Difference between revisions of "Linear and Time Invariant Systems/Some Low-Pass Functions in Systems Theory"

From LNTwww
 
(195 intermediate revisions by 11 users not shown)
Line 1: Line 1:
 
 
{{Header
 
{{Header
|Untermenü=Systemtheoretische Grundlagen
+
|Untermenü=Basics of System Theory
|Vorherige Seite=Systembeschreibung im Zeitbereich
+
|Vorherige Seite=System_Description_in_Time_Domain
|Nächste Seite=Klassifizierung der Verzerrungen
+
|Nächste Seite=Classification_of_the_Distortions
}}
+
}}  
==Allgemeine Bemerkungen==
+
 
Alle auf den nächsten Seiten beschriebenen Tiefpassfunktionen weisen die folgenden Eigenschaften auf:  
+
==General remarks==
*Der Frequenzgang $H(f)$ ist stets reell und gerade, so dass nach dem Zuordnungssatz  auch die zugehörige Impulsantwort $h(t)$ stets reell und gerade ist.
+
<br>
*Damit ist offensichtlich, dass die hier betrachteten Systeme akausal und somit nicht realisierbar sind. Die Beschreibung kausaler Systeme erfolgt im Kapitel 3  dieses Buches.  
+
All low-pass functions described in the next sections have the following properties:  
*Der Vorteil dieser systemtheoretischen Filterfunktionen ist die einfache Beschreibung durch maximal zwei Parameter, so dass der Filtereinfluss durchschaubar dargestellt werden kann.  
+
*The frequency response&nbsp; $H(f)$&nbsp; is real and even so that according to the&nbsp; [[Signal_Representation/Fourier_Transform_Theorems#Assignment_Theorem|$\text{Assignment Theorem}$]]&nbsp; the associated impulse response&nbsp; $h(t)$&nbsp; is always real and even,&nbsp; too.
*Der wichtigste Funktionsparameter ist die äquivalente Bandbreite entsprechend der Definition über das flächengleiche Rechteck:
+
 
$$\Delta f = \frac{1}{H(f=0)}\cdot \int\limits_{-\infty}^{+\infty}H(f) \hspace{0.15cm} {\rm d}f.$$
+
*Thus,&nbsp; it is obvious that the systems considered here are non-causal and hence not realizable.&nbsp; The description of causal systems is given in the chapter&nbsp; [[Linear_and_Time_Invariant_Systems/Folgerungen_aus_dem_Zuordnungssatz|&raquo;Description of Causal Realizable Systems&laquo;]]&nbsp; of this book.  
*Nach dem so genannten Reziprozitätsgesetz liegt somit auch die äquivalente Zeitdauer der Impulsantwort fest, die ebenfalls über das flächengleiche Rechteck definiert ist:
+
 
$$\Delta t = \frac{1}{h(t=0)}\cdot \int\limits_{-\infty}^{+\infty}h(t) \hspace{0.15cm} {\rm d}t = \frac{1}{\Delta f}.$$
+
*The advantage of these&nbsp; &raquo;system theoretical filter functions&laquo;&nbsp; is the simple description by at most two parameters such that the filter influence can be represented in a transparent way.  
*Der Gleichsignalübertragungsfaktor wird – wenn nicht explizit etwas Anderes vermerkt ist – stets zu $H(f$ = 0) = 1 angenommen.  
+
 
*Aus jeder Tiefpassfunktion lassen sich entsprechende Hochpassfunktionen ableiten, wie auf der letzten Theorieseite dieses Abschnitts gezeigt wird.  
+
*The most important frequency response parameter is the&nbsp; &raquo;'''equivalent bandwidth'''&laquo;&nbsp; according to the definition via the equal-area rectangle:
 +
:$$\Delta f = \frac{1}{H(f=0)}\cdot \int_{-\infty}^{+\infty}H(f) \hspace{0.15cm} {\rm d}f.$$
 +
*According to the so-called&nbsp; [[Signal_Representation/Fourier_Transform_Theorems#Reciprocity_Theorem_of_time_duration_and_bandwidth|&raquo;Reciprocity Theorem of time duration and bandwidth&laquo;]]&nbsp; the&nbsp; &raquo;'''equivalent duration of the impulse response'''&laquo;&nbsp; is thus fixed,&nbsp; which is also defined via the equal-area rectangle:
 +
:$$\Delta t = \frac{1}{h(t=0)}\cdot \int_{-\infty}^{+\infty}h(t) \hspace{0.15cm} {\rm d}t = \frac{1}{\Delta f}.$$
 +
*The direct signal&nbsp; $\rm (DC)$&nbsp; transmission factor is always assumed to be&nbsp; $H(f = 0) = 1$&nbsp; unless explicitly stated otherwise.  
 +
 
