Difference between revisions of "Linear and Time Invariant Systems/Some Low-Pass Functions in Systems Theory"

From LNTwww
m (Text replacement - "[[Lineare_zeitinvariante_Systeme/" to "[[Linear_and_Time_Invariant_Systems/")
 
(128 intermediate revisions by 5 users not shown)
Line 1: Line 1:
 
{{Header
 
{{Header
|Untermenü=Systemtheoretische Grundlagen
+
|Untermenü=Basics of System Theory
|Vorherige Seite=Systembeschreibung im Zeitbereich
+
|Vorherige Seite=System_Description_in_Time_Domain
|Nächste Seite=Klassifizierung der Verzerrungen
+
|Nächste Seite=Classification_of_the_Distortions
 
}}  
 
}}  
  
==Allgemeine Bemerkungen==
+
==General remarks==
 
<br>
 
<br>
Alle auf den nächsten Seiten beschriebenen Tiefpassfunktionen weisen die folgenden Eigenschaften auf:  
+
All low-pass functions described in the next sections have the following properties:  
*Der Frequenzgang $H(f)$ ist ''reell'' und ''gerade'', so dass nach dem [[Signal_Representation/Gesetzmäßigkeiten_der_Fouriertransformation#Zuordnungssatz|Zuordnungssatz]] auch die zugehörige Impulsantwort $h(t)$ stets reell und gerade ist.
+
*The frequency response&nbsp; $H(f)$&nbsp; is real and even so that according to the&nbsp; [[Signal_Representation/Fourier_Transform_Theorems#Assignment_Theorem|$\text{Assignment Theorem}$]]&nbsp; the associated impulse response&nbsp; $h(t)$&nbsp; is always real and even,&nbsp; too.
*Damit ist offensichtlich, dass die hier betrachteten Systeme akausal und somit nicht realisierbar sind. Die Beschreibung kausaler Systeme erfolgt im Kapitel [[Linear_and_Time_Invariant_Systems/Folgerungen_aus_dem_Zuordnungssatz|Beschreibung kausaler realisierbarer Systeme]] dieses Buches.  
+
 
*Der Vorteil dieser ''systemtheoretischen Filterfunktionen'' ist die einfache Beschreibung durch maximal zwei Parameter, so dass der Filtereinfluss durchschaubar dargestellt werden kann.  
+
*Thus,&nbsp; it is obvious that the systems considered here are non-causal and hence not realizable.&nbsp; The description of causal systems is given in the chapter&nbsp; [[Linear_and_Time_Invariant_Systems/Folgerungen_aus_dem_Zuordnungssatz|&raquo;Description of Causal Realizable Systems&laquo;]]&nbsp; of this book.  
*Der wichtigste Funktionsparameter ist die ''äquivalente Bandbreite'' entsprechend der Definition über das flächengleiche Rechteck:
+
 
 +
*The advantage of these&nbsp; &raquo;system theoretical filter functions&laquo;&nbsp; is the simple description by at most two parameters such that the filter influence can be represented in a transparent way.  
 +
 
 +
*The most important frequency response parameter is the&nbsp; &raquo;'''equivalent bandwidth'''&laquo;&nbsp; according to the definition via the equal-area rectangle:
 
:$$\Delta f = \frac{1}{H(f=0)}\cdot \int_{-\infty}^{+\infty}H(f) \hspace{0.15cm} {\rm d}f.$$
 
:$$\Delta f = \frac{1}{H(f=0)}\cdot \int_{-\infty}^{+\infty}H(f) \hspace{0.15cm} {\rm d}f.$$
*Nach dem so genannten [[Signal_Representation/Gesetzmäßigkeiten_der_Fouriertransformation#Reziprozit.C3.A4tsgesetz_von_Zeitdauer_und_Bandbreite|Reziprozitätsgesetz]]  liegt somit auch die äquivalente Zeitdauer der Impulsantwort fest, die ebenfalls über das flächengleiche Rechteck definiert ist:
+
*According to the so-called&nbsp; [[Signal_Representation/Fourier_Transform_Theorems#Reciprocity_Theorem_of_time_duration_and_bandwidth|&raquo;Reciprocity Theorem of time duration and bandwidth&laquo;]]&nbsp; the&nbsp; &raquo;'''equivalent duration of the impulse response'''&laquo;&nbsp; is thus fixed,&nbsp; which is also defined via the equal-area rectangle:
 
:$$\Delta t = \frac{1}{h(t=0)}\cdot \int_{-\infty}^{+\infty}h(t) \hspace{0.15cm} {\rm d}t = \frac{1}{\Delta f}.$$
 
:$$\Delta t = \frac{1}{h(t=0)}\cdot \int_{-\infty}^{+\infty}h(t) \hspace{0.15cm} {\rm d}t = \frac{1}{\Delta f}.$$
*Der Gleichsignalübertragungsfaktor wird – wenn nicht explizit etwas Anderes vermerkt ist – stets zu $H(f = 0) = 1$ angenommen.  
+
*The direct signal&nbsp; $\rm (DC)$&nbsp; transmission factor is always assumed to be&nbsp; $H(f = 0) = 1$&nbsp; unless explicitly stated otherwise.  
*Aus jeder Tiefpassfunktion lassen sich entsprechende Hochpassfunktionen ableiten, wie auf der Seite  [[Linear_and_Time_Invariant_Systems/Einige_systemtheoretische_Tiefpassfunktionen#Herleitung_systemtheoretischer_Hochpassfunktionen|Herleitung systemtheoretischer Hochpassfunktionen]] gezeigt wird.  
+
 
 +
*From every low-pass function corresponding high-pass functions can be derived as shown in the section&nbsp; [[Linear_and_Time_Invariant_Systems/Some_Low-Pass_Functions_in_Systems_Theory#Derivation_of_system_theoretical_high-pass_functions|&raquo;Derivation of system theoretical high-pass functions&laquo;]].  
  
==Idealer Tiefpass Küpfmüller–Tiefpass==
+
==Ideal low-pass filter Rectangular-in-frequency==
 
<br>
 
<br>
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
 
$\text{Definition:}$&nbsp;  
 
$\text{Definition:}$&nbsp;  
Ein '''idealer Tiefpass''' liegt vor, wenn sein Frequenzgang wie folgt lautet:
+
An&nbsp; '''&raquo;ideal low-pass filter&laquo;'''&nbsp; is on hand if its frequency response has the following rectangular shape:  
:$$H(f) = \left\{ \begin{array}{l} \hspace{0.25cm}1  \\  0.5 \\\hspace{0.25cm} 0 \\  \end{array} \right.\quad \quad\begin{array}{*{10}c}  \text {für}  \\ \text {für} \\  \text {für}  \\ \end{array}\begin{array}{*{20}c}{\vert  \hspace{0.005cm}f\hspace{0.05cm} \vert< \Delta f/2,}  \\{\vert  \hspace{0.005cm}f\hspace{0.05cm} \vert = \Delta f/2,}  \\{\vert  \hspace{0.005cm}f\hspace{0.05cm} \vert > \Delta f/2.}  \\\end{array}$$
+
:$$H(f) = H_{\rm RLP}(f) =\left\{ \begin{array}{l} \hspace{0.25cm}1  \\  0.5 \\\hspace{0.25cm} 0 \\  \end{array} \right.\quad \quad\begin{array}{*{10}c}  \text {for}  \\ \text {for} \\  \text {for}  \\ \end{array}\begin{array}{*{20}c}{\vert  \hspace{0.005cm}f\hspace{0.05cm} \vert< \Delta f/2,}  \\{\vert  \hspace{0.005cm}f\hspace{0.05cm} \vert = \Delta f/2,}  \\{\vert  \hspace{0.005cm}f\hspace{0.05cm} \vert > \Delta f/2.}  \\\end{array}$$
Wir verwenden teilweise auch die Bezeichnung „Küpfmüller-Tiefpass” (KTP) in Erinnerung an den Pionier der Systemtheorie, [https://de.wikipedia.org/wiki/Karl_K%C3%BCpfm%C3%BCller Karl Küpfmüller]. }}
+
#We sometimes also use the term&nbsp; &raquo;rectangular low-pass filter&laquo;&nbsp; $\rm (RLP)$.
 +
#Here&nbsp; $Δf$&nbsp; denotes the&nbsp; &raquo;system theoretical bandwidth&laquo;.&nbsp;
 +
#$f_{\rm G}=Δf/2$&nbsp; denotes the&nbsp; &raquo;cut-off frequency&laquo;&nbsp;&nbsp; $($German:&nbsp; "Grenzfrequenz" &nbsp; &rArr; &nbsp; subscript&nbsp; $\rm G)$.  }}
 +
 
 +
 
 +
[[File:P_ID842__LZI_T_1_3_S2_neu.png |right|frame| Ideal low-pass filter:&nbsp; Frequency response and impulse response|class=fit]]
 +
The graph shows such an ideal low-pass filter in the frequency and time domain.&nbsp;
 +
 
 +
The following can be concluded from these curves:
 +
 
 +
*Due to the abrupt,&nbsp; infinitely steep roll-off the&nbsp; &raquo;3 dB cut-off frequency&laquo; &nbsp; &rArr; &nbsp; <br>$f_{\rm G}$&nbsp; is here exactly half the&nbsp; &raquo;system theoretic bandwidth&laquo;&nbsp; $Δf$.
 +
 +
*All spectral components with&nbsp; $f \lt f_{\rm G}$&nbsp; are transmitted undistorted &nbsp; &rArr; &nbsp; &raquo;pass band&laquo;.
 +
 +
*All components with&nbsp; $f \gt f_{\rm G}$&nbsp; are completely suppressed &nbsp; &rArr; &nbsp; &raquo;stop band&laquo;.
 +
 +
*By definition,&nbsp; $H(f) = 0.5$&nbsp; holds for&nbsp; $f = \pm f_{\rm G}$.
  
  
Die Grafik zeigt einen solchen idealen Tiefpass im Frequenz– und Zeitbereich. Man erkennt aus diesem Kurvenverläufen:  
+
'''Description of the ideal low-pass filter in the time domain:'''
 +
*According to the inverse Fourier transform the&nbsp; &raquo;impulse response&laquo;&nbsp;  $($right diagram$)$:
 +
:$$h(t) = h_{\rm RLP}(t) =\Delta f \cdot {\rm si}(\pi \cdot \Delta f \cdot t)\hspace{0.55cm}{\rm{with}}\hspace{0.7cm}{\rm si}(x) ={\sin(x)}/{x},\hspace{0.5cm}{\rm or}$$
 +
:::$$h_{\rm RLP}(t) =\Delta f \cdot {\rm sinc}(\Delta f \cdot t)\hspace{0.7cm}{\rm{with}}\hspace{0.7cm}{\rm sinc}(x) ={\sin(\pi x)}/{(\pi x)}.$$
 +
*$h(t)$&nbsp; extended to infinity on both sides and exhibits equidistant zero-crossings at an interval of&nbsp; $Δt = 1/ Δf$.
  
[[File:P_ID842__LZI_T_1_3_S2_neu.png |right|frame| Idealer Tiefpass: Frequenzgang und Impulsantwort|class=fit]]
+
*The asymptotic decay is inversely proportional to time&nbsp; $|t|$:
*Aufgrund des abrupten, unendlich steilen Flankenabfalls ist hier die 3dB–Grenzfrequenz $f_{\rm G}$ genau halb so groß wie die systemtheoretische Bandbreite $Δf$.
 
