nbsp; $\varphi_k(t)$&nbsp; is equal to the number&nbsp; $M$&nbsp; of possible transmitted signals&nbsp; $s_i(t)$ &nbsp; &rArr;  &nbsp; $N=2$&nbsp; is only possible for&nbsp; $M=2$.&nbsp;
  
:<math>s_i(t) = \sum\limits_{k = 1}^{N}s_{ik} \cdot \xi_k(t),\hspace{0.2cm}s_i(t) \in {\cal C},\hspace{0.2cm}s_{ik} \in {\cal C}
+
The graph describes two-dimensional modulation processes in the band-pass&nbsp; (left)&nbsp; and in the equivalent low-pass range&nbsp; (right):
,\hspace{0.2cm}\xi_k(t) \in {\cal C} \hspace{0.05cm},</math>
+
*The left graph shows&nbsp; "8&ndash;PSK".&nbsp; If we restrict us to the red points only &nbsp; &rArr; &nbsp;  "4&ndash;PSK"&nbsp;  is present&nbsp; ("Quaternary Phase Shift Keying",&nbsp; QPSK).<br>
  
:<math>< \hspace{-0.1cm}\xi_k(t),\hspace{0.1cm} \xi_j(t)\hspace{-0.1cm} > \hspace{0.1cm} = \int_{-\infty}^{+\infty}\xi_k(t) \cdot \xi_j^{\star}(t)\,d \it t
+
*The right-hand diagram refers to&nbsp; "16&ndash;QAM"&nbsp; or &ndash; if only the signal space points outlined in red are considered &ndash; to&nbsp; "4&ndash;QAM".
  = {\rm \delta}_{ik} =
+
   
\left\{ \begin{array}{c} 1 \\
+
*A comparison of the two images with appropriate axis scaling shows that&nbsp; "4&ndash;QAM"&nbsp; is identical to&nbsp; "QPSK".<br>
  0  \end{array} \right.\quad
 
\begin{array}{*{1}c}{\rm falls}\hspace{0.15cm} k = j
 
\\ {\rm falls}\hspace{0.15cm} k \ne j \\ \end{array}\hspace{0.05cm}.</math>
 
  
Natürlich lässt sich jede komplexe Größe auch durch zwei reelle Größen &ndash; nämlich durch den Realteil und den Imaginärteil &ndash; ausdrücken. Somit erhält man hier folgende Gleichungen:
+
*When considered as a band-pass system, the basis function&nbsp; $\varphi_1(t)$&nbsp;  is cosinusoidal and &nbsp; $\varphi_2(t)$&nbsp; $($minus$)$ sinusoidal &ndash; compare&nbsp; [[Aufgaben:Exercise_4.2:_AM/PM_Oscillations|"Exercise 4.2"]].<br>
  
:<math>s_{i}(t) \hspace{-0.1cm} =  \hspace{-0.1cm} s_{{\rm I}i}(t) + {\rm j} \cdot s_{{\rm Q}i}(t),
+
*On the other hand,&nbsp; after transforming the QAM systems into the equivalent low-pass range, &nbsp; $\varphi_1(t)$&nbsp; is equal to the energy-normalized&nbsp; $($i.e., with energy "1"$)$&nbsp; basic transmission pulse&nbsp; $g_s(t)$,&nbsp; while &nbsp; $\varphi_2(t)={\rm j} \cdot \varphi_1(t)$.&nbsp; For more details,&nbsp; please refer to &nbsp;[[Aufgaben:Exercise_4.2Z:_Eight-step_Phase_Shift_Keying|"Exercise 4.2Z"]].}}<br>
\hspace{0.2cm} s_{{\rm I}i}(t) = {\rm Re} [s_{i}(t)], \hspace{0.2cm} s_{{\rm Q}i}(t) = {\rm Im} [s_{i}(t)],</math>
+
<br>
  
:<math>\xi_{k}(t)  \hspace{-0.1cm} =  \hspace{-0.1cm} \varphi_k(t) + {\rm j} \cdot \psi_k(t),
+
== Exercises for the chapter ==
\hspace{0.2cm} \varphi_k(t) = {\rm Re} [\xi_{k}(t)], \hspace{0.2cm} \psi_k(t) = {\rm Im} [\xi_{k}(t)],</math>
+
<br>
 +
[[Aufgaben:Exercise_4.1:_About_the_Gram-Schmidt_Process|Exercise 4.1: About the Gram-Schmidt Method]]
  