 +
*From every low-pass function corresponding high-pass functions can be derived as shown in the section&nbsp; [[Linear_and_Time_Invariant_Systems/Some_Low-Pass_Functions_in_Systems_Theory#Derivation_of_system_theoretical_high-pass_functions|&raquo;Derivation of system theoretical high-pass functions&laquo;]].
 +
 
 +
==Ideal low-pass filter – Rectangular-in-frequency==
 +
<br>
 +
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp;
 +
An&nbsp; '''&raquo;ideal low-pass filter&laquo;'''&nbsp; is on hand if its frequency response has the following rectangular shape:
 +
:$$H(f) = H_{\rm RLP}(f) =\left\{ \begin{array}{l} \hspace{0.25cm}1  \\  0.5 \\\hspace{0.25cm} 0 \\  \end{array} \right.\quad \quad\begin{array}{*{10}c}  \text {for}  \\ \text {for} \\  \text {for}  \\ \end{array}\begin{array}{*{20}c}{\vert  \hspace{0.005cm}f\hspace{0.05cm} \vert< \Delta f/2,}  \\{\vert  \hspace{0.005cm}f\hspace{0.05cm} \vert = \Delta f/2,}  \\{\vert \hspace{0.005cm}f\hspace{0.05cm} \vert > \Delta f/2.}  \\\end{array}$$
 +
#We sometimes also use the term&nbsp; &raquo;rectangular low-pass filter&laquo;&nbsp; $\rm (RLP)$.
 +
#Here&nbsp; $Δf$&nbsp; denotes the&nbsp; &raquo;system theoretical bandwidth&laquo;.&nbsp;
 +
#$f_{\rm G}=Δf/2$&nbsp; denotes the&nbsp; &raquo;cut-off frequency&laquo;&nbsp;&nbsp; $($German:&nbsp; "Grenzfrequenz" &nbsp; &rArr; &nbsp; subscript&nbsp; $\rm G)$.  }}
  
==Idealer Tiefpass – Küpfmüller–Tiefpass (1)==
 
{{Definition}}
 
Definition: Man bezeichnet einen Tiefpass als ideal, wenn sein Frequenzgang wie folgt lautet:
 
$$H(f) = \left\{ \begin{array}{l} \hspace{0.25cm}1  \\  0.5 \\\hspace{0.25cm} 0 \\  \end{array} \right.\quad \quad\begin{array}{*{10}c}  {\rm{f\ddot{u}r}}  \\ {\rm{f\ddot{u}r}}\\  {\rm{f\ddot{u}r}}  \\ \end{array}\begin{array}{*{20}c}{\left| \hspace{0.005cm} f\hspace{0.05cm} \right| < \Delta f/2,}  \\{\left| \hspace{0.005cm}f\hspace{0.05cm} \right| = \Delta f/2,}  \\{\left|\hspace{0.005cm} f \hspace{0.05cm} \right| > \Delta f/2.}  \\\end{array}$$
 
Wir verwenden teilweise auch die Bezeichnung „Küpfmüller-Tiefpass” (KTP) in Erinnerung an den Pionier der Systemtheorie, Karl Küpfmüller.
 
{{end}}
 
  
 +
[[File:P_ID842__LZI_T_1_3_S2_neu.png |right|frame| Ideal low-pass filter:&nbsp; Frequency response and impulse response|class=fit]]
 +
The graph shows such an ideal low-pass filter in the frequency and time domain.&nbsp;
  
Die Grafik zeigt einen solchen idealen Tiefpass im Frequenz– und Zeitbereich.
+
The following can be concluded from these curves:
  
[[File:P_ID842__LZI_T_1_3_S2_neu.png |500px | Idealer Tiefpass und Impulsantwort]]
+
*Due to the abrupt,&nbsp; infinitely steep roll-off the&nbsp; &raquo;3 dB cut-off frequency&laquo; &nbsp; &rArr; &nbsp; <br>$f_{\rm G}$&nbsp; is here exactly half the&nbsp; &raquo;system theoretic bandwidth&laquo;&nbsp; $Δf$.
 +
 +
*All spectral components with&nbsp; $f \lt f_{\rm G}$&nbsp; are transmitted undistorted &nbsp; &rArr; &nbsp; &raquo;pass band&laquo;.
 +
 +
*All components with&nbsp; $f \gt f_{\rm G}$&nbsp; are completely suppressed &nbsp; &rArr; &nbsp; &raquo;stop band&laquo;.
 +
 +
*By definition,&nbsp; $H(f) = 0.5$&nbsp; holds for&nbsp; $f = \pm f_{\rm G}$.  
  