*Alle Spektralanteile mit $f \lt f_{\rm G}$ werden unverfälscht durchgelassen (''Durchlassbereich'').
 
*Alle Anteile mit $f \gt f_{\rm G}$ werden vollständig unterdrückt (''Sperrbereich'').
 
*Bei $f = f_{\rm G}$ gilt definitionsgemäß $H(f) = 0.5$.
 
<br clear=all>
 
'''Beschreibung des idealen Tiefpasses im Zeitbereich:'''
 
*Die Impulsantwort  (siehe rechte Grafik) ergibt sich entsprechend der Fourierrücktransformation zu
 
:$$h(t) = \Delta f \cdot {\rm si}(\pi \cdot \Delta f \cdot t)\hspace{0.7cm}{\rm{mit}}\hspace{0.7cm}{\rm si}(x) ={\sin(x)}/{x}.$$
 
*Die beidseitig bis ins Unendliche ausgedehnte Impulsantwort $h(t)$ weist äquidistante Nulldurchgänge im Abstand $Δt = 1/ Δf$ auf.
 
*Der asymptotische Abfall erfolgt umgekehrt proportional mit der Zeit:
 
 
:$$|h(t)| = \frac{\Delta f}{\pi \cdot \Delta f \cdot |t|} \cdot \left |{\rm sin}(\pi \cdot \Delta f\cdot t )\right | \le \frac{1}{\pi \cdot |t|}.$$
 
:$$|h(t)| = \frac{\Delta f}{\pi \cdot \Delta f \cdot |t|} \cdot \left |{\rm sin}(\pi \cdot \Delta f\cdot t )\right | \le \frac{1}{\pi \cdot |t|}.$$
*Daraus folgt, dass die Impulsantwort erst für Zeiten $t \gt t_{1‰} = 318 \cdot \Delta t$ mit Sicherheit kleiner als $1‰$ des Impulsmaximums ist.  
+
*It follows that the impulse response is certainly less than&nbsp; $1‰$&nbsp; of the impulse maximum only for times&nbsp; $t \gt t_{1‰} = 318 \cdot \Delta t$.  
*Die Sprungantwort $\sigma(t)$ ergibt sich aus der Impulsantwort durch Integration und lautet:  
+
 
 +
*The step response&nbsp; $\sigma(t)$&nbsp; is obtained from the impulse response by integration and is:  
 
:$${\sigma}(t) = \int_{ - \infty }^{ t } {h ( \tau  )}  \hspace{0.1cm}{\rm d}\tau = \frac{1}{2} + \frac{1}{\pi} \cdot {\rm Si}(\pi \cdot\Delta f \cdot t ).$$
 
:$${\sigma}(t) = \int_{ - \infty }^{ t } {h ( \tau  )}  \hspace{0.1cm}{\rm d}\tau = \frac{1}{2} + \frac{1}{\pi} \cdot {\rm Si}(\pi \cdot\Delta f \cdot t ).$$
*Hierbei ist die so genannte ''Integral–Sinusfunktion'' verwendet:
+
*Here,&nbsp; the so-called&nbsp; &raquo;integral sine function&laquo;&nbsp; is used:
 
:$${\rm Si}(x) = \int_{ 0 }^{ x } {{\rm si} ( \xi  )}  \hspace{0.1cm}{\rm d}\xi = x - \frac{x^3}{3 \cdot 3!} + \frac{x^5}{5 \cdot 5!} - \frac{x^7}{7 \cdot 7!}+\text{ ...}$$
 
:$${\rm Si}(x) = \int_{ 0 }^{ x } {{\rm si} ( \xi  )}  \hspace{0.1cm}{\rm d}\xi = x - \frac{x^3}{3 \cdot 3!} + \frac{x^5}{5 \cdot 5!} - \frac{x^7}{7 \cdot 7!}+\text{ ...}$$
:Diese besitzt folgende Eigenschaften:
+
:$$\Rightarrow \ {\rm Si}(0) = 0, \hspace{0.3cm}{\rm Si}(\infty) = \frac{\pi}{2}, \hspace{0.3cm}{\rm Si}(-x) = -{\rm Si}(x).$$
:$${\rm Si}(0) = 0, \hspace{0.3cm}{\rm Si}(\infty) = \frac{\pi}{2}, \hspace{0.3cm}{\rm Si}(-x) = -{\rm Si}(x).$$
+
 
  
''Hinweis:'' &nbsp; In manchen Büchern wird statt der Funktion ${\rm si}(x)$ die ähnliche Funktion ${\rm sinc}(x)$ verwendet:
 
:$${\rm si}(x) = \frac{\sin(x)}{x}\hspace{0.5cm}\Rightarrow\hspace{0.5cm}{\rm sinc}(x) = \frac{\sin(\pi  x)}{\pi  x} = {\rm si}(\pi  x).$$
 
Damit lautet die Impulsantwort des idealen Tiefpasses: &nbsp;  $h(t)$ = $Δf · {\rm sinc}(Δf · t).$
 
  
==Spalt&ndash;Tiefpass==
+
==Slit low-pass filter – Rectangular-in-time==
 
<br>
 
<br>
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
 
$\text{Definition:}$&nbsp;  
 
$\text{Definition:}$&nbsp;  
Man bezeichnet ein LZI–System als '''Spalt&ndash;Tiefpass''', wenn der Frequenzgang die folgende Form hat:
+
An LTI system is called a&nbsp; '''&raquo;slit low-pass filter&laquo;''' &nbsp; $\rm (SLP)$&nbsp; if the frequency response has the following form:
:$$H(f) = {\rm si}(\pi {f}/{ \Delta f})\hspace{0.7cm}{\rm{mit} }\hspace{0.7cm}{\rm si}(x) ={\sin(x)}/{x}.$$}}
+
:$$H(f) = H_{\rm SLP}(f)= {\rm si}(\pi {f}/{ \Delta f})\hspace{0.7cm}{\rm{where} }\hspace{0.7cm}{\rm si}(x) ={\sin(x)}/{x},\hspace{0.7cm}{\rm or}$$
 
+
$$\hspace{2.1cm}H_{\rm SLP}(f)= {\rm sinc}({f}/{ \Delta f})\hspace{0.7cm}{\rm{where} }\hspace{0.7cm}{\rm sinc}(x) ={\sin(\pi x)}/{(\pi x)}.$$
 
+
}}
Aus der linken Grafik ist zu erkennen, dass der Frequenzgang $H_{\rm STP}(f)$ des Spalt&ndash;Tiefpasses formgleich mit der Impulsantwort $h_{\rm KTP}(t)$ des Küpfmüllertiefpasses ist.
 
  
[[File:P_ID844__LZI_T_1_3_S3_neu.png |right|frame|  Spalt&ndash;Tiefpass: Frequenzgang und zugehörige Impulsantwort|class=fit]]
 
  
Nach dem [[Signal_Representation/Gesetzmäßigkeiten_der_Fouriertransformation#Vertauschungssatz|Vertauschungssatz]] muss deshalb auch die Impulsantwort $h_{\rm STP}(t)$ des Spalt&ndash;Tiefpasses die gleiche Form wie der Frequenzgang $H_{\rm KTP}(f)$ des idealen Tiefpasses aufweisen.
+
[[File:P_ID844__LZI_T_1_3_S3_neu.png |right|frame| Slit low-pass filter:&nbsp; Frequecy response and respective impulse response|class=fit]]
  
Mit $Δt = 1/ Δf$ gilt somit:
+
#From the graph on the left it can be seen that the frequency response&nbsp; $H_{\rm SLP}(f)$&nbsp; of the slit low-pass filter is identical in shape to the impulse response&nbsp; $h_{\rm RLP}(t)$&nbsp; of the rectangular low-pass filter.
:$$h(t) = \left\{ \begin{array}{l} \hspace{0.25cm}\Delta f  \\  \Delta f/2 \\ \hspace{0.25cm} 0 \\  \end{array} \right.\quad \quad \begin{array}{*{10}c}  \text{für}  \\ \text{für} \\  \text{für}  \\ \end{array}\begin{array}{*{20}c} {\vert \hspace{0.005cm}t\hspace{0.05cm} \vert < \Delta t/2,}  \\ {\vert \hspace{0.005cm}t\hspace{0.05cm} \vert  = \Delta t/2,}  \\ {\vert \hspace{0.005cm}t\hspace{0.05cm} \vert > \Delta t/2.}  \\
+
#According to the&nbsp; [[Signal_Representation/Fourier_Transform_Theorems#Duality_Theorem|&raquo;Duality Theorem&laquo;]] &nbsp; &rArr; &nbsp; the impulse response&nbsp; $h_{\rm SLP}(t)$&nbsp; of the slit low-pass filter must also have the same form as the frequency response $H_{\rm RLP}(f)$ of the ideal low-pass filter &nbsp; &rArr; &nbsp; "rectangular-in-time".
 +
#Thus,&nbsp; with the&nbsp; &raquo;equivalent duration of the impulse response&laquo;&nbsp;  $Δt = 1/ Δf$&nbsp; the following holds:
 +
::$$h(t) = h_{\rm SLP}(t) = \left\{ \begin{array}{l} \hspace{0.25cm}\Delta f  \\  \Delta f/2 \\ \hspace{0.25cm} 0 \\  \end{array} \right.\quad \quad \begin{array}{*{10}c}  \text{for}  \\ \text{for} \\  \text{for}  \\ \end{array}\begin{array}{*{20}c} {\vert \hspace{0.005cm}t\hspace{0.05cm} \vert < \Delta t/2,}  \\ {\vert \hspace{0.005cm}t\hspace{0.05cm} \vert  = \Delta t/2,}  \\ {\vert \hspace{0.005cm}t\hspace{0.05cm} \vert > \Delta t/2.}  \\
 
\end{array}$$
 
\end{array}$$
Anhand der rechten Grafik sind folgende Aussagen ableitbar:  
+
Based on the graph on the right the following statements can be derived:  
*Auch der Spalt&ndash;Tiefpass ist in dieser Form akausal.
+
*The slit low-pass filter in this form is also non-causal.&nbsp; However,&nbsp; adding a transit time of&nbsp; $Δt/2$&nbsp; or more renders the system causal and thus realizable.
*Durch eine zusätzliche Laufzeit von $Δt/2$ wird das System jedoch kausal und damit realisierbar.  
+
*Der Spalt&ndash;Tiefpass wirkt als Integrator über die Zeitdauer $Δt$:  
+
*The slit low-pass filter acts as an integrator over the time period&nbsp; $Δt$:  
 
:$$y(t) = x (t) * h (t) = \frac{1}{\Delta t} \cdot \int\limits_{ t - \Delta t/2 }^{ t + \Delta t/2  } {x ( \tau  )}  \hspace{0.1cm}{\rm d}\tau.$$
 
:$$y(t) = x (t) * h (t) = \frac{1}{\Delta t} \cdot \int\limits_{ t - \Delta t/2 }^{ t + \Delta t/2  } {x ( \tau  )}  \hspace{0.1cm}{\rm d}\tau.$$
*Ist $x(t)$ eine harmonische Schwingung mit der Frequenz $f_0 = k \cdot Δf$ (wobei $k$ ganzzahlig ist), so wird genau über $k$ Perioden integriert und es gilt $y(t) = 0$. Dies zeigen auch die Nullstellen von $H(f)$.  
+
*If&nbsp; $x(t)$&nbsp; is a harmonic oscillation with frequency&nbsp; $f_0 = k \cdot Δf$&nbsp; $($where&nbsp; $k$&nbsp; is an integer$)$,&nbsp; then it integrates exactly over&nbsp; $k$&nbsp; periods and&nbsp; $y(t) = 0$&nbsp; holds.&nbsp;
 +
 
 +
*This is also shown by the zeros of&nbsp; $H(f)$.  
  