:<math>\hspace{0.35cm} s_{ik}  \hspace{-0.1cm} =  \hspace{-0.1cm} s_{{\rm I}ik} + {\rm j} \cdot s_{{\rm Q}ik},
+
[[Aufgaben:Exercise_4.1Z:_Other_Basis_Functions|Exercise 4.1Z: Other Basis Functions]]
\hspace{0.2cm} s_{{\rm I}ik} = {\rm Re} [s_{ik}], \hspace{0.2cm} s_{{\rm Q}ik} = {\rm Im} [s_{ik}],</math>
 
  
:<math> \hspace{0.35cm} s_{{\rm I}ik}  \hspace{-0.1cm} =  \hspace{-0.1cm}{\rm Re}[\hspace{0.1cm} < \hspace{-0.1cm} s_i(t), \hspace{0.15cm}\varphi_k(t) \hspace{-0.1cm} > \hspace{0.1cm}],  \hspace{0.2cm}s_{{\rm Q}ik}  = {\rm Re}[\hspace{0.1cm} < \hspace{-0.1cm} s_i(t), \hspace{0.15cm}{\rm j} \cdot \psi_k(t) \hspace{-0.1cm} > \hspace{0.1cm}]
+
[[Aufgaben:Aufgabe_4.2:_AM/PM-Schwingungen|Exercise 4.2: AM/PM Oscillations]]
\hspace{0.05cm}. </math>
 
  
Die Nomenklatur ergibt sich aus der Hauptanwendung für komplexe Basisfunktionen, nämlich der Quadratur&ndash;Amplitudenmodulation (QAM). Der Index &bdquo;I&rdquo;  steht für Inphasekomponente und gibt den Realteil an, während die Quadraturkomponente (Imaginärteil) mit dem Index &bdquo;Q&rdquo; gekennzeichnet ist.<br>
+
[[Aufgaben:Exercise_4.2Z:_Eight-level_Phase_Shift_Keying|Exercise 4.2Z: Eight-level Phase Shift Keying]]
  
Um Verwechslungen mit der imaginären Einheit zu vermeiden, sind hier die komplexen Basisfunktionen <i>&xi;<sub>k</sub></i>(<i>t</i>) mit &bdquo;<i>k</i>&rdquo; induziert und nicht mit &bdquo;<i>j</i>&rdquo;.<br>
+
[[Aufgaben:Aufgabe_4.3:_Unterschiedliche_Frequenzen|Exercise 4.3: Different Frequencies]]
  
 +
==References==
  
 +
<references/>
  
  
 
{{Display}}
 
{{Display}}

Latest revision as of 12:11, 5 April 2023

# OVERVIEW OF THE FOURTH MAIN CHAPTER #


The fourth main chapter provides an abstract description of digital signal transmission,  which is based on basis functions and signal space constellations.  This makes it possible to treat very different configurations – for example band-pass systems and those for the baseband – in a uniform way.  The optimal receiver in each case has the same structure in all cases.

The following are dealt with in detail:

  1.   The meaning of  »basis functions«  and finding them using the  »Gram-Schmidt process«,
  2.   the  »structure of the optimal receiver«  for baseband transmission,
  3.   the  »theorem of irrelevance«  and its importance for the derivation of optimal detectors,
  4.   the  »optimal receiver for the AWGN channel«  and implementation aspects,
  5.   the system description by  »complex or  $N$–dimensional Gaussian noise«,
  6.   the  »error probability calculation and approximation«  under otherwise ideal conditions,
  7.   the application of the signal space description to  »carrier frequency systems«,
  8.   the different results for  »OOK, M-ASK, M-PSK, M-QAM and M-FSK«,
  9.   the different results for  »coherent and non-coherent demodulation«.


Almost all results of this chapter have already been derived in previous sections.  However,  the approach is fundamentally new:

  • In the  $\rm LNTwww$  book  "Modulation Methods"  and in the first three chapters of this book,  the specific system properties were already taken into account in the derivations – for example,  whether the digital signal is transmitted in baseband or whether digital amplitude,  frequency or phase modulation is present.
  • Here the systems are to be abstracted in such a way that they can be treated uniformly.  The optimal receiver in each case has the same structure in all cases,  and the error probability can also be specified for non-Gaussian distributed noise.