Man erkennt aus diesem Kurvenverläufen:
 
*Aufgrund des abrupten, unendlich steilen Flankenabfalls ist hier die 3dB–Grenzfrequenz $f_G$ genau halb so groß wie die systemtheoretische Bandbreite $Δf$.
 
*Alle Spektralanteile mit $f$ < $f_G$ werden unverfälscht durchgelassen (Durchlassbereich), alle Anteile mit $f$ > $f_G$ vollständig unterdrückt (Sperrbereich). Bei $f$ = $f_G$ gilt $H(f)$ = 0.5.
 
  
''Hinweis:'' Die Beschreibung im Zeitbereich finden Sie nachfolgend.  
+
'''Description of the ideal low-pass filter in the time domain:'''
 +
*According to the inverse Fourier transform the&nbsp; &raquo;impulse response&laquo;&nbsp;  $($right diagram$)$:
 +
:$$h(t) = h_{\rm RLP}(t) =\Delta f \cdot {\rm si}(\pi \cdot \Delta f \cdot t)\hspace{0.55cm}{\rm{with}}\hspace{0.7cm}{\rm si}(x) ={\sin(x)}/{x},\hspace{0.5cm}{\rm or}$$
 +
:::$$h_{\rm RLP}(t) =\Delta f \cdot {\rm sinc}(\Delta f \cdot t)\hspace{0.7cm}{\rm{with}}\hspace{0.7cm}{\rm sinc}(x) ={\sin(\pi x)}/{(\pi x)}.$$
 +
*$h(t)$&nbsp; extended to infinity on both sides and exhibits equidistant zero-crossings at an interval of&nbsp; $Δt = 1/ Δf$.
  
==Idealer Tiefpass – Küpfmüller–Tiefpass (2)==
+
*The asymptotic decay is inversely proportional to time&nbsp; $|t|$:
Kommen wir nun zur Beschreibung des idealen Tiefpasses im Zeitbereich:
+
:$$|h(t)| = \frac{\Delta f}{\pi \cdot \Delta f \cdot |t|} \cdot \left |{\rm sin}(\pi \cdot \Delta f\cdot t )\right | \le \frac{1}{\pi \cdot |t|}.$$
*Die Impulsantwort ergibt sich entsprechend der Fourierrücktransformation zu
+
*It follows that the impulse response is certainly less than&nbsp; $1‰$&nbsp; of the impulse maximum only for times&nbsp; $t \gt t_{1‰} = 318 \cdot \Delta t$.  
$$h(t) = \Delta f \cdot {\rm si}(\pi \cdot \Delta f \cdot t)\hspace{0.7cm}{\rm{mit}}\hspace{0.7cm}{\rm si}(x) =\frac{\sin(x)}{x}.$$
 
*Die beidseitig bis ins Unendliche ausgedehnte Zeitfunktion weist äquidistante Nulldurchgänge im Abstand $Δt$ = 1/ $Δf$ auf (siehe rechte untere
 
:Grafik).
 
*Der asymptotische Abfall erfolgt umgekehrt proportional mit der Zeit:
 
$$|h(t)| = \frac{\Delta f}{\pi \cdot \Delta f \cdot |t|} \cdot \left |{\rm sin}(\pi \cdot \Delta f\cdot t )\right | \le \frac{1}{\pi \cdot |t|}.$$
 
*Daraus folgt, dass die Impulsantwort erst für Zeiten $t$ > $t_{1‰}$ = 318 · $Δt$ mit Sicherheit kleiner als 1‰ des Impulsmaximums ist.
 
*Die Sprungantwort ergibt sich aus der Impulsantwort durch Integration und lautet:
 
$${\rm \sigma}(t) = \int\limits_{ - \infty }^{ t } {h ( \tau  )}  \hspace{0.1cm}{\rm d}\tau = \frac{1}{2} + \frac{1}{\pi} \cdot {\rm Si}(\pi \cdot\Delta f \cdot t ).$$
 
*Hierbei ist die so genannte Integral–Sinusfunktion
 
$${\rm Si}(x) = \int\limits_{ 0 }^{ x } {{\rm si} ( \xi  )}  \hspace{0.1cm}{\rm d}\xi = x - \frac{x^3}{3 \cdot 3!} + \frac{x^5}{5 \cdot 5!} - \frac{x^7}{7 \cdot 7!}+ ...$$
 
:verwendet, die folgende Eigenschaften besitzt:
 
$${\rm Si}(0) = 0, \hspace{0.3cm}{\rm Si}(\infty) = \frac{\pi}{2}, \hspace{0.3cm}{\rm Si}(-x) = -{\rm Si}(x).$$
 