==Gauß–Tiefpass==
+
==Gaussian low-pass filter ==
 
<br>
 
<br>
Eine häufig für systemtheoretische Untersuchungen verwendete Filterfunktion ist der Gaußtiefpass, der ebenfalls durch nur einen Parameter, nämlich die [[Signal_Representation/Gesetzmäßigkeiten_der_Fouriertransformation#Reziprozit.C3.A4tsgesetz_von_Zeitdauer_und_Bandbreite|äquivalente Bandbreite]] $Δf$, beschreibbar ist.
+
A filter function frequently used for system-theoretical investigations is the Gaussian low-pass filter,&nbsp; which can also be described by only one parameter,&nbsp; namely the&nbsp;  [[Signal_Representation/Fourier_Transform_Theorems#Reciprocity_Theorem_of_time_duration_and_bandwidth|&raquo;equivalent bandwidth&raquo;]]&nbsp; $Δf$.
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
 
$\text{Definition:}$&nbsp;  
 
$\text{Definition:}$&nbsp;  
Für den Frequenzgang und die Impulsantwort des '''Gaußtiefpasses''' gelten:
+
For the frequency response and the impulse response of the&nbsp; '''&raquo;Gaussian low-pass filter&laquo;'''&nbsp; $\rm (GLP)$&nbsp; the following holds:
:$$H(f) = {\rm e}^{-\pi(f/\Delta f)^2}\hspace{0.15cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.15cm}h(t) = \Delta f \cdot  {\rm e}^{-\pi(\Delta f \cdot  \hspace{0.03cm} t)^2} .$$}}
+
:$$H(f) = H_{\rm GLP}(f)= {\rm e}^{-\pi(f/\Delta f)^2}\hspace{0.15cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.15cm}h(t) = h_{\rm GLP}(t) = \Delta f \cdot  {\rm e}^{-\pi(\Delta f \cdot  \hspace{0.03cm} t)^2} .$$}}
  
  
Der Name geht auf den Mathematiker, Physiker und Astronomen [https://de.wikipedia.org/wiki/Carl_Friedrich_Gau%C3%9F Carl-Friedrich Gauß ] zurück. Gauß hat sich zwar nicht selber mit dieser Thematik auseinandergesetzt, aber die mathematische Form von Frequenzgang und Impulsantwort weisen eine Ähnlichkeit mit der so genannten [[Stochastische_Signaltheorie/Gaußverteilte_Zufallsgröße#Wahrscheinlichkeitsdichte-_und_Verteilungsfunktion|Gaußformel]] auf, die er für die Wahrscheinlichkeitsrechnung gefunden hat.
+
The name goes back to the mathematician,&nbsp; physicist and astronomer&nbsp; [https://en.wikipedia.org/wiki/Carl_Friedrich_Gau%C3%9F $\text{Carl-Friedrich Gauß}$].&nbsp; Gauß did not deal with this subject matter himself,&nbsp; but the mathematical form of the frequency response and impulse response bear a resemblance to the so-called&nbsp; [[Theory_of_Stochastic_Signals/Gaussian_Distributed_Random_Variables#Probability_density_function_.E2.80.93_Cumulative_density_function|&raquo;Gaussian formula&laquo;]]&nbsp; which he discovered for probability theory.
  
[[File:P_ID845__LZI_T_1_3_S4_neu.png |right|frame| Gaußtiefpass: Frequenzgang und zugehörige Impulsantwort|class=fit]]
+
[[File:P_ID845__LZI_T_1_3_S4_neu.png |right|frame| Gaussian low-pass filter:&nbsp; Frequency response and impulse response|class=fit]]
  
Anhand dieser Grafik können folgende Aussagen getroffen werden:
+
Based on this graph the following statements can be made:
*Die ebenfalls über das flächengleiche Rechteck definierte [[Signal_Representation/Gesetzmäßigkeiten_der_Fouriertransformation#Reziprozit.C3.A4tsgesetz_von_Zeitdauer_und_Bandbreite|äquivalente Impulsdauer]]  $Δt$ ist gleich dem Kehrwert der äquivalenten Bandbreite $Δf$.  
+
#The&nbsp; [[Signal_Representation/Fourier_Transform_Theorems#Reciprocity_Theorem_of_time_duration_and_bandwidth|&raquo;equivalent pulse duration&laquo;]]&nbsp; $Δt$&nbsp; is also defined via the area-equal rectangle and is equal to the reciprocal of the&nbsp; &raquo;equivalent bandwith&laquo;&nbsp; $Δf$.  
*Eine schmalbandige Filterfunktion (kleines $Δf$) führt zu einer breiten (großes $Δt$) und gleichzeitig niedrigen Impulsantwort $h(t)$.  
+
#A narrow-band&nbsp;  $($small&nbsp; $Δf)$&nbsp; filter function&nbsp; $H(f)$&nbsp; results in a wide&nbsp; $($large&nbsp; $Δt)$&nbsp; and simultaneously low impulse response&nbsp; $h(t)$.  
*Das so genannte [[Signal_Representation/Gesetzmäßigkeiten_der_Fouriertransformation#Reziprozit.C3.A4tsgesetz_von_Zeitdauer_und_Bandbreite|Reziprozitätsgesetz]] von Zeitdauer und Bandbreite lässt sich am Beispiel des Gaußtiefpasses besonders anschaulich zeigen.  
+
#The so-called&nbsp; [[Signal_Representation/Fourier_Transform_Theorems#Reciprocity_Theorem_of_time_duration_and_bandwidth|&raquo;Reciprocity Theorem&laquo;]]&nbsp; of time duration and bandwidth can be shown particularly clearly in the example of the Gaussian low-pass filter.  
*Die Frequenz– und Zeitbereichsdarstellungen sind prinzipiell von gleicher Form. Man sagt auch, dass die Gaußfunktion invariant gegenüber der Fouriertransformation ist.  
+
#The frequency and time domain representations are in principle of the same form.&nbsp; The Gaussian function is also said to be invariant to Fourier transform.  
*Aufgrund der unendlichen Ausbreitung seiner Impulsantwort ist der Gaußtiefpass ebenso wie der ideale Tiefpass stark akausal und (exakt) nur mit unendlich großer Laufzeit realisierbar.  
+
#The Gaussian low-pass filter is&nbsp; &ndash; &nbsp; like the ideal low-pass filter&nbsp; &ndash; &nbsp; strongly non-causal and&nbsp; $($exactly$)$&nbsp; realizable only with infinitely large transit time due to the infinite propagation of its impulse response.  
*Allerdings ist zu berücksichtigen, dass $h(t)$ bereits bei $t = 1.5  \cdot Δt$ auf $1‰$ seines Maximalwertes abgeklungen ist. Für $t = 3  \cdot Δt$ ergibt sich sogar $h(t) ≈ 5 · 10^{–13} · h(0)$.  
+
#However,&nbsp; it must be taken into account that&nbsp; $h(t)$&nbsp; has already decayed to&nbsp; $1‰$&nbsp; of its maximum value at&nbsp; $t = 1.5  \cdot Δt$.&nbsp; For&nbsp; $t = 3  \cdot Δt$&nbsp; we even get&nbsp; $h(t) ≈ 5 · 10^{–13} · h(0)$.  
*Diese Zahlenwerte machen deutlich, dass man den Gaußtiefpass durchaus auch für praxisnahe Simulationen heranziehen kann, solange Laufzeiten keine systembegrenzende Rolle spielen.  
+
#These numerical values show that the Gaussian low-pass filter can be used feasibly for practical simulations as long as runtimes do not play a system-limiting role.  
*Die Sprungantwort $σ(t)$ lautet mit der Gaußschen Fehlerfunktion $ϕ(x)$, die in Formelsammlungen meist tabellarisch angegeben wird:  
+
#The&nbsp; &raquo;step response&laquo;&nbsp; $σ(t)$&nbsp; is given for the&nbsp; &raquo;'''Gaussian error function'''&laquo;&nbsp; $ϕ(x)$,&nbsp; which is usually given in tabular form in formula collections:  
:$$\sigma(t) =  \int_{ -\infty }^{ t  } {h(\tau)}  \hspace{0.1cm}{\rm d}\tau = {\rm \phi}\left( \sqrt{2 \pi }\cdot{t}/{\Delta t} \right) \hspace{0.7cm}{\rm{mit}}\hspace{0.7cm}{\rm \phi}(x) = \frac{1}{\sqrt{2 \pi }} \cdot \int_{ -\infty }^{ x  } {{\rm e}^{-u^2/2}}  \hspace{0.1cm}{\rm d}u.$$
+
::$$\sigma(t) =  \int_{ -\infty }^{ t  } {h(\tau)}  \hspace{0.1cm}{\rm d}\tau = {\rm \phi}\left( \sqrt{2 \pi }\cdot{t}/{\Delta t} \right) \hspace{0.7cm}{\rm{where}}\hspace{0.7cm}{\rm \phi}(x) = \frac{1}{\sqrt{2 \pi }} \cdot \int_{ -\infty }^{ x  } {{\rm e}^{-u^2/2}}  \hspace{0.1cm}{\rm d}u.$$
  
==Trapez–Tiefpass==
+
==Trapezoidal low-pass filter ==
 
<br>
 
<br>
Die bisher in diesem Kapitel beschriebenen Tiefpassfunktionen hängen nur von einem Parameter – der äquivalenten Bandbreite $Δf$ – ab. Dabei war die Flankensteilheit für einen gegebenen Filtertyp fest vorgegeben.  
+
The low-pass functions described so far depend on only one parameter &ndash; the&nbsp; &raquo;equivalent bandwidth&laquo;&nbsp; $Δf$. &nbsp; Here,&nbsp; the edge steepness for a given filter type was fixed.&nbsp; Now a low-pass filter with parameterisable edge steepness is described.
 
 
Nun wird ein Tiefpass mit parametrisierbarer Flankensteilheit  beschrieben.
 