It should be noted that this rather global approach means that certain system deficiencies can only be recorded very imprecisely,  such as

  • the influence of a non-optimal receiver filter on the error probability,
  • an incorrect threshold  $($threshold drift$)$,  or
  • phase jitter  $($fluctuations in sampling times$)$.

In particular in the presence of intersymbol interference,  the procedure should therefore continue in accordance with the  third main chapter

The description is based on the script  [KöZ08][1] by  Ralf Kötter  and  Georg Zeitler,  which is closely based on the textbook [WJ65][2]. Gerhard Kramer,  who has held the chair at the LNT since 2010,  treats the same topic with very similar nomenclature in his lecture [Kra17][3].  In order not to make reading unnecessarily difficult for our own students at TU Munich,  we stick to this nomenclature as far as possible,  even if it deviates from other  $\rm LNTwww$  chapters.

Nomenclature in the fourth chapter


Compared to the other  $\rm LNTwww$  chapters,  the following nomenclature changes arise here:

  • The  "message"  to be transmitted is an integer value  $m \in \{m_i\}$  with  $i = 0$, ... , $M-1$,  where  $M$  specifies the  "symbol set size".
    If it simplifies the description,  $i = 1$, ... , $M$    is induced.
  • The result of the decision process at the receiver is also an integer with the same symbol alphabet as at the transmitter. 
    This result is also referred to as the  "estimated value":
$$\hat{m} \in \{m_i \}, \hspace{0.2cm} i = 0, 1, \text{...}\hspace{0.05cm} , M-1\hspace{0.2cm} ({\rm or}\,\,i = 1, 2, \text{...}\hspace{0.05cm}, M) \hspace{0.05cm}.$$
  • The  "symbol error probability"  $\rm Pr(symbol\hspace{0.15cm} error)$  or  $p_{\rm S}$  is usually referred to as follows in this main chapter:
$${\rm Pr} ({\cal E}) = {\rm Pr} ( \hat{m} \ne m) = 1 - {\rm Pr} ({\cal C}), \hspace{0.4cm}\text{complementary event:}\hspace{0.2cm} {\rm Pr} ({\cal C}) = {\rm Pr} ( \hat{m} = m) \hspace{0.05cm}.$$
  • In a  "probability density function"  $\rm (PDF)$,  a distinction is made between the  "random variable"   ⇒   $r$  and the  "realization"   ⇒   $\rho$  according to   $p_r(\rho)$. 
    Formerly,  $f_r(r)$  was used for this PDF.
  • With the notation  $p_r(\rho)$,   $r$  and  $\rho$  are scalars.  On the other hand,  if random variable and realization are vectors  (of suitable length),  this is expressed in bold type:     $p_{ \boldsymbol{ r}}(\boldsymbol{\rho})$  with the vectors  $ \boldsymbol{ r}$  and  $\boldsymbol{\rho}$.
  • In order to avoid confusion with energy values,  the  "threshold value is"  now called  $G$  instead of  $E$.  This is mainly referred to as the  "decision threshold"  in this chapter.
  • Based on the two real and energy-limited time functions  $x(t)$  and  $y(t)$,  the  "inner product"  is:
$$<\hspace{-0.1cm}x(t), \hspace{0.05cm}y(t) \hspace{-0.1cm}> \hspace{0.15cm}= \int_{-\infty}^{+\infty}x(t) \cdot y(t)\,d \it t \hspace{0.05cm}.$$
  • This results in the  "Euclidean norm"  or  "2–norm"  $($or  "norm"  for short$)$:
$$||x(t) || = \sqrt{<\hspace{-0.1cm}x(t), \hspace{0.05cm}x(t) \hspace{-0.1cm}>} \hspace{0.05cm}.$$
  • Compared to the script  [KöZ08][1],  the naming differs as follows:
  1. The probability of the event  $E$  is  ${\rm Pr}(E)$  instead of  $P(E)$. 
    This nomenclature change was also made because in some equations  "probabilities"  and  "powers"  appear together.
  2. Band–pass signals are still marked with the index "BP" and not with a tilde as in  [KöZ08][1].
    The corresponding  "low-pass signal"  is  (usually)  provided with the index  "TP"  $($from German  "Tiefpass"$)$.