  
[[File:P_ID843__LZI_T_1_3_S2_neu.png | 400px | Idealer Tiefpass und Impulsantwort]]
+
*The step response&nbsp; $\sigma(t)$&nbsp; is obtained from the impulse response by integration and is:  
 +
:$${\sigma}(t) = \int_{ - \infty }^{ t } {h ( \tau  )}  \hspace{0.1cm}{\rm d}\tau = \frac{1}{2} + \frac{1}{\pi} \cdot {\rm Si}(\pi \cdot\Delta f \cdot t ).$$
 +
*Here,&nbsp; the so-called&nbsp; &raquo;integral sine function&laquo;&nbsp; is used:
 +
:$${\rm Si}(x) = \int_{ 0 }^{ x } {{\rm si} ( \xi  )}  \hspace{0.1cm}{\rm d}\xi = x - \frac{x^3}{3 \cdot 3!} + \frac{x^5}{5 \cdot 5!} - \frac{x^7}{7 \cdot 7!}+\text{ ...}$$
 +
:$$\Rightarrow \ {\rm Si}(0) = 0, \hspace{0.3cm}{\rm Si}(\infty) = \frac{\pi}{2}, \hspace{0.3cm}{\rm Si}(-x) = -{\rm Si}(x).$$
  
Hinweis: In manchen Büchern wird statt der Funktion $si(x)$ die ähnliche Funktion $sinc(x)$ verwendet:
 
$${\rm si}(x) = \frac{\sin(x)}{x}\hspace{0.5cm}\Rightarrow\hspace{0.5cm}{\rm sinc}(x) = \frac{\sin(\pi  x)}{\pi  x} = {\rm si}(\pi  x).$$
 
In diesem Fall lautet die Impulsantwort des idealen Tiefpasses $h(t)$ = $Δf · sinc(Δf · t).$
 
  
==Spalttiefpass==
 
{{Definition}}
 
Definition: Man bezeichnet ein LZI–System als Spalttiefpass, wenn der Frequenzgang die folgende Form hat:
 
$$H(f) = {\rm si}(\pi \frac{f}{ \Delta f})\hspace{0.7cm}{\rm{mit}}\hspace{0.7cm}{\rm si}(x) =\frac{\sin(x)}{x}.$$
 
{{end}}
 
  
 +
==Slit low-pass filter – Rectangular-in-time==
 +
<br>
 +
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp;
 +
An LTI system is called a&nbsp; '''&raquo;slit low-pass filter&laquo;''' &nbsp; $\rm (SLP)$&nbsp; if the frequency response has the following form:
 +
:$$H(f) = H_{\rm SLP}(f)= {\rm si}(\pi {f}/{ \Delta f})\hspace{0.7cm}{\rm{where} }\hspace{0.7cm}{\rm si}(x) ={\sin(x)}/{x},\hspace{0.7cm}{\rm or}$$
 +
$$\hspace{2.1cm}H_{\rm SLP}(f)= {\rm sinc}({f}/{ \Delta f})\hspace{0.7cm}{\rm{where} }\hspace{0.7cm}{\rm sinc}(x) ={\sin(\pi x)}/{(\pi x)}.$$
 +
}}
  
Aus der linken Grafik ist zu erkennen, dass der Frequenzgang $H_{STP}(f)$ des Spalttiefpasses formgleich mit der Impulsantwort $h_{KTP}(t)$ des Küpfmüllertiefpasses ist.
 
  
[[File:P_ID844__LZI_T_1_3_S3_neu.png | 500px | Spalttiefpass und zugehörige Impulsantwort]]
+
[[File:P_ID844__LZI_T_1_3_S3_neu.png |right|frame| Slit low-pass filter:&nbsp; Frequecy response and respective impulse response|class=fit]]
  