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
 
$\text{Definition:}$&nbsp;  
 
$\text{Definition:}$&nbsp;  
Der Frequenzgang des '''Trapez–Tiefpasses''' lautet mit den Eckfrequenzen $f_1$ und $f_2 \ge f_1$:
+
The frequency response of the&nbsp; &raquo;'''trapezoidal low-pass filter'''&laquo;&nbsp; $\rm (TLP)$&nbsp; with cut-off frequencies&nbsp; $f_1$&nbsp; and&nbsp; $f_2 \ge f_1$:
:$$H(f) = \left\{ \begin{array}{l} \hspace{0.25cm}1  \\  \frac{f_2 - \vert f \vert }{f_2 -f_1} \\
+
:$$H(f) = H_{\rm TLP}(f)= \left\{ \begin{array}{l} \hspace{0.25cm}1  \\  \frac{f_2 - \vert f \vert }{f_2 -f_1} \\
 
\hspace{0.25cm} 0 \\  \end{array} \right.\quad \quad
 
\hspace{0.25cm} 0 \\  \end{array} \right.\quad \quad
\begin{array}{*{10}c}  \text{für}  \\ \text{für}
+
\begin{array}{*{10}c}  \text{for}  \\ \text{for}
\\  \text{für}  \\ \end{array}\begin{array}{*{20}c}
+
\\  \text{for}  \\ \end{array}\begin{array}{*{20}c}
 
{\hspace{0.94cm}\vert  \hspace{0.005cm} f\hspace{0.05cm} \vert < f_1,}  \\
 
{\hspace{0.94cm}\vert  \hspace{0.005cm} f\hspace{0.05cm} \vert < f_1,}  \\
 
{f_1 \le \vert  \hspace{0.005cm} f\hspace{0.05cm} \vert \le f_2,}  \\
 
{f_1 \le \vert  \hspace{0.005cm} f\hspace{0.05cm} \vert \le f_2,}  \\
Line 121: Line 133:
  
  
Anstelle von $f_1$ und $f_2$ kann man zur Beschreibung von $H(f)$ auch folgende Parameter verwenden:  
+
Instead of&nbsp; $f_1$&nbsp; and&nbsp; $f_2$&nbsp; the following parameters can be used to describe&nbsp; $H(f)$:  
*die '''äquivalente Bandbreite''', ermittelt über das flächengleiche Rechteck:
+
*the&nbsp; &raquo;'''equivalent bandwidth'''&laquo;&nbsp; determined via the equal-area rectangle:
 
:$$\Delta f = f_1 + f_2.$$
 
:$$\Delta f = f_1 + f_2.$$
*der '''Rolloff-Faktor''' (im Frequenzbereich) als Maß für die Flankensteilheit:
+
*the&nbsp; &raquo;'''roll-off factor'''&laquo;&nbsp; $($in frequency domain$)$&nbsp; as a measure for the edge steepness:
 
:$$r_{\hspace{-0.05cm}f} = \frac{f_2 - f_1}{f_2 + f_1}.$$
 
:$$r_{\hspace{-0.05cm}f} = \frac{f_2 - f_1}{f_2 + f_1}.$$
Als Sonderfälle sind in der allgemeinen Darstellung  enthalten:
+
Special cases included in the general representation are:
*der ideale rechteckförmige Tiefpass $(r_{\hspace{-0.05cm}f} = 0)$,  
+
*the ideal rectangular low-pass filter&nbsp; $(r_{\hspace{-0.05cm}f} = 0)$,
*der Dreiecktiefpass $(r_{\hspace{-0.05cm}f} = 1)$.
+
 
+
*the triangular low-pass filter&nbsp; $(r_{\hspace{-0.05cm}f} = 1)$.
  
Die folgende Grafik zeigt für den Rolloff–Faktor $r_f  = 0.5 \ \Rightarrow \ f_2 = 3f_1$ links den Frequenzgang  $H(f)$ und rechts die Impulsantwort
 
:$$h(t) = \Delta f \cdot {\rm si}(\pi \cdot \Delta f \cdot t )\cdot {\rm si}(\pi \cdot r_{\hspace{-0.05cm}f} \cdot \Delta f \cdot t )\hspace{0.7cm}{\rm{mit}}\hspace{0.7cm}{\rm si}(x) = {\sin(x)}/{x}.$$
 
Der $\rm si$–Zeitverlauf des rechteckförmigen Tiefpasses mit gleicher äquivalenter Bandbreite ist zum Vergleich gestrichelt eingezeichnet.
 
  
[[File:P_ID846__LZI_T_1_3_S5_neu.png|right |frame|  Trapez–Tiefpass: Frequenzgang und zugehörige Impulsantwort|class=fit]]
+
For a roll-off factor&nbsp; of&nbsp; $r_f  = 0.5 \ \Rightarrow \ f_2 = 3f_1$&nbsp; the following graph shows the frequency response&nbsp; $H(f)= H_{\rm TLP}(f)$&nbsp; on the left and  on the right the impulse response
 +
:$$h(t) = h_{\rm TLP}(t) =\Delta f \cdot {\rm sinc}(\Delta f \cdot t )\cdot {\rm sinc}(r_{\hspace{-0.05cm}f} \cdot \Delta f \cdot t )\hspace{0.7cm}{\rm{where}}\hspace{0.7cm}{\rm sinc}(x)= \frac{\sin(\pi x)}{\pi x}.$$
 +
The time-dependent&nbsp; $\rm sinc$&ndash;curve of the rectangular low-pass filter with the same equivalent bandwidth is shown dashed for comparison.&nbsp; With the help of the graph and the above equations the following statements can be made:
  
Die Grafik sowie obige Gleichungen erlauben folgende Aussagen:
+
[[File:P_ID846__LZI_T_1_3_S5_neu.png|right |frame| Trapezoidal low-pass filter:&nbsp; Frequency response and impulse response|class=fit]]
*Die Trapezform entsteht zum Beispiel durch die Faltung zweier Rechtecke der Breiten $Δf$ und $r_f \cdot  Δf$.  
+
   
*Entsprechend dem Faltungssatz ist somit die Impulsantwort das Produkt zweier $\rm si$–Funktionen mit den Argumenten $π · Δf · t$ und $π · r_{\hspace{-0.05cm}f} · Δf · t$.  
+
#The trapezoidal shape is obtained, for example, by convolution of two rectangles of widths&nbsp; $Δf$&nbsp; and&nbsp; $r_f \cdot  Δf$.  
*Die erste $\rm si$–Funktion ist für alle Werte von $r_{\hspace{-0.05cm}f}$ Bestandteil der Gleichung für $h(t)$ und führt stets zu äquivalenten Nulldurchgängen im Abstand $1/Δf$.  
+
#According to the convolution theorem the impulse response is thus the product of two&nbsp; $\rm sinc$&ndash;functions with arguments&nbsp; $Δf · t$&nbsp; and&nbsp; $r_{\hspace{-0.05cm}f} · Δf · t$.  
*Für $0 \lt r_{\hspace{-0.05cm}f} \lt 1$ gibt es weitere Nullstellen bei Vielfachen von $Δt/r_{\hspace{-0.05cm}f}$.  
+
#The first&nbsp; $\rm sinc$&ndash;function is part of the&nbsp; $h(t)$&nbsp; equation for all values of&nbsp; $r_{\hspace{-0.05cm}f}$&nbsp; and always results in equivalent zero-crossings in the distance&nbsp; $1/Δf$.  
*Der asymptotische Abfall der Impulsantwort $h(t)$ erfolgt um so schneller, je größer $r_{\hspace{-0.05cm}f}$ ist, das heißt bei gegebenem $Δf$ mit flacherer Flanke.  
+
#For&nbsp; $0 \lt r_{\hspace{-0.05cm}f} \lt 1$&nbsp; there are further zero-crossings at multiples of&nbsp; $Δt/r_{\hspace{-0.05cm}f}$.  
*Der schnellstmögliche Abfall ergibt sich beim Dreiecktiefpass  &nbsp; ⇒  &nbsp; $r_{\hspace{-0.05cm}f}  = 1$,  $f_1 = 0$,  $f_2 = Δf$. Für diesen gilt im Frequenz– und Zeitbereich:
+
#The larger&nbsp; $r_{\hspace{-0.05cm}f}$&nbsp; is&nbsp; $($i.e. for a given&nbsp; $Δf$&nbsp; with a flatter edge$)$,&nbsp; the faster is the asymptotic decay of the impulse response&nbsp; $h(t)$.  
:$$H(f) = \left\{ \begin{array}{c} \hspace{0.25cm}  \frac{{\rm \Delta}f -|f|}{{\rm \Delta}f} \\
+
#The fastest possible decay is obtained for the triangular low-pass filter &nbsp; ⇒  &nbsp; $r_{\hspace{-0.05cm}f}  = 1$,&nbsp; $f_1 = 0$,&nbsp; $f_2 = Δf$.&nbsp; For this,&nbsp; the following holds in frequency and time domains:
 +
::$$H(f) = \left\{ \begin{array}{c} \hspace{0.25cm}  \frac{{\rm \Delta}f -|f|}{{\rm \Delta}f} \\
 
\hspace{0.25cm} 0 \\  \end{array} \right.\quad \quad
 
\hspace{0.25cm} 0 \\  \end{array} \right.\quad \quad
\begin{array}{*{10}c}    {\rm{f\ddot{u}r}}
+
\begin{array}{*{10}c}    {\rm{for}}
\\  {\rm{f\ddot{u}r}}  \\ \end{array}\begin{array}{*{20}c}
+
\\  {\rm{for}}  \\ \end{array}\begin{array}{*{20}c}
 
{\hspace{1cm} \left| \hspace{0.005cm}f\hspace{0.05cm} \right| \le {\rm \Delta}f ,}  \\
 
{\hspace{1cm} \left| \hspace{0.005cm}f\hspace{0.05cm} \right| \le {\rm \Delta}f ,}  \\
 
{\hspace{1cm}\left|\hspace{0.005cm} f \hspace{0.05cm} \right| \ge {\rm \Delta}f }  \\
 
{\hspace{1cm}\left|\hspace{0.005cm} f \hspace{0.05cm} \right| \ge {\rm \Delta}f }  \\
\end{array}, \hspace{1cm}
+
\end{array},$$
h(t) = \Delta f \cdot {\rm si}^2(\pi \cdot \Delta f \cdot t )\hspace{0.4cm}{\rm{mit}}\hspace{0.4cm}{\rm si}(x) = \frac{\sin(x)}{x}.$$
+
::$$h(t) = \Delta f \cdot {\rm sinc}^2( \Delta f \cdot t ),\hspace{0.2cm}{\rm{where}}\hspace{0.4cm}{\rm sinc}(x)= \frac{\sin(\pi x)}{\pi x}.$$
  
==Cosinus-Rolloff-Tiefpass==
+
==Raised-cosine low-pass filter ==
 
<br>
 
<br>
Ebenso wie der [[Linear_and_Time_Invariant_Systems/Einige_systemtheoretische_Tiefpassfunktionen#Trapez.E2.80.93Tiefpass|Trapez–Tiefpass]]  wird dieser Tiefpass durch zwei Parameter beschrieben, nämlich durch
+
Like the&nbsp; [[Linear_and_Time_Invariant_Systems/Some_Low-Pass_Functions_in_Systems_Theory#Trapezoidal_low-pass_filter|&raquo;trapezoidal low-pass filter&laquo;]]&nbsp; this low-pass filter is also described by two parameters,&nbsp; which are
*die äquivalente Bandbreite $Δf$ und
+
*the equivalent bandwidth&nbsp; $Δf$,&nbsp;
*den Rolloff–Faktor $r_{\hspace{-0.05cm}f}$.  
+
 +
*the roll-off factor $r_{\hspace{-0.05cm}f}$.  
  