Orthonormal basis functions


In this chapter,  we assume a set  $\{s_i(t)\}$  of possible transmitted signals that are uniquely assigned to the possible messages  $m_i$.  With  $i = 1$, ... , $M$  holds:

$$m \in \{m_i \}, \hspace{0.2cm} s(t) \in \{s_i(t) \}\hspace{-0.1cm}: \hspace{0.3cm} m = m_i \hspace{0.1cm} \Leftrightarrow \hspace{0.1cm} s(t) = s_i(t) \hspace{0.05cm}.$$

For what follows,  we further assume that the  $M$ signals  $s_i(t)$  are  "energy-limited",  which usually means at the same time that they are of finite duration.

$\text{Theorem:}$  Any set  $\{s_1(t), \hspace{0.05cm} \text{...} \hspace{0.05cm} , s_M(t)\}$  of energy-limited signals can be evolved into  $N \le M$  orthonormal basis functions  $\varphi_1(t), \hspace{0.05cm} \text{...} \hspace{0.05cm} , \varphi_N(t)$.  It holds:

$$s_i(t) = \sum\limits_{j = 1}^{N}s_{ij} \cdot \varphi_j(t) , \hspace{0.3cm}i = 1,\hspace{0.05cm} \text{...}\hspace{0.1cm} , M, \hspace{0.3cm}j = 1,\hspace{0.05cm} \text{...} \hspace{0.1cm}, N \hspace{0.05cm}.$$
  • In each case, two basis functions  $\varphi_j(t)$  and  $\varphi_k(t)$  must be orthonormal to each other, that is, it must hold  
    $(\delta_{jk}$  is called  "Kronecker symbol"  or  "Kronecker delta"$)$:
$$<\hspace{-0.1cm}\varphi_j(t), \hspace{0.05cm}\varphi_k(t) \hspace{-0.1cm}> = \int_{-\infty}^{+\infty}\varphi_j(t) \cdot \varphi_k(t)\,d \it t = {\rm \delta}_{jk} = \left\{ \begin{array}{c} 1 \\ 0 \end{array} \right.\quad \begin{array}{*{1}c} {\rm if}\hspace{0.1cm}j = k \\ {\rm if}\hspace{0.1cm} j \ne k \\ \end{array} \hspace{0.05cm}.$$


Here,  the parameter  $N$  indicates how many basis functions  $\varphi_j(t)$  are needed to represent the  $M$  possible transmitted signals.  In other words:   $N$  is the  "dimension of the vector space"  spanned by the  $M$  signals.  Here,  the following holds:

  1. If  $N = M$,  all transmitted signals are orthogonal to each other.
  2. They are not necessarily orthonormal,  i.e. the energies  $E_i = <\hspace{-0.1cm}s_i(t), \hspace{0.05cm}s_i(t) \hspace{-0.1cm}>$  may well be unequal to one.
  3. $N < M$  arises when at least one signal  $s_i(t)$  can be represented as linear combination of basis functions  $\varphi_j(t)$  that have resulted from other signals  $s_j(t) \ne s_i(t)$. 


$\text{Example 1:}$  We consider  $M = 3$  energy-limited signals according to the graph.  One recognizes immediately:

Representation of three transmitted signals by two basis functions
  • The signals  $s_1(t)$  and  $s_2(t)$  are orthogonal to each other.
  • The energies are  $E_1 = A^2 \cdot T = E$   and   $E_2 = (A/2)^2 \cdot T = E/4$.
  • The basis functions  $\varphi_1(t)$  and  $\varphi_2(t)$  are equal in form to  $s_1(t)$  and  $s_2(t)$,  resp., and both have energy one:
$$\varphi_1(t)=\frac{s_1(t)}{\sqrt{E_1} } = \frac{s_1(t)}{\sqrt{A^2 \cdot T} } = \frac{1}{\sqrt{ T} } \cdot \frac{s_1(t)}{A}$$
$$\hspace{0.5cm}\Rightarrow \hspace{0.1cm}s_1(t) = s_{11} \cdot \varphi_1(t)\hspace{0.05cm},\hspace{0.1cm}s_{11} = \sqrt{E}\hspace{0.05cm},$$
$$\varphi_2(t) =\frac{s_2(t)}{\sqrt{E_2} } = \frac{s_2(t)}{\sqrt{(A/2)^2 \cdot T} } = \frac{1}{\sqrt{ T} } \cdot \frac{s_2(t)}{A/2}\hspace{0.05cm}$$
$$\hspace{0.5cm}\Rightarrow \hspace{0.1cm}s_2(t) = s_{21} \cdot \varphi_2(t)\hspace{0.05cm},\hspace{0.1cm}s_{21} = {\sqrt{E} }/{2}\hspace{0.05cm}.$$
  • $s_3(t)$  can be expressed by the previously determined basis functions  $\varphi_1(t)$,  $\varphi_2(t)$: 
$$s_3(t) =s_{31} \cdot \varphi_1(t) + s_{32} \cdot \varphi_2(t)\hspace{0.05cm},$$
$$\hspace{0.5cm}\Rightarrow \hspace{0.1cm} s_{31} = {A}/{2} \cdot \sqrt {T}= {\sqrt{E} }/{2}\hspace{0.05cm}, \hspace{0.2cm}s_{32} = - A \cdot \sqrt {T} = -\sqrt{E} \hspace{0.05cm}.$$