Nach dem Vertauschungssatz  muss deshalb auch die Impulsantwort $h_{STP}(t)$ des Spalttiefpasses die gleiche Form wie der Frequenzgang $H_{KTP}(f)$ des idealen Tiefpasses aufweisen. Mit $Δt$ = 1/ $Δf$ gilt somit:
+
#From the graph on the left it can be seen that the frequency response&nbsp; $H_{\rm SLP}(f)$&nbsp; of the slit low-pass filter is identical in shape to the impulse response&nbsp; $h_{\rm RLP}(t)$&nbsp; of the rectangular low-pass filter.
$$h(t) = \left\{ \begin{array}{l} \hspace{0.25cm}\Delta f  \\  \Delta f/2 \\ \hspace{0.25cm} 0 \\  \end{array} \right.\quad \quad \begin{array}{*{10}c}  {\rm{f\ddot{u}r}}  \\ {\rm{f\ddot{u}r}} \\   {\rm{f\ddot{u}r}}  \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.005cm} t\hspace{0.05cm} \right| < \Delta t/2,}  \\ {\left| \hspace{0.005cm}t\hspace{0.05cm} \right| = \Delta t/2,}  \\ {\left|\hspace{0.005cm} t \hspace{0.05cm} \right| > \Delta t/2.}  \\
+
#According to the&nbsp; [[Signal_Representation/Fourier_Transform_Theorems#Duality_Theorem|&raquo;Duality Theorem&laquo;]] &nbsp; &rArr; &nbsp; the impulse response&nbsp; $h_{\rm SLP}(t)$&nbsp; of the slit low-pass filter must also have the same form as the frequency response $H_{\rm RLP}(f)$ of the ideal low-pass filter &nbsp; &rArr; &nbsp; "rectangular-in-time".
 +
#Thus,&nbsp; with the&nbsp; &raquo;equivalent duration of the impulse response&laquo;&nbsp;  $Δt = 1/ Δf$&nbsp; the following holds:
 +
::$$h(t) = h_{\rm SLP}(t) = \left\{ \begin{array}{l} \hspace{0.25cm}\Delta f  \\  \Delta f/2 \\ \hspace{0.25cm} 0 \\  \end{array} \right.\quad \quad \begin{array}{*{10}c}  \text{for}  \\ \text{for} \\ \text{for}  \\ \end{array}\begin{array}{*{20}c} {\vert \hspace{0.005cm}t\hspace{0.05cm} \vert < \Delta t/2,}  \\ {\vert \hspace{0.005cm}t\hspace{0.05cm} \vert  = \Delta t/2,}  \\ {\vert \hspace{0.005cm}t\hspace{0.05cm} \vert > \Delta t/2.}  \\
 
\end{array}$$
 
\end{array}$$
Anhand obiger Grafik sind folgende Aussagen ableitbar:  
+
Based on the graph on the right the following statements can be derived:  
*Auch der Spalttiefpass ist in dieser Form akausal. Durch eine zusätzliche Laufzeit von $Δt/2$ wird das System jedoch kausal und damit realisierbar.  
+
*The slit low-pass filter in this form is also non-causal.&nbsp; However,&nbsp; adding a transit time of&nbsp; $Δt/2$&nbsp; or more renders the system causal and thus realizable.
*Der Spalttiefpass wirkt als Integrator über die Zeitdauer $Δt$:  
+
$$y(t) = x (t) * h (t) = \frac{1}{\Delta t} \cdot \int\limits_{ t - \Delta t/2 }^{ t + \Delta t/2  } {x ( \tau  )}  \hspace{0.1cm}{\rm d}\tau.$$
+
*The slit low-pass filter acts as an integrator over the time period&nbsp; $Δt$:  
*Ist $x(t)$ eine harmonische Schwingung mit der Frequenz $f_0$ = $k · Δf$ ( $k$ ganzzahlig), so wird genau über $k$ Perioden integriert und es gilt $y(t)$ = 0. Dies zeigen auch die Nullstellen von $H(f)$.  
+
:$$y(t) = x (t) * h (t) = \frac{1}{\Delta t} \cdot \int\limits_{ t - \Delta t/2 }^{ t + \Delta t/2  } {x ( \tau  )}  \hspace{0.1cm}{\rm d}\tau.$$
 +
*If&nbsp; $x(t)$&nbsp; is a harmonic oscillation with frequency&nbsp; $f_0 = k \cdot Δf$&nbsp; $($where&nbsp; $k$&nbsp; is an integer$)$,&nbsp; then it integrates exactly over&nbsp; $k$&nbsp; periods and&nbsp; $y(t) = 0$&nbsp; holds.&nbsp;
 +
 
 +
*This is also shown by the zeros of&nbsp; $H(f)$.  
 +
 
 +
==Gaussian low-pass filter ==
 +
<br>
 +
A filter function frequently used for system-theoretical investigations is the Gaussian low-pass filter,&nbsp; which can also be described by only one parameter,&nbsp; namely the&nbsp;  [[Signal_Representation/Fourier_Transform_Theorems#Reciprocity_Theorem_of_time_duration_and_bandwidth|&raquo;equivalent bandwidth&raquo;]]&nbsp; $Δf$.
 +
 
 +
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp;
 +
For the frequency response and the impulse response of the&nbsp; '''&raquo;Gaussian low-pass filter&laquo;'''&nbsp; $\rm (GLP)$&nbsp; the following holds:
 +
:$$H(f) = H_{\rm GLP}(f)= {\rm e}^{-\pi(f/\Delta f)^2}\hspace{0.15cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.15cm}h(t) = h_{\rm GLP}(t) = \Delta f \cdot  {\rm e}^{-\pi(\Delta f \cdot  \hspace{0.03cm} t)^2} .$$}}
  
==Gauß–Tiefpass==
 
Eine häufig für systemtheoretische Untersuchungen verwendete Filterfunktion ist der Gaußtiefpass, der ebenfalls durch nur einen Parameter, nämlich die äquivalente Bandbreite $Δf$, beschreibbar ist.
 