  
Dessen Wertebereich liegt zwischen $r_{\hspace{-0.05cm}f} = 0$ (Rechtecktiefpass) und $r_{\hspace{-0.05cm}f} = 1$ (Cosinus–Quadrat–Tiefpass).
+
Its value range lies between&nbsp; $r_{\hspace{-0.05cm}f} = 0$&nbsp; $($rectangular low-pass filter$)$&nbsp; and&nbsp; $r_{\hspace{-0.05cm}f} = 1$&nbsp; $($cosine–squared low-pass filter$)$.
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
 
$\text{Definition:}$&nbsp;  
 
$\text{Definition:}$&nbsp;  
Mit den Eckfrequenzen $f_1 = Δf · (1 – r_{\hspace{-0.05cm}f})$ &nbsp;und&nbsp; $f_2 = Δf · (1 + r_{\hspace{-0.05cm}f})$ lautet der Frequenzgang des '''Cosinus–Rolloff–Tiefpasses''':
+
With cut-off frequencies&nbsp; $f_1 = Δf · (1 – r_{\hspace{-0.05cm}f})$ &nbsp;and&nbsp; $f_2 = Δf · (1 + r_{\hspace{-0.05cm}f})$&nbsp; the frequency response of the&nbsp; &raquo;'''raised-cosine low-pass filter'''&laquo;&nbsp; $\rm (RCLP)$:
:$$H(f) = \left\{ \begin{array}{l} \hspace{0.25cm}1  \\ \cos \left( \frac{ \vert f \vert - f_1}{f_2 -f_1}\frac{\pi}{2}\right) \\
+
:$$H(f) = H_{\rm RCLP}(f) =\left\{ \begin{array}{l} \hspace{0.25cm}1  \\ \cos \left( \frac{ \vert f \vert - f_1}{f_2 -f_1}\cdot \pi/2\right) \\
 
\hspace{0.25cm} 0 \\  \end{array} \right.\quad \quad
 
\hspace{0.25cm} 0 \\  \end{array} \right.\quad \quad
\begin{array}{*{10}c}  \text{für}  \\ \text{für}
+
\begin{array}{*{10}c}  \text{for}  \\ \text{for}
\\  \text{für}  \\ \end{array}\begin{array}{*{20}c}
+
\\  \text{for}  \\ \end{array}\begin{array}{*{20}c}
 
{\hspace{0.94cm}\vert  \hspace{0.005cm} f\hspace{0.05cm} \vert  < f_1,}  \\
 
{\hspace{0.94cm}\vert  \hspace{0.005cm} f\hspace{0.05cm} \vert  < f_1,}  \\
 
{f_1 \le \vert  \hspace{0.005cm} f\hspace{0.05cm} \vert \le f_2,}  \\
 
{f_1 \le \vert  \hspace{0.005cm} f\hspace{0.05cm} \vert \le f_2,}  \\
Line 175: Line 188:
  
  
[[File:P_ID848__LZI_T_1_3_S6_neu.png|frame|  Cosinus–Rolloff–Tiefpass und zugehörige Impulsantwort|class=fit]]
+
[[File:EN_LZI_T_1_3_S6_v2.png|frame|  Raised-cosine low-pass filter and respective impulse response|class=fit]]
Die Grafik zeigt links  $H(f)$ sowie rechts die Impulsantwort
+
The graph shows&nbsp; $H(f)$&nbsp; on the left and  on the right the impulse response
:$$h(t) = \Delta f \hspace{-0.05cm}\cdot\hspace{-0.05cm} {\rm si}(\pi \hspace{-0.05cm}\cdot\hspace{-0.05cm} \Delta f \hspace{-0.05cm}\cdot\hspace{-0.05cm} t )\hspace{-0.05cm}\cdot\hspace{-0.05cm}
+
:$$h(t) = h_{\rm RCLP}(t) =\Delta f \hspace{-0.05cm}\cdot\hspace{-0.05cm} {\rm sinc}( \Delta f \hspace{-0.05cm}\cdot\hspace{-0.05cm} t )\hspace{-0.05cm}\cdot\hspace{-0.05cm}
 
\frac {\cos(\pi \cdot r_{\hspace{-0.05cm}f} \cdot \Delta f \cdot t )}{1 - (2 \cdot
 
\frac {\cos(\pi \cdot r_{\hspace{-0.05cm}f} \cdot \Delta f \cdot t )}{1 - (2 \cdot
 
r_f \cdot \Delta f \cdot t)^2}.$$
 
r_f \cdot \Delta f \cdot t)^2}.$$
  
Für diese Grafiken wurde der Rolloff–Faktor $r_{\hspace{-0.05cm}f} = 0.5$ verwendet, das heißt, es gilt $f_2 = 3 \cdot f_1$.
+
For these graphs the roll-off factor&nbsp; $r_{\hspace{-0.05cm}f} = 0.5$&nbsp; was used.&nbsp; In other words:&nbsp; $f_2 = 3 \cdot f_1.$  
  
Gestrichelt sind zum Vergleich eingezeichnet:
+
The following is drawn in dashed lines for comparison:
*im Frequenzbereich der Trapeztiefpass und
+
*in the frequency domain the trapezoidal low-pass filter and
*im Zeitbereich die $\rm si$–Funktion.  
+
<br clear=all>
+
*in the time domain the&nbsp; $\rm sinc$ function.  
Es ist zu beachten:
 
  
*Die $\rm si$&ndash;Funktion ist nicht die Fourierrücktransformierte des links blau eingezeichneten Trapeztiefpasses.
 
* Sie beschreibt vielmehr den (nicht dargestellten) idealen, rechteckförmigen Tiefpass im Zeitbereich.
 
  
 +
$\text{Please note:}$
  
Anhand dieser Grafik und den obigen Gleichungen sind folgende Aussagen möglich:  
+
:The&nbsp; $\rm sinc$&ndash;function is not the inverse Fourier transform of the trapezoidal low-pass filter drawn in blue on the left.&nbsp; It rather describes the ideal rectangular low-pass filter in the time domain,&nbsp; which is not shown in the left graph.
*Die Impulsantwort $h(t)$ des Cosinus–Rolloff–Tiefpasses  hat bei allen Vielfachen von $Δt = 1/Δf$ Nullstellen, die auf die im rechten Bild gestrichelt eingezeichnete si–Funktion zurückzuführen sind.
 
*Der letzte Term in der $h(t)$–Gleichung führt zu weiteren Nullstellen bei Vielfachen von $Δt/r_f$. Ist $1/r_f$ ganzzahlig wie in obiger Grafik $(1/r_f = 2)$, so fallen diese neuen Nullstellen mit den anderen Nullstellen zusammen, sind also nicht erkennbar.
 
*Je größer der Rolloff-Faktor $r_f$ ist und je flacher damit der Flankenabfall erfolgt, desto günstiger ist im Allgemeinen das Einschwingverhalten des Cosinus-Rolloff-Tiefpasses.
 
*Der Cosinus–Rolloff–Tiefpass zeigt meist ein besseres asymptotisches Einschwingverhalten als der Trapez–Tiefpass mit gleichem $r_f$, obwohl dieser zumindest bei $Δf/2$ eine flachere Flanke aufweist.
 
*Dies lässt darauf schließen, dass das Einschwingverhalten nicht nur durch Unstetigkeitsstellen (wie beim Rechteck), sondern auch durch Knickpunkte wie beim Trapez–Tiefpass beeinträchtigt wird.  
 
  
  
 +
Based on this graph and the above equations the following statements can be made:
 +
#The impulse response&nbsp; $h(t)$&nbsp; of the raised-cosine low-pass filter has zeros at all multiples of&nbsp; $Δt = 1/Δf$,&nbsp; which are due to the&nbsp; $\rm sinc$&ndash;function shown in dashed lines in the  right-hand figure.
 +
#The last term in the&nbsp; $h(t)$&nbsp; equation results in further zeros at multiples of&nbsp; $Δt/r_f$.&nbsp; If&nbsp; $1/r_f$&nbsp; is an integer as in the above graph&nbsp; $(1/r_f = 2)$,&nbsp; these new zeros coincide with the other zeros and thus are not discernible.
 +
#The larger the roll-off factor&nbsp; $r_f$&nbsp; and thus the flatter the roll-off is,&nbsp; the more favourable is the transient behaviour of the raised-cosine low-pass filter.
 +
#The raised-cosine low-pass filter usually exhibits a better asymptotic transient behaviour than the trapezoidal low-pass filter with same&nbsp; $r_f$&nbsp; although the latter has a flatter edge at least at frequency&nbsp; $Δf/2$.
 +
#This suggests that the transient behaviour is not only affected by points of discontinuity&nbsp; $($as in the case of the rectangle$)$&nbsp; but also by kink points as in the case of the trapezoidal low-pass filter.
 +
 +
 +
==Cosine–square low-pass filter==
 +
<br>
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Definition:}$&nbsp;  
+
$\text{Definition:}$&nbsp;
Als Sonderfall ergibt sich mit $f_1 = 0$, $f_2 = Δf$ &nbsp; ⇒ &nbsp; $r_f = 1$ der '''Cosinus–Quadrat–Tiefpass''', dessen Impulsantwort auch wie folgt dargestellt werden kann:
+
For&nbsp; $f_1 = 0$,&nbsp; $f_2 = Δf$ &nbsp; ⇒ &nbsp; $r_f = 1$ &nbsp; the&nbsp; &raquo;'''cosine–square low-pass filter'''&laquo;&nbsp; &nbsp; $\rm (CSLP)$&nbsp; is obtained as a special case.&nbsp; Its impulse response can also be represented as follows:  
:$$h(t) = \frac{1}{ \Delta t}\cdot{\rm si}(\pi \frac{t}{ \Delta t})
+
:$$H(f) = H_{\rm CSLP}(f)= \cos^2\Big(\frac{\vert f \vert \hspace{0.05cm}\cdot\hspace{0.05cm} \pi}{2\hspace{0.05cm}\cdot\hspace{0.05cm} \Delta f}\Big).  $$
\cdot \left[ {\rm si}(\pi \frac{t}{ \Delta t} + 0.5) - {\rm
+
Outside this inner frequency range,&nbsp; $H_{\rm CSLP}(f)=0$.}}
si}(\pi \frac{t}{ \Delta t} - 0.5) \right].$$
+
 
*Diese Funktion hat Nullstellen bei $t/Δt = ±1, ±1.5, ±2, ±2.5$ usw., nicht jedoch bei $t/Δt = ±0.5$.  
+
 
*Der Cosinus–Quadrat–Tiefpass erfüllt als einziger Tiefpass beide  [[Digitalsignalübertragung/Eigenschaften_von_Nyquistsystemen#Erstes_Nyquistkriterium_im_Zeitbereich|Nyquistkriterien]] &nbsp; &rArr; &nbsp; siehe Buch&nbsp; [[Digitalsignalübertragung]]. }}
+
For the impulse response one obtains according to the inverse Fourier transform after some transformations:
 +
:$$h(t)=h_{\rm CSLP}(t)= \Delta f \cdot  {\rm sinc}(\Delta f \cdot t)\cdot \big  [{\rm sinc}(\Delta f\cdot t +0.5)+{\rm sinc}(\Delta f\cdot t -0.5)\big ],$$
 +
:$$T=1/\Delta f \hspace{0.5cm}\Rightarrow \hspace{0.5cm}  h(t)=1/T \cdot  {\rm sinc}(t/T)\cdot  \big  [{\rm sinc}(t/T +0.5)+{\rm sinc}(t/T -0.5)\big ].$$
 +
#Because of the first&nbsp; ${\rm sinc}$&ndash;function,&nbsp; $h(t)=0$&nbsp; for multiples of&nbsp; $T=1/\Delta f$ &nbsp; &rArr; &nbsp; the equidistant zero-crossings of the cosine&ndash;rolloff lowpass are preserved.
 +
#Because of the bracket expression,&nbsp; $h(t)$&nbsp; now exhibits further zero-crossings at&nbsp; $t=\pm1.5 T$,&nbsp; $\pm2.5 T$,&nbsp; $\pm3.5 T$, ... &nbsp; but not at&nbsp; $t=\pm0.5 T$.
 +
#For&nbsp; $t=\pm0.5 T$&nbsp; the impulse response has the value&nbsp; $\Delta f/2$.
 +
#The asymptotic decay of&nbsp; $h(t)$&nbsp; in this special case runs with&nbsp; $1/t^3$.&nbsp;
 +
 