⇒   In the lower right image,  the signals are shown in a two-dimensional representation

  • with the basis functions  $\varphi_1(t)$  and  $\varphi_2(t)$  as axes,
  • where  $E = A^2 \cdot T$  and the relation to the other graphs can be seen by the coloring.


⇒   The vectorial representatives of the signals  $s_1(t)$,  $s_2(t)$  and  $s_3(t)$  in the two-dimensional vector space can be read from this sketch as follows:

$$\mathbf{s}_1 = (\sqrt{ E}, \hspace{0.1cm}0), $$
$$\mathbf{s}_2 = (0, \hspace{0.1cm}\sqrt{ E}/2), $$
$$\mathbf{s}_3 = (\sqrt{ E}/2,\hspace{0.1cm}-\sqrt{ E} ) \hspace{0.05cm}.$$


The Gram-Schmidt process


In  $\text{Example 1}$  in the last section,  the specification of the two orthonormal basis functions  $\varphi_1(t)$  and  $\varphi_2(t)$  was very easy,  because they were of the same form as  $s_1(t)$  and  $s_2(t)$,  respectively. The  "Gram-Schmidt process"  finds the basis functions  $\varphi_1(t)$, ... , $\varphi_N(t)$  for arbitrary predefinable signals  $s_1(t)$, ... , $s_M(t)$, as follows:

  • The first basis function  $\varphi_1(t)$  is always equal in form to  $s_1(t)$.  It holds:
$$\varphi_1(t) = \frac{s_1(t)}{\sqrt{E_1}} = \frac{s_1(t)}{|| s_1(t)||} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} || \varphi_1(t) || = 1, \hspace{0.2cm}s_{11} =|| s_1(t)||,\hspace{0.2cm}s_{1j} = 0 \hspace{0.2cm}{\rm f{\rm or }}\hspace{0.2cm} j \ge 2 \hspace{0.05cm}.$$
  • It is now assumed that from the signals  $s_1(t)$, ... , $s_{k-1}(t)$  the basis functions  $\varphi_1(t)$, ... , $\varphi_{n-1}(t)$  have been calculated  $(n \le k)$.  Then,  using  $s_k(t)$,  we compute the auxiliary function
$$\theta_k(t) = s_k(t) - \sum\limits_{j = 1}^{n-1}s_{kj} \cdot \varphi_j(t) \hspace{0.4cm}{\rm with}\hspace{0.4cm} s_{kj} = \hspace{0.1cm} < \hspace{-0.1cm} s_k(t), \hspace{0.05cm}\varphi_j(t) \hspace{-0.1cm} >, \hspace{0.2cm} j = 1, \hspace{0.05cm} \text{...}\hspace{0.05cm}, n-1\hspace{0.05cm}.$$
  • If  $\theta_k(t) \equiv 0$   ⇒   $||\theta_k(t)|| = 0$,  then  $s_k(t)$  does not yield a new basis function.  Rather,  $s_k(t)$  can then be expressed by the  $n-1$  basis functions  $\varphi_1(t)$, ... , $\varphi_{n-1}(t)$  already found before:
$$s_k(t) = \sum\limits_{j = 1}^{n-1}s_{kj}\cdot \varphi_j(t) \hspace{0.05cm}.$$
  • A new basis function  $($namely,  the  $n$–th$)$  results if  $||\theta_k(t)|| \ne 0$: 
$$\varphi_n(t) = \frac{\theta_k(t)}{|| \theta_k(t)||} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} || \varphi_n(t) || = 1\hspace{0.05cm}.$$

This process is continued until all  $M$  signals have been considered.  Then all  $N \le M$  orthonormal basis functions  $\varphi_j(t)$  have been found.  The special case  $N = M$  arises only if all  $M$  signals are linearly independent.