{{Definition}}
 
Definition: Für den Frequenzgang und die Impulsantwort des Gaußtiefpasses gelten:
 
$$H(f) = {\rm e}^{-\pi(f/\Delta f)^2}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, h(t) = \Delta f \cdot  {\rm e}^{-\pi(\Delta f \cdot  \hspace{0.03cm} t)^2} .$$
 
{{end}}
 
  
 +
The name goes back to the mathematician,&nbsp; physicist and astronomer&nbsp; [https://en.wikipedia.org/wiki/Carl_Friedrich_Gau%C3%9F $\text{Carl-Friedrich Gauß}$].&nbsp; Gauß did not deal with this subject matter himself,&nbsp; but the mathematical form of the frequency response and impulse response bear a resemblance to the so-called&nbsp; [[Theory_of_Stochastic_Signals/Gaussian_Distributed_Random_Variables#Probability_density_function_.E2.80.93_Cumulative_density_function|&raquo;Gaussian formula&laquo;]]&nbsp; which he discovered for probability theory.
  
Der Name geht auf den Mathematiker, Physiker und Astronomen Carl-Friedrich Gauß  zurück. Gauß hat sich zwar nicht selber mit dieser Thematik auseinandergesetzt, aber die mathematische Form von Frequenzgang und Impulsantwort weisen eine Ähnlichkeit mit der so genannten Gaußformel  auf, die er für die Wahrscheinlichkeitsrechnung gefunden hat.
+
[[File:P_ID845__LZI_T_1_3_S4_neu.png |right|frame| Gaussian low-pass filter:&nbsp; Frequency response and impulse response|class=fit]]
  
[[File:P_ID845__LZI_T_1_3_S4_neu.png | 500px | Gaußtiefpass und zugehörige Impulsantwort]]
+
Based on this graph the following statements can be made:
 +
#The&nbsp; [[Signal_Representation/Fourier_Transform_Theorems#Reciprocity_Theorem_of_time_duration_and_bandwidth|&raquo;equivalent pulse duration&laquo;]]&nbsp;  $Δt$&nbsp; is also defined via the area-equal rectangle and is equal to the reciprocal of the&nbsp; &raquo;equivalent bandwith&laquo;&nbsp; $Δf$.
 +
#A narrow-band&nbsp;  $($small&nbsp; $Δf)$&nbsp; filter function&nbsp; $H(f)$&nbsp; results in a wide&nbsp; $($large&nbsp; $Δt)$&nbsp; and simultaneously low impulse response&nbsp; $h(t)$.  
 +
#The so-called&nbsp;  [[Signal_Representation/Fourier_Transform_Theorems#Reciprocity_Theorem_of_time_duration_and_bandwidth|&raquo;Reciprocity Theorem&laquo;]]&nbsp; of time duration and bandwidth can be shown particularly clearly in the example of the Gaussian low-pass filter.
 +
#The frequency and time domain representations are in principle of the same form.&nbsp; The Gaussian function is also said to be invariant to Fourier transform.
 +
#The Gaussian low-pass filter is&nbsp; &ndash; &nbsp; like the ideal low-pass filter&nbsp; &ndash; &nbsp; strongly non-causal and&nbsp; $($exactly$)$&nbsp; realizable only with infinitely large transit time due to the infinite propagation of its impulse response.
 +
#However,&nbsp; it must be taken into account that&nbsp; $h(t)$&nbsp; has already decayed to&nbsp; $1‰$&nbsp; of its maximum value at&nbsp; $t = 1.5  \cdot Δt$.&nbsp; For&nbsp; $t = 3  \cdot Δt$&nbsp; we even get&nbsp; $h(t) ≈ 5 · 10^{–13} · h(0)$.
 +
#These numerical values show that the Gaussian low-pass filter can be used feasibly for practical simulations as long as runtimes do not play a system-limiting role.
 +
#The&nbsp; &raquo;step response&laquo;&nbsp; $σ(t)$&nbsp; is given for the&nbsp; &raquo;'''Gaussian error function'''&laquo;&nbsp; $ϕ(x)$,&nbsp; which is usually given in tabular form in formula collections:
 +
::$$\sigma(t) =  \int_{ -\infty }^{ t  } {h(\tau)}  \hspace{0.1cm}{\rm d}\tau = {\rm \phi}\left( \sqrt{2 \pi }\cdot{t}/{\Delta t} \right) \hspace{0.7cm}{\rm{where}}\hspace{0.7cm}{\rm \phi}(x) = \frac{1}{\sqrt{2 \pi }} \cdot \int_{ -\infty }^{ x  } {{\rm e}^{-u^2/2}}  \hspace{0.1cm}{\rm d}u.$$
  