 +
 
 +
{{BlaueBox|TEXT=
 +
$\text{Furthermore,&nbsp; it should be mentioned}$ &nbsp; that the&nbsp; &raquo;cosine-square low-pass filter&laquo;&nbsp; is the only low-pass filter that fulfils both&nbsp; [[Digital_Signal_Transmission/Properties_of_Nyquist_Systems#First_Nyquist_criterion_in_the_time_domain|'''&raquo;Nyquist criteria&laquo;]].&nbsp; Here the&nbsp; &raquo;eye&laquo;&nbsp; in digital transmission is&nbsp; '''maximally open both vertically and horizontally''' &nbsp; &rArr; &nbsp; see&nbsp; [[Digital_Signal_Transmission/Error_Probability_with_Intersymbol_Interference#Definition_and_statements_of_the_eye_diagram|&raquo;Definition and statements of the eye diagram&laquo;]].}}  
 +
 
  
==Herleitung systemtheoretischer Hochpassfunktionen==
+
==Derivation of system theoretical high-pass functions==
 
<br>
 
<br>
Bisher wurden in diesem Kapitel fünf häufig verwendete systemtheoretische Tiefpassfunktionen betrachtet. Für jede einzelne Tiefpassfunktion lässt sich auch eine äquivalente Hochpassfunktion angeben.
+
So far,&nbsp; six commonly used system theoretic low-pass functions have been considered.&nbsp; For each individual low-pass function there is also an equivalent high-pass function.
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
 
$\text{Definition:}$&nbsp;  
 
$\text{Definition:}$&nbsp;  
Ist $H_{\rm TP}(f)$ eine systemtheoretische TP&ndash;Funktion mit $H_{\rm TP}(f = 0) = 1$, so ist die '''äquivalente Hochpassfunktion''':
+
If&nbsp; $H_{\rm TP}(f)$&nbsp; is a system&ndash;theoretical low-pass function&nbsp; $($German "Tiefpass" &nbsp; &rArr; &nbsp; $\text{TP)}$&nbsp; with&nbsp; $H_{\rm TP}(f = 0) = 1$, then&nbsp; the&nbsp; &raquo;'''equivalent high-pass function'''&laquo;:
 
:$$H_{\rm HP}(f) = 1 - H_{\rm TP}(f).$$}}
 
:$$H_{\rm HP}(f) = 1 - H_{\rm TP}(f).$$}}
  
  
Damit lauten die Beschreibungsgrößen im Zeitbereich:
+
Thus,&nbsp; the descriptive quantities in the time domain are:
:$$h_{\rm HP}(t) = \delta (t) - h_{\rm TP}(t),\hspace{1cm}
+
:$$h_{\rm HP}(t) = \delta (t) - h_{\rm TP}(t),$$
\sigma_{\rm HP}(t)  = \gamma (t) - \sigma_{\rm TP}(t). $$
+
:$$\sigma_{\rm HP}(t)  = \gamma (t) - \sigma_{\rm TP}(t). $$
 +
 
 +
Here, the following denotations are used:
 +
#$h_{\rm HP}(t)$ &nbsp;and&nbsp; $h_{\rm TP}(t)$ denote the impulse responses of the high- and low-pass filter,
 +
#$σ_{\rm HP}(t)$ &nbsp;and&nbsp; $σ_{\rm TP}(t)$ denote the respective step responses,
 +
#$γ(t)$&nbsp; denotes the jump function as a result of integration over the Dirac delta function&nbsp; $δ(t)$.
  
Hierbei bezeichnen:
 
*$h_{\rm HP}(t)$ &nbsp;und&nbsp; $h_{\rm TP}(t)$ die Impulsantworten von Hoch– und Tiefpass,
 
*$σ_{\rm HP}(t)$ &nbsp;und&nbsp; $σ_{\rm TP}(t)$ die dazugehörigen Sprungantworten,
 
*$γ(t)$ die Sprungfunktion als Ergebnis der Integration über die Diracfunktion $δ(t)$.
 
  
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 1:}$&nbsp;  
+
$\text{Example 1:}$&nbsp;  
Wir betrachten den Spalttiefpass, der sich durch einen $\rm si$–förmigen Frequenzgang, eine rechteckförmige Impulsantwort und eine linear ansteigende Sprungantwort auszeichnet. Diese sind in der nachfolgenden Grafik dargestellt.  
+
We consider the&nbsp; &raquo;slit low-pass filter&laquo;&nbsp; &rArr; &nbsp; &raquo;rectangular-in-time&raquo;&nbsp; which is characterized by
 +
[[File: P_ID851__LZI_T_1_3_S7_neu.png  |right|frame| Construction of high-pass functions&nbsp; $H_{\rm HP}(f)$,&nbsp; $h_{\rm HP}(t)$,&nbsp; $\sigma_{\rm HP}(t)$&nbsp; from the <br>corresponding low-pass functions&nbsp; $H_{\rm TP}(f)$,&nbsp; $h_{\rm TP}(t)$,&nbsp; $\sigma_{\rm TP}(t)$|class=fit]]
 +
* a&nbsp; $\rm sinc$–shaped frequency response with&nbsp; $H_{\rm TP}(f = 0) = 1$,
 +
 +
*a rectangular impulse response, and
 +
 +
*a linearly increasing step response.&nbsp;
 +
 
 +
 
 +
These are shown in the upper diagram.&nbsp;
 +
 
 +
 
 +
 
 +
 
  
Die untere Skizze zeigt die entsprechenden Hochpassfunktionen.  
+
The sketch below shows the corresponding high-pass functions.&nbsp;
[[File: P_ID851__LZI_T_1_3_S7_neu.png  |right|frame| Konstruktion von Hochpassfunktionen aus den entsprechenden Tiefpässen|class=fit]]
 
  
Man erkennt, dass
+
It can be seen that
*$H_{\rm HP}(f = 0)$ immer den Wert $0$ besitzt, wenn $H_{\rm TP}(f = 0) = 1$ ist,  
+
*$H_{\rm HP}(f = 0) = 0$&nbsp;  because &nbsp; $H_{\rm TP}(f = 0) = 1$,
*demzufolge das Integral über $h_{\rm HP}(t)$ ebenfalls Null ergeben muss, und
+
*auch die Sprungantwort $σ_{\rm HP}(t)$ gegen den Endwert Null tendiert.}}
+
*consequently the integral over&nbsp; $h_{\rm HP}(t)$&nbsp; must also be zero,&nbsp; and
 +
 +
*the step response&nbsp; $σ_{\rm HP}(t)$&nbsp; tends towards the final value
 +
:$$σ_{\rm HP}(t \to \infty)=0.$$}}
  
==Aufgaben zum Kapitel==
+
==Exercises for the chapter==
 
<br>
 
<br>
[[Aufgaben:Aufgabe_1.5:_Idealer_rechteckförmiger_Tiefpass|Aufgabe 1.5: Idealer rechteckförmiger Tiefpass]]
+
[[Aufgaben:Exercise_1.5:_Rectangular-in-Frequency_Low-Pass_Filter|Exercise 1.5: Rectangular-in-Frequency Low-Pass Filter]]
  
[[Aufgaben:1.5Z si-förmige Impulsantwort|Aufgabe 1.5Z: si-förmige Impulsantwort]]
+
[[Aufgaben:Exercise_1.5Z:_Sinc-shaped_Impulse_Response|Exercise 1.5Z: Sinc-shaped Impulse Response]]
  
[[Aufgaben:Aufgabe_1.6:_Rechteckförmige_Impulsantwort|Aufgabe 1.6: Rechtförmeckige Impulsantwort]]
+
[[Aufgaben:Exercise_1.6:_Rectangular-in-Time_Low-Pass_Filter|Exercise 1.6: Rectangular-in-Time Low-Pass Filter]]
  
[[Aufgaben:Aufgabe_1.6Z:_Interpretation_der_Übertragungsfunktion|Aufgabe 1.6Z: Interpretation der Übertragungsfunktion]]
+
[[Aufgaben:Exercise_1.6Z:_Interpretation_of_the_Frequency_Response|Exercise 1.6Z: Interpretation of the Frequency Response]]
  
[[Aufgaben:1.7 Nahezu kausaler Gaußtiefpass|Aufgabe 1.7: Nahezu kausaler Gaußtiefpass]]
+
[[Aufgaben:Exercise_1.7:_Nearly_Causal_Gaussian_Low-Pass_Filter|Exercise 1.7: Nearly Causal Gaussian Low-Pass Filter]]
  
[[Aufgaben:1.7Z Systemanalyse|Aufgabe 1.7Z: Systemanalyse]]
+
[[Aufgaben:Exercise_1.7Z:_Overall_Systems_Analysis|Exercise 1.7Z: Overall Systems Analysis]]
  
[[Aufgaben:1.8 Variable Flankensteilheit|Aufgabe 1.8: Variable Flankensteilheit]]
+
[[Aufgaben:Exercise_1.8:_Variable_Edge_Steepness|Exercise 1.8: Variable Edge Steepness]]
  
[[Aufgaben:1.8Z Cosinus-Quadrat-Tiefpass|Aufgabe 1.8Z: Cosinus-Quadrat-Tiefpass]]
+
[[Aufgaben:Exercise_1.8Z:_Cosine-Square_Low-Pass_Filter|Exercise 1.8Z: Cosine-Square Low-Pass Filter]]
  
  
  
 
{{Display}}
 
{{Display}}

Latest revision as of 19:19, 7 November 2023

General remarks


All low-pass functions described in the next sections have the following properties:

  • The frequency response  $H(f)$  is real and even so that according to the  $\text{Assignment Theorem}$  the associated impulse response  $h(t)$  is always real and even,  too.
  • The advantage of these  »system theoretical filter functions«  is the simple description by at most two parameters such that the filter influence can be represented in a transparent way.
  • The most important frequency response parameter is the  »equivalent bandwidth«  according to the definition via the equal-area rectangle:
$$\Delta f = \frac{1}{H(f=0)}\cdot \int_{-\infty}^{+\infty}H(f) \hspace{0.15cm} {\rm d}f.$$
$$\Delta t = \frac{1}{h(t=0)}\cdot \int_{-\infty}^{+\infty}h(t) \hspace{0.15cm} {\rm d}t = \frac{1}{\Delta f}.$$
  • The direct signal  $\rm (DC)$  transmission factor is always assumed to be  $H(f = 0) = 1$  unless explicitly stated otherwise.

Ideal low-pass filter – Rectangular-in-frequency


$\text{Definition:}$  An  »ideal low-pass filter«  is on hand if its frequency response has the following rectangular shape:

$$H(f) = H_{\rm RLP}(f) =\left\{ \begin{array}{l} \hspace{0.25cm}1 \\ 0.5 \\\hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad\begin{array}{*{10}c} \text {for} \\ \text {for} \\ \text {for} \\ \end{array}\begin{array}{*{20}c}{\vert \hspace{0.005cm}f\hspace{0.05cm} \vert< \Delta f/2,} \\{\vert \hspace{0.005cm}f\hspace{0.05cm} \vert = \Delta f/2,} \\{\vert \hspace{0.005cm}f\hspace{0.05cm} \vert > \Delta f/2.} \\\end{array}$$
  1. We sometimes also use the term  »rectangular low-pass filter«  $\rm (RLP)$.
  2. Here  $Δf$  denotes the  »system theoretical bandwidth«. 
  3. $f_{\rm G}=Δf/2$  denotes the  »cut-off frequency«   $($German:  "Grenzfrequenz"   ⇒   subscript  $\rm G)$.