  • This process is now illustrated by an example.
  • We also refer to the  (German language)  HTML5/JavaScript applet  "Das Gram-Schmidt-Verfahren"   ⇒   "Gram–Schmidt process".


$\text{Example 2:}$  We consider the  $M = 4$  energy-limited signals  $s_1(t)$, ... , $s_4(t)$.  To simplify the calculations,  both amplitude and time are normalized here.

Gram-Schmidt process

One can see from these sketches:

  • The basis function  $\varphi_1(t)$  is equal in form to  $s_1(t)$.  Because  $E_1 = \vert \vert s_1(t) \vert \vert ^3 = 3 \cdot 0.5^2 = 0.75$,  we get  $s_{11} = \vert \vert s_1(t) \vert \vert = 0.866$. $\varphi_1(t)$  itself has section-wise values  $\pm 0.5/0.866 = \pm0.577$.
  • To calculate the auxiliary function  $\theta_2(t)$,  we compute
$$s_{21} = \hspace{0.1cm} < \hspace{-0.1cm} s_2(t), \hspace{0.05cm}\varphi_1(t) \hspace{-0.1cm} > \hspace{0.1cm} = 0 \cdot (+0.577) + 1 \cdot (-0.577)+ 0 \cdot (-0.577)= -0.577$$
$$ \Rightarrow \hspace{0.3cm}\theta_2(t) = s_2(t) - s_{21} \cdot \varphi_1(t) = (0.333, 0.667, -0.333) \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\vert \vert \theta_2(t) \vert \vert^2 = (1/3)^2 + (2/3)^2 + (-1/3)^2 = 0.667$$
$$ \Rightarrow \hspace{0.3cm} s_{22} = \sqrt{0.667} = 0.816,\hspace{0.3cm} \varphi_2(t) = \theta_2(t)/s_{22} = (0.408,\ 0.816,\ -0.408)\hspace{0.05cm}. $$
  • The inner products between  $s_3(t)$  with  $\varphi_1(t)$  or  $\varphi_2(t)$  give the following results:
$$s_{31} \hspace{0.1cm} = \hspace{0.1cm} < \hspace{-0.1cm} s_3(t), \hspace{0.07cm}\varphi_1(t) \hspace{-0.1cm} > \hspace{0.1cm} = 0.5 \cdot (+0.577) + 0.5 \cdot (-0.577)- 0.5 \cdot (-0.577)= 0.289$$
$$s_{32} \hspace{0.1cm} = \hspace{0.1cm} < \hspace{-0.1cm} s_3(t), \hspace{0.07cm}\varphi_2(t) \hspace{-0.1cm} > \hspace{0.1cm} = 0.5 \cdot (+0.408) + 0.5 \cdot (+0.816)- 0.5 \cdot (-0.408)= 0.816$$
$$\Rightarrow \hspace{0.3cm}\theta_3(t) = s_3(t) - 0.289 \cdot \varphi_1(t)- 0.816 \cdot \varphi_2(t) = 0\hspace{0.05cm}.$$
  • This means:   The green function  $s_3(t)$  does not yield a new basis function  $\varphi_3(t)$,  in contrast to the function  $s_4(t)$.  The numerical results for this can be taken from the graph.

Basis functions of complex time signals


In Communications Engineering,  one often has to deal with complex time functions,

  • not because there are complex signals in reality,  but
  • because the description of a band-pass signal in the equivalent low-pass range leads to complex signals.