Anhand obiger Grafik können folgende Aussagen getroffen werden:
+
==Trapezoidal low-pass filter ==
*Die ebenfalls über das flächengleiche Rechteck definierte äquivalente Impulsdauer $Δt$ ist gleich dem Kehrwert der äquivalenten Bandbreite $Δf$.
+
<br>
*Eine schmalbandige Filterfunktion (kleines $Δf$) führt zu einer breiten (großes $Δt$) und gleichzeitig niedrigen Impulsantwort $h(t)$. Das Reziprozitätsgesetz von Zeitdauer und Bandbreite lässt sich am Beispiel des Gaußtiefpasses besonders anschaulich zeigen.
+
The low-pass functions described so far depend on only one parameter &ndash; the&nbsp; &raquo;equivalent bandwidth&laquo;&nbsp; $Δf$. &nbsp; Here,&nbsp; the edge steepness for a given filter type was fixed.&nbsp; Now a low-pass filter with parameterisable edge steepness is described.
*Die Frequenz– und Zeitbereichsdarstellungen sind prinzipiell von gleicher Form. Man sagt auch, dass die Gaußfunktion invariant gegenüber der Fouriertransformation ist.
 
*Aufgrund der unendlichen Ausbreitung seiner Impulsantwort ist der Gaußtiefpass ebenso wie der ideale Tiefpass stark akausal und (exakt) nur mit unendlich großer Laufzeit realisierbar.
 
*Allerdings ist zu berücksichtigen, dass $h(t)$ bereits bei $t$ = 1.5 · $Δt$ auf 0.1% seines Maximalwertes abgeklungen ist. Für $t$ = 3 · $Δt$ ergibt sich sogar $h(t) ≈ 5 · 10^{–13} · h(0)$.
 
*Diese Zahlenwerte machen deutlich, dass man den Gaußtiefpass durchaus auch für praxisnahe Simulationen heranziehen kann, solange Laufzeiten keine systembegrenzende Rolle spielen.
 
*Die Sprungantwort $σ(t)$ lautet mit der Gaußschen Fehlerfunktion $ϕ(x)$, die in Formelsammlungen meist tabellarisch angegeben wird:
 
$$\sigma(t) =  \int\limits_{ -\infty }^{ t  } {h(\tau)}  \hspace{0.1cm}{\rm d}\tau = {\rm \phi}\left( \sqrt{2 \pi }\frac{t}{\Delta t} \right) \hspace{0.7cm}{\rm{mit}}\hspace{0.7cm}{\rm \phi}(x) = \frac{1}{\sqrt{2 \pi }} \cdot \int\limits_{ -\infty }^{ x  } {{\rm e}^{-u^2/2}}  \hspace{0.1cm}{\rm d}u.$$
 
  
==Trapeztiefpass (1)==
+
{{BlaueBox|TEXT=
Die bisher in diesem Kapitel beschriebenen Tiefpassfunktionen hängen nur von einem Parameter – der äquivalenten Bandbreite $Δf$ – ab. Dabei war die Flankensteilheit für einen gegebenen Filtertyp fest vorgegeben. Nun wird ein Tiefpass beschrieben, bei dem auch die Flankensteilheit parametrisierbar ist.
+
$\text{Definition:}$&nbsp;
{{Definition}}
+
The frequency response of the&nbsp; &raquo;'''trapezoidal low-pass filter'''&laquo;&nbsp; $\rm (TLP)$&nbsp; with cut-off frequencies&nbsp; $f_1$&nbsp; and&nbsp; $f_2 \ge f_1$:
Definition: Der Frequenzgang des Trapeztiefpasses lautet mit den Eckfrequenzen $f_1$ und $f_2$ ≥ $f_1$:
+
:$$H(f) = H_{\rm TLP}(f)= \left\{ \begin{array}{l} \hspace{0.25cm}1  \\  \frac{f_2 - \vert f \vert }{f_2 -f_1} \\
$$H(f) = \left\{ \begin{array}{l} \hspace{0.25cm}1  \\  \frac{f_2 -|f|}{f_2 -f_1} \\
 