Ideal low-pass filter:  Frequency response and impulse response

The graph shows such an ideal low-pass filter in the frequency and time domain. 

The following can be concluded from these curves:

  • Due to the abrupt,  infinitely steep roll-off the  »3 dB cut-off frequency«   ⇒  
    $f_{\rm G}$  is here exactly half the  »system theoretic bandwidth«  $Δf$.
  • All spectral components with  $f \lt f_{\rm G}$  are transmitted undistorted   ⇒   »pass band«.
  • All components with  $f \gt f_{\rm G}$  are completely suppressed   ⇒   »stop band«.
  • By definition,  $H(f) = 0.5$  holds for  $f = \pm f_{\rm G}$.


Description of the ideal low-pass filter in the time domain:

  • According to the inverse Fourier transform the  »impulse response«  $($right diagram$)$:
$$h(t) = h_{\rm RLP}(t) =\Delta f \cdot {\rm si}(\pi \cdot \Delta f \cdot t)\hspace{0.55cm}{\rm{with}}\hspace{0.7cm}{\rm si}(x) ={\sin(x)}/{x},\hspace{0.5cm}{\rm or}$$
$$h_{\rm RLP}(t) =\Delta f \cdot {\rm sinc}(\Delta f \cdot t)\hspace{0.7cm}{\rm{with}}\hspace{0.7cm}{\rm sinc}(x) ={\sin(\pi x)}/{(\pi x)}.$$
  • $h(t)$  extended to infinity on both sides and exhibits equidistant zero-crossings at an interval of  $Δt = 1/ Δf$.
  • The asymptotic decay is inversely proportional to time  $|t|$:
$$|h(t)| = \frac{\Delta f}{\pi \cdot \Delta f \cdot |t|} \cdot \left |{\rm sin}(\pi \cdot \Delta f\cdot t )\right | \le \frac{1}{\pi \cdot |t|}.$$
  • It follows that the impulse response is certainly less than  $1‰$  of the impulse maximum only for times  $t \gt t_{1‰} = 318 \cdot \Delta t$.
  • The step response  $\sigma(t)$  is obtained from the impulse response by integration and is:
$${\sigma}(t) = \int_{ - \infty }^{ t } {h ( \tau )} \hspace{0.1cm}{\rm d}\tau = \frac{1}{2} + \frac{1}{\pi} \cdot {\rm Si}(\pi \cdot\Delta f \cdot t ).$$
  • Here,  the so-called  »integral sine function«  is used:
$${\rm Si}(x) = \int_{ 0 }^{ x } {{\rm si} ( \xi )} \hspace{0.1cm}{\rm d}\xi = x - \frac{x^3}{3 \cdot 3!} + \frac{x^5}{5 \cdot 5!} - \frac{x^7}{7 \cdot 7!}+\text{ ...}$$
$$\Rightarrow \ {\rm Si}(0) = 0, \hspace{0.3cm}{\rm Si}(\infty) = \frac{\pi}{2}, \hspace{0.3cm}{\rm Si}(-x) = -{\rm Si}(x).$$


Slit low-pass filter – Rectangular-in-time


$\text{Definition:}$  An LTI system is called a  »slit low-pass filter«   $\rm (SLP)$  if the frequency response has the following form:

$$H(f) = H_{\rm SLP}(f)= {\rm si}(\pi {f}/{ \Delta f})\hspace{0.7cm}{\rm{where} }\hspace{0.7cm}{\rm si}(x) ={\sin(x)}/{x},\hspace{0.7cm}{\rm or}$$

$$\hspace{2.1cm}H_{\rm SLP}(f)= {\rm sinc}({f}/{ \Delta f})\hspace{0.7cm}{\rm{where} }\hspace{0.7cm}{\rm sinc}(x) ={\sin(\pi x)}/{(\pi x)}.$$


Slit low-pass filter:  Frequecy response and respective impulse response
  1. From the graph on the left it can be seen that the frequency response  $H_{\rm SLP}(f)$  of the slit low-pass filter is identical in shape to the impulse response  $h_{\rm RLP}(t)$  of the rectangular low-pass filter.
  2. According to the  »Duality Theorem«   ⇒   the impulse response  $h_{\rm SLP}(t)$  of the slit low-pass filter must also have the same form as the frequency response $H_{\rm RLP}(f)$ of the ideal low-pass filter   ⇒   "rectangular-in-time".
  3. Thus,  with the  »equivalent duration of the impulse response«  $Δt = 1/ Δf$  the following holds:
$$h(t) = h_{\rm SLP}(t) = \left\{ \begin{array}{l} \hspace{0.25cm}\Delta f \\ \Delta f/2 \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad \begin{array}{*{10}c} \text{for} \\ \text{for} \\ \text{for} \\ \end{array}\begin{array}{*{20}c} {\vert \hspace{0.005cm}t\hspace{0.05cm} \vert < \Delta t/2,} \\ {\vert \hspace{0.005cm}t\hspace{0.05cm} \vert = \Delta t/2,} \\ {\vert \hspace{0.005cm}t\hspace{0.05cm} \vert > \Delta t/2.} \\ \end{array}$$

Based on the graph on the right the following statements can be derived:

  • The slit low-pass filter in this form is also non-causal.  However,  adding a transit time of  $Δt/2$  or more renders the system causal and thus realizable.
  • The slit low-pass filter acts as an integrator over the time period  $Δt$:
$$y(t) = x (t) * h (t) = \frac{1}{\Delta t} \cdot \int\limits_{ t - \Delta t/2 }^{ t + \Delta t/2 } {x ( \tau )} \hspace{0.1cm}{\rm d}\tau.$$
  • If  $x(t)$  is a harmonic oscillation with frequency  $f_0 = k \cdot Δf$  $($where  $k$  is an integer$)$,  then it integrates exactly over  $k$  periods and  $y(t) = 0$  holds. 
  • This is also shown by the zeros of  $H(f)$.

Gaussian low-pass filter


A filter function frequently used for system-theoretical investigations is the Gaussian low-pass filter,  which can also be described by only one parameter,  namely the  »equivalent bandwidth»  $Δf$.

$\text{Definition:}$  For the frequency response and the impulse response of the  »Gaussian low-pass filter«  $\rm (GLP)$  the following holds:

$$H(f) = H_{\rm GLP}(f)= {\rm e}^{-\pi(f/\Delta f)^2}\hspace{0.15cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.15cm}h(t) = h_{\rm GLP}(t) = \Delta f \cdot {\rm e}^{-\pi(\Delta f \cdot \hspace{0.03cm} t)^2} .$$


The name goes back to the mathematician,  physicist and astronomer  $\text{Carl-Friedrich Gauß}$.  Gauß did not deal with this subject matter himself,  but the mathematical form of the frequency response and impulse response bear a resemblance to the so-called  »Gaussian formula«  which he discovered for probability theory.

Gaussian low-pass filter:  Frequency response and impulse response

Based on this graph the following statements can be made:

  1. The  »equivalent pulse duration«  $Δt$  is also defined via the area-equal rectangle and is equal to the reciprocal of the  »equivalent bandwith«  $Δf$.
  2. A narrow-band  $($small  $Δf)$  filter function  $H(f)$  results in a wide  $($large  $Δt)$  and simultaneously low impulse response  $h(t)$.
  3. The so-called  »Reciprocity Theorem«  of time duration and bandwidth can be shown particularly clearly in the example of the Gaussian low-pass filter.
  4. The frequency and time domain representations are in principle of the same form.  The Gaussian function is also said to be invariant to Fourier transform.
  5. The Gaussian low-pass filter is  –   like the ideal low-pass filter  –   strongly non-causal and  $($exactly$)$  realizable only with infinitely large transit time due to the infinite propagation of its impulse response.
  6. However,  it must be taken into account that  $h(t)$  has already decayed to  $1‰$  of its maximum value at  $t = 1.5 \cdot Δt$.  For  $t = 3 \cdot Δt$  we even get  $h(t) ≈ 5 · 10^{–13} · h(0)$.
  7. These numerical values show that the Gaussian low-pass filter can be used feasibly for practical simulations as long as runtimes do not play a system-limiting role.
  8. The  »step response«  $σ(t)$  is given for the  »Gaussian error function«  $ϕ(x)$,  which is usually given in tabular form in formula collections:
$$\sigma(t) = \int_{ -\infty }^{ t } {h(\tau)} \hspace{0.1cm}{\rm d}\tau = {\rm \phi}\left( \sqrt{2 \pi }\cdot{t}/{\Delta t} \right) \hspace{0.7cm}{\rm{where}}\hspace{0.7cm}{\rm \phi}(x) = \frac{1}{\sqrt{2 \pi }} \cdot \int_{ -\infty }^{ x } {{\rm e}^{-u^2/2}} \hspace{0.1cm}{\rm d}u.$$

Trapezoidal low-pass filter


The low-pass functions described so far depend on only one parameter – the  »equivalent bandwidth«  $Δf$.   Here,  the edge steepness for a given filter type was fixed.  Now a low-pass filter with parameterisable edge steepness is described.

$\text{Definition:}$  The frequency response of the  »trapezoidal low-pass filter«  $\rm (TLP)$  with cut-off frequencies  $f_1$  and  $f_2 \ge f_1$:

$$H(f) = H_{\rm TLP}(f)= \left\{ \begin{array}{l} \hspace{0.25cm}1 \\ \frac{f_2 - \vert f \vert }{f_2 -f_1} \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad \begin{array}{*{10}c} \text{for} \\ \text{for} \\ \text{for} \\ \end{array}\begin{array}{*{20}c} {\hspace{0.94cm}\vert \hspace{0.005cm} f\hspace{0.05cm} \vert < f_1,} \\ {f_1 \le \vert \hspace{0.005cm} f\hspace{0.05cm} \vert \le f_2,} \\ {\hspace{0.94cm}\vert \hspace{0.005cm} f\hspace{0.05cm} \vert > f_2.} \\ \end{array}$$


Instead of  $f_1$  and  $f_2$  the following parameters can be used to describe  $H(f)$:

  • the  »equivalent bandwidth«  determined via the equal-area rectangle:
$$\Delta f = f_1 + f_2.$$
  • the  »roll-off factor«  $($in frequency domain$)$  as a measure for the edge steepness:
$$r_{\hspace{-0.05cm}f} = \frac{f_2 - f_1}{f_2 + f_1}.$$

Special cases included in the general representation are:

  • the ideal rectangular low-pass filter  $(r_{\hspace{-0.05cm}f} = 0)$,
  • the triangular low-pass filter  $(r_{\hspace{-0.05cm}f} = 1)$.