The determination of the  $N \le M$  complex-valued basis functions  $\xi_k(t)$  from the  $M$  complex signals  $s_i(t)$  can also be done using the  "Gram–Schmidt process",  but it must now be taken into account that the inner product of two complex signals  $x(t)$  and  $y(t)$  must be calculated as follows:

$$< \hspace{-0.1cm}x(t), \hspace{0.1cm}y(t)\hspace{-0.1cm} > \hspace{0.1cm} = \int_{-\infty}^{+\infty}x(t) \cdot y^{\star}(t)\,d \it t \hspace{0.05cm}.$$

The corresponding equations are now with  $i = 1, \text{..}. , M$  and  $k = 1, \text{..}. , N$:

$$s_i(t) = \sum\limits_{k = 1}^{N}s_{ik} \cdot \xi_k(t),\hspace{0.2cm}s_i(t) \in {\cal C},\hspace{0.2cm}s_{ik} \in {\cal C} ,\hspace{0.2cm}\xi_k(t) \in {\cal C} \hspace{0.05cm},$$
$$< \hspace{-0.1cm}\xi_k(t),\hspace{0.1cm} \xi_j(t)\hspace{-0.1cm} > \hspace{0.1cm} = \int_{-\infty}^{+\infty}\xi_k(t) \cdot \xi_j^{\star}(t)\,d \it t = {\rm \delta}_{ik} = \left\{ \begin{array}{c} 1 \\ 0 \end{array} \right.\quad \begin{array}{*{1}c}{\rm if}\hspace{0.25cm} k = j \\ {\rm if}\hspace{0.25cm} k \ne j \\ \end{array}\hspace{0.05cm}.$$

Of course,  any complex quantity can also be expressed by two real quantities,  namely real part and imaginary part.  Thus,  the following equations are obtained here:

$$s_{i}(t) = s_{{\rm I}\hspace{0.02cm}i}(t) + {\rm j} \cdot s_{{\rm Q}\hspace{0.02cm}i}(t), \hspace{0.2cm} s_{{\rm I}\hspace{0.02cm}i}(t) = {\rm Re}\big [s_{i}(t)\big], \hspace{0.2cm} s_{{\rm Q}\hspace{0.02cm}i}(t) = {\rm Im} \big [s_{i}(t)\big ],$$
$$\xi_{k}(t) = \varphi_k(t) + {\rm j} \cdot \psi_k(t), \hspace{0.2cm} \varphi_k(t) = {\rm Re}\big [\xi_{k}(t)\big ], \hspace{0.2cm} \psi_k(t) = {\rm Im} \big [\xi_{k}(t)\big ],$$
$$\hspace{0.35cm} s_{ik} = s_{{\rm I}\hspace{0.02cm}ik} + {\rm j} \cdot s_{{\rm Q}\hspace{0.02cm}ik}, \hspace{0.2cm} s_{{\rm I}ik} = {\rm Re} \big [s_{ik}\big ], \hspace{0.2cm} s_{{\rm Q}ik} = {\rm Im} \big [s_{ik}\big ],$$
$$ \hspace{0.35cm} s_{{\rm I}\hspace{0.02cm}ik} ={\rm Re}\big [\hspace{0.01cm} < \hspace{-0.1cm} s_i(t), \hspace{0.15cm}\varphi_k(t) \hspace{-0.1cm} > \hspace{0.1cm}\big ], \hspace{0.2cm}s_{{\rm Q}\hspace{0.02cm}ik} = {\rm Re}\big [\hspace{0.01cm} < \hspace{-0.1cm} s_i(t), \hspace{0.15cm}{\rm j} \cdot \psi_k(t) \hspace{-0.1cm} > \hspace{0.1cm}\big ] \hspace{0.05cm}. $$

The nomenclature arises from the main application for complex basis functions, namely  "quadrature amplitude modulation"  $\rm (QAM)$.

  • The subscript  "I"  stands for inphase component and indicates the real part,
  • while the quadrature component  (imaginary part)  is indicated by the index  "Q".


To avoid confusion with the imaginary unit  "$\rm j$",  here the complex basis functions  $\xi_{k}(t)$  were induced with  $k$  and not with  $j$.

Dimension of the basis functions


In baseband transmission, the possible transmitted signals  $($considering only one symbol duration$)$  are

$$s_i(t) = a_i \cdot g_s(t), \hspace{0.2cm} i = 0, \text{...}\hspace{0.05cm} , M-1,$$

where  $g_s(t)$  indicates the  "basic transmission pulse"  and the  $a_i$  were denoted in the first three main chapters as the possible  "amplitude coefficients".  It should be noted that from now on the values  $0$  to  $M-1$  are assumed for the indexing variable  $i$. 

According to the description of this chapter,  this is a one-dimensional modulation process  $(N = 1)$,  regardless of the level number  $M$.

$\text{In the case of baseband transmission:}$

  • The basis function  $\varphi_1(t)$  is equal to the energy-normalized basic transmission pulse  $g_s(t)$: 
$$\varphi_1(t) ={g_s(t)}/{\sqrt{E_{gs} } } \hspace{0.3cm}{\rm with}\hspace{0.3cm} E_{gs} = \int_{-\infty}^{+\infty}g_s^2(t)\,d \it t \hspace{0.05cm}.$$
  • The dimensionless amplitude coefficients  $a_i$  are to be converted into the signal space points  $s_i$  which have the unit "root of energy".


$\text{Example 3:}$  The graph shows one-dimensional signal space constellations  $(N=1)$  for baseband transmission, viz.

One-dimensional modulation processes
  1.   binary unipolar (top)   ⇒   $M = 2$,
  2.   binary bipolar (center)   ⇒   $M = 2$, and
  3.   quaternary bipolar (bottom)   ⇒   $M = 4$.


The graph simultaneously describes the one-dimensional carrier frequency systems

  1.   "Two-level Amplitude Shift Keying"  $\text{(2–ASK)}$,
  2.   "Binary Phase Shift Keying"  $\text{(BPSK)}$,
  3.   "Four-level Amplitude Shift Keying"  $\text{(4–ASK)}$.

Note:

  • The signals  $s_i(t)$  and the basis function  $\varphi_1(t)$  always refer to the equivalent low-pass range.
  • In the band-pass region,  $\varphi_1(t)$  is a harmonic oscillation limited to the time domain  $0 \le t \le T$.
  • In the graph on the right,  the two or four possible signals  $s_i(t)$  are given for the example  "rectangular pulse".
  • From this,  one can see the relationship between pulse amplitude  $A$  and signal energy  $E = A^2 \cdot T$. 


$\text{Example 4:}$ The two-dimensional modulation processes include:

Two-dimensional signal space constellations for multi-level PSK and QAM
  1. "M–level Phase Shift Keying"  (M–PSK),
  2. "Quadrature amplitude modulation"  (4–QAM, 16–QAM, ...),
  3. "Binary (orthogonal) frequency shift keying"  (2–FSK).


In general,  for orthogonal FSK  the number  $N$  of basis functions  $\varphi_k(t)$  is equal to the number  $M$  of possible transmitted signals  $s_i(t)$   ⇒   $N=2$  is only possible for  $M=2$. 

The graph describes two-dimensional modulation processes in the band-pass  (left)  and in the equivalent low-pass range  (right):

  • The left graph shows  "8–PSK".  If we restrict us to the red points only   ⇒   "4–PSK"  is present  ("Quaternary Phase Shift Keying",  QPSK).
  • The right-hand diagram refers to  "16–QAM"  or – if only the signal space points outlined in red are considered – to  "4–QAM".
  • A comparison of the two images with appropriate axis scaling shows that  "4–QAM"  is identical to  "QPSK".
  • When considered as a band-pass system, the basis function  $\varphi_1(t)$  is cosinusoidal and   $\varphi_2(t)$  $($minus$)$ sinusoidal – compare  "Exercise 4.2".
  • On the other hand,  after transforming the QAM systems into the equivalent low-pass range,   $\varphi_1(t)$  is equal to the energy-normalized  $($i.e., with energy "1"$)$  basic transmission pulse  $g_s(t)$,  while   $\varphi_2(t)={\rm j} \cdot \varphi_1(t)$.  For more details,  please refer to  "Exercise 4.2Z".



Exercises for the chapter


Exercise 4.1: About the Gram-Schmidt Method

Exercise 4.1Z: Other Basis Functions

Exercise 4.2: AM/PM Oscillations

Exercise 4.2Z: Eight-level Phase Shift Keying

Exercise 4.3: Different Frequencies

References

  1. 1.0 1.1 1.2 Kötter, R., Zeitler, G.:  Lecture notes, Institute for Communications Engineering, Technical University of Munich, 2008.
  2. Wozencraft, J. M.; Jacobs, I. M.:  Principles of Communication Engineering.  New York: John Wiley & Sons, 1965.
  3. Kramer, G.:  Nachrichtentechnik 2. Lecture notes, Institute for Communications Engineering, Technical University of Munich, 2017.