For a roll-off factor  of  $r_f = 0.5 \ \Rightarrow \ f_2 = 3f_1$  the following graph shows the frequency response  $H(f)= H_{\rm TLP}(f)$  on the left and on the right the impulse response

$$h(t) = h_{\rm TLP}(t) =\Delta f \cdot {\rm sinc}(\Delta f \cdot t )\cdot {\rm sinc}(r_{\hspace{-0.05cm}f} \cdot \Delta f \cdot t )\hspace{0.7cm}{\rm{where}}\hspace{0.7cm}{\rm sinc}(x)= \frac{\sin(\pi x)}{\pi x}.$$

The time-dependent  $\rm sinc$–curve of the rectangular low-pass filter with the same equivalent bandwidth is shown dashed for comparison.  With the help of the graph and the above equations the following statements can be made:

Trapezoidal low-pass filter:  Frequency response and impulse response
  1. The trapezoidal shape is obtained, for example, by convolution of two rectangles of widths  $Δf$  and  $r_f \cdot Δf$.
  2. According to the convolution theorem the impulse response is thus the product of two  $\rm sinc$–functions with arguments  $Δf · t$  and  $r_{\hspace{-0.05cm}f} · Δf · t$.
  3. The first  $\rm sinc$–function is part of the  $h(t)$  equation for all values of  $r_{\hspace{-0.05cm}f}$  and always results in equivalent zero-crossings in the distance  $1/Δf$.
  4. For  $0 \lt r_{\hspace{-0.05cm}f} \lt 1$  there are further zero-crossings at multiples of  $Δt/r_{\hspace{-0.05cm}f}$.
  5. The larger  $r_{\hspace{-0.05cm}f}$  is  $($i.e. for a given  $Δf$  with a flatter edge$)$,  the faster is the asymptotic decay of the impulse response  $h(t)$.
  6. The fastest possible decay is obtained for the triangular low-pass filter   ⇒   $r_{\hspace{-0.05cm}f} = 1$,  $f_1 = 0$,  $f_2 = Δf$.  For this,  the following holds in frequency and time domains:
$$H(f) = \left\{ \begin{array}{c} \hspace{0.25cm} \frac{{\rm \Delta}f -|f|}{{\rm \Delta}f} \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad \begin{array}{*{10}c} {\rm{for}} \\ {\rm{for}} \\ \end{array}\begin{array}{*{20}c} {\hspace{1cm} \left| \hspace{0.005cm}f\hspace{0.05cm} \right| \le {\rm \Delta}f ,} \\ {\hspace{1cm}\left|\hspace{0.005cm} f \hspace{0.05cm} \right| \ge {\rm \Delta}f } \\ \end{array},$$
$$h(t) = \Delta f \cdot {\rm sinc}^2( \Delta f \cdot t ),\hspace{0.2cm}{\rm{where}}\hspace{0.4cm}{\rm sinc}(x)= \frac{\sin(\pi x)}{\pi x}.$$

Raised-cosine low-pass filter


Like the  »trapezoidal low-pass filter«  this low-pass filter is also described by two parameters,  which are

  • the equivalent bandwidth  $Δf$, 
  • the roll-off factor $r_{\hspace{-0.05cm}f}$.


Its value range lies between  $r_{\hspace{-0.05cm}f} = 0$  $($rectangular low-pass filter$)$  and  $r_{\hspace{-0.05cm}f} = 1$  $($cosine–squared low-pass filter$)$.

$\text{Definition:}$  With cut-off frequencies  $f_1 = Δf · (1 – r_{\hspace{-0.05cm}f})$  and  $f_2 = Δf · (1 + r_{\hspace{-0.05cm}f})$  the frequency response of the  »raised-cosine low-pass filter«  $\rm (RCLP)$:

$$H(f) = H_{\rm RCLP}(f) =\left\{ \begin{array}{l} \hspace{0.25cm}1 \\ \cos \left( \frac{ \vert f \vert - f_1}{f_2 -f_1}\cdot \pi/2\right) \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad \begin{array}{*{10}c} \text{for} \\ \text{for} \\ \text{for} \\ \end{array}\begin{array}{*{20}c} {\hspace{0.94cm}\vert \hspace{0.005cm} f\hspace{0.05cm} \vert < f_1,} \\ {f_1 \le \vert \hspace{0.005cm} f\hspace{0.05cm} \vert \le f_2,} \\ {\hspace{0.94cm}\vert \hspace{0.005cm} f\hspace{0.05cm} \vert> f_2.} \\ \end{array}$$


Raised-cosine low-pass filter and respective impulse response

The graph shows  $H(f)$  on the left and on the right the impulse response

$$h(t) = h_{\rm RCLP}(t) =\Delta f \hspace{-0.05cm}\cdot\hspace{-0.05cm} {\rm sinc}( \Delta f \hspace{-0.05cm}\cdot\hspace{-0.05cm} t )\hspace{-0.05cm}\cdot\hspace{-0.05cm} \frac {\cos(\pi \cdot r_{\hspace{-0.05cm}f} \cdot \Delta f \cdot t )}{1 - (2 \cdot r_f \cdot \Delta f \cdot t)^2}.$$

For these graphs the roll-off factor  $r_{\hspace{-0.05cm}f} = 0.5$  was used.  In other words:  $f_2 = 3 \cdot f_1.$

The following is drawn in dashed lines for comparison:

  • in the frequency domain the trapezoidal low-pass filter and
  • in the time domain the  $\rm sinc$ function.


$\text{Please note:}$

The  $\rm sinc$–function is not the inverse Fourier transform of the trapezoidal low-pass filter drawn in blue on the left.  It rather describes the ideal rectangular low-pass filter in the time domain,  which is not shown in the left graph.


Based on this graph and the above equations the following statements can be made:

  1. The impulse response  $h(t)$  of the raised-cosine low-pass filter has zeros at all multiples of  $Δt = 1/Δf$,  which are due to the  $\rm sinc$–function shown in dashed lines in the right-hand figure.
  2. The last term in the  $h(t)$  equation results in further zeros at multiples of  $Δt/r_f$.  If  $1/r_f$  is an integer as in the above graph  $(1/r_f = 2)$,  these new zeros coincide with the other zeros and thus are not discernible.
  3. The larger the roll-off factor  $r_f$  and thus the flatter the roll-off is,  the more favourable is the transient behaviour of the raised-cosine low-pass filter.
  4. The raised-cosine low-pass filter usually exhibits a better asymptotic transient behaviour than the trapezoidal low-pass filter with same  $r_f$  although the latter has a flatter edge at least at frequency  $Δf/2$.
  5. This suggests that the transient behaviour is not only affected by points of discontinuity  $($as in the case of the rectangle$)$  but also by kink points as in the case of the trapezoidal low-pass filter.


Cosine–square low-pass filter


$\text{Definition:}$  For  $f_1 = 0$,  $f_2 = Δf$   ⇒   $r_f = 1$   the  »cosine–square low-pass filter«    $\rm (CSLP)$  is obtained as a special case.  Its impulse response can also be represented as follows:

$$H(f) = H_{\rm CSLP}(f)= \cos^2\Big(\frac{\vert f \vert \hspace{0.05cm}\cdot\hspace{0.05cm} \pi}{2\hspace{0.05cm}\cdot\hspace{0.05cm} \Delta f}\Big). $$

Outside this inner frequency range,  $H_{\rm CSLP}(f)=0$.


For the impulse response one obtains according to the inverse Fourier transform after some transformations:

$$h(t)=h_{\rm CSLP}(t)= \Delta f \cdot {\rm sinc}(\Delta f \cdot t)\cdot \big [{\rm sinc}(\Delta f\cdot t +0.5)+{\rm sinc}(\Delta f\cdot t -0.5)\big ],$$
$$T=1/\Delta f \hspace{0.5cm}\Rightarrow \hspace{0.5cm} h(t)=1/T \cdot {\rm sinc}(t/T)\cdot \big [{\rm sinc}(t/T +0.5)+{\rm sinc}(t/T -0.5)\big ].$$
  1. Because of the first  ${\rm sinc}$–function,  $h(t)=0$  for multiples of  $T=1/\Delta f$   ⇒   the equidistant zero-crossings of the cosine–rolloff lowpass are preserved.
  2. Because of the bracket expression,  $h(t)$  now exhibits further zero-crossings at  $t=\pm1.5 T$,  $\pm2.5 T$,  $\pm3.5 T$, ...   but not at  $t=\pm0.5 T$.
  3. For  $t=\pm0.5 T$  the impulse response has the value  $\Delta f/2$.
  4. The asymptotic decay of  $h(t)$  in this special case runs with  $1/t^3$. 


$\text{Furthermore,  it should be mentioned}$   that the  »cosine-square low-pass filter«  is the only low-pass filter that fulfils both  »Nyquist criteria«.  Here the  »eye«  in digital transmission is  maximally open both vertically and horizontally   ⇒   see  »Definition and statements of the eye diagram«.


Derivation of system theoretical high-pass functions


So far,  six commonly used system theoretic low-pass functions have been considered.  For each individual low-pass function there is also an equivalent high-pass function.

$\text{Definition:}$  If  $H_{\rm TP}(f)$  is a system–theoretical low-pass function  $($German "Tiefpass"   ⇒   $\text{TP)}$  with  $H_{\rm TP}(f = 0) = 1$, then  the  »equivalent high-pass function«:

$$H_{\rm HP}(f) = 1 - H_{\rm TP}(f).$$


Thus,  the descriptive quantities in the time domain are:

$$h_{\rm HP}(t) = \delta (t) - h_{\rm TP}(t),$$
$$\sigma_{\rm HP}(t) = \gamma (t) - \sigma_{\rm TP}(t). $$

Here, the following denotations are used:

  1. $h_{\rm HP}(t)$  and  $h_{\rm TP}(t)$ denote the impulse responses of the high- and low-pass filter,
  2. $σ_{\rm HP}(t)$  and  $σ_{\rm TP}(t)$ denote the respective step responses,
  3. $γ(t)$  denotes the jump function as a result of integration over the Dirac delta function  $δ(t)$.


$\text{Example 1:}$  We consider the  »slit low-pass filter«  ⇒   »rectangular-in-time»  which is characterized by

Construction of high-pass functions  $H_{\rm HP}(f)$,  $h_{\rm HP}(t)$,  $\sigma_{\rm HP}(t)$  from the
corresponding low-pass functions  $H_{\rm TP}(f)$,  $h_{\rm TP}(t)$,  $\sigma_{\rm TP}(t)$
  • a  $\rm sinc$–shaped frequency response with  $H_{\rm TP}(f = 0) = 1$,
  • a rectangular impulse response, and
  • a linearly increasing step response. 


These are shown in the upper diagram. 



The sketch below shows the corresponding high-pass functions. 

It can be seen that

  • $H_{\rm HP}(f = 0) = 0$  because   $H_{\rm TP}(f = 0) = 1$,
  • consequently the integral over  $h_{\rm HP}(t)$  must also be zero,  and
  • the step response  $σ_{\rm HP}(t)$  tends towards the final value
$$σ_{\rm HP}(t \to \infty)=0.$$

Exercises for the chapter


Exercise 1.5: Rectangular-in-Frequency Low-Pass Filter

Exercise 1.5Z: Sinc-shaped Impulse Response

Exercise 1.6: Rectangular-in-Time Low-Pass Filter

Exercise 1.6Z: Interpretation of the Frequency Response

Exercise 1.7: Nearly Causal Gaussian Low-Pass Filter

Exercise 1.7Z: Overall Systems Analysis

Exercise 1.8: Variable Edge Steepness

Exercise 1.8Z: Cosine-Square Low-Pass Filter