 
\hspace{0.25cm} 0 \\  \end{array} \right.\quad \quad
 
\hspace{0.25cm} 0 \\  \end{array} \right.\quad \quad
\begin{array}{*{10}c}  {\rm{f\ddot{u}r}}  \\ {\rm{f\ddot{u}r}}
+
\begin{array}{*{10}c}  \text{for}  \\ \text{for}
\\  {\rm{f\ddot{u}r}}  \\ \end{array}\begin{array}{*{20}c}
+
\\  \text{for}  \\ \end{array}\begin{array}{*{20}c}
{\hspace{0.94cm}\left| \hspace{0.005cm} f\hspace{0.05cm} \right| < f_1,}  \\
+
{\hspace{0.94cm}\vert  \hspace{0.005cm} f\hspace{0.05cm} \vert < f_1,}  \\
{f_1 \le \left| \hspace{0.005cm}f\hspace{0.05cm} \right| \le f_2,}  \\
+
{f_1 \le \vert  \hspace{0.005cm} f\hspace{0.05cm} \vert \le f_2,}  \\
{\hspace{0.94cm}\left|\hspace{0.005cm} f \hspace{0.05cm} \right| > f_2.}  \\
+
{\hspace{0.94cm}\vert  \hspace{0.005cm} f\hspace{0.05cm} \vert > f_2.}  \\
\end{array}$$
+
\end{array}$$}}
{{end}}
 
  
  
Anstelle von $f_1$ und $f_2$ kann man zur Beschreibung von $H(f)$ auch folgende Parameter verwenden:  
+
Instead of&nbsp; $f_1$&nbsp; and&nbsp; $f_2$&nbsp; the following parameters can be used to describe&nbsp; $H(f)$:  
*die äquivalente Bandbreite, ermittelt über das flächengleiche Rechteck:
+
*the&nbsp; &raquo;'''equivalent bandwidth'''&laquo;&nbsp; determined via the equal-area rectangle:
$$\Delta f = f_1 + f_2.$$
+
:$$\Delta f = f_1 + f_2.$$
*der Rolloff-Faktor (im Frequenzbereich) als Maß für die Flankensteilheit:
+
*the&nbsp; &raquo;'''roll-off factor'''&laquo;&nbsp; $($in frequency domain$)$&nbsp; as a measure for the edge steepness:
$$r_f = \frac{f_2 - f_1}{f_2 + f_1}.$$
+
:$$r_{\hspace{-0.05cm}f} = \frac{f_2 - f_1}{f_2 + f_1}.$$
Als Sonderfälle sind in der allgemeinen Darstellung der ideale rechteckförmige Tiefpass $(r_f = 0)$ sowie der Dreiecktiefpass $(r_f = 1)$ enthalten. Die nachfolgende Grafik zeigt $H(f)$ sowie die Impulsantwort
+
Special cases included in the general representation are:
$$h(t) = \Delta f \cdot {\rm si}(\pi \cdot \Delta f \cdot t )\cdot {\rm si}(\pi \cdot r_f \cdot \Delta f \cdot t )\hspace{0.7cm}{\rm{mit}}\hspace{0.7cm}{\rm si}(x) = \frac{\sin(x)}{x},$$
+
*the ideal rectangular low-pass filter&nbsp; $(r_{\hspace{-0.05cm}f} = 0)$,
wobei der Rolloff–Faktor $r_f$ = 0.5 (d. h. $f_2 = 3f_1)$ zugrunde liegt. Der si–Verlauf des rechteckförmigen Tiefpasses mit gleicher äquivalenter Bandbreite ist zum Vergleich gestrichelt eingezeichnet.
+
 +
*the triangular low-pass filter&nbsp; $(r_{\hspace{-0.05cm}f} = 1)$.
  
[[File:P_ID846__LZI_T_1_3_S5_neu.png | 500px | Trapeztiefpass und zugehörige Impulsantwort]]
 
  
==Trapeztiefpass (2)==
+
For a roll-off factor&nbsp; of&nbsp; $r_f  = 0.5 \ \Rightarrow \ f_2 = 3f_1$&nbsp; the following graph shows the frequency response&nbsp; $H(f)= H_{\rm TLP}(f)$&nbsp; on the left and  on the right the impulse response
 +
:$$h(t) = h_{\rm TLP}(t) =\Delta f \cdot {\rm sinc}(\Delta f \cdot t )\cdot {\rm sinc}(r_{\hspace{-0.05cm}f} \cdot \Delta f \cdot t )\hspace{0.7cm}{\rm{where}}\hspace{0.7cm}{\rm sinc}(x)= \frac{\sin(\pi x)}{\pi x}.$$
 +
The time-dependent&nbsp; $\rm sinc$&ndash;curve of the rectangular low-pass filter with the same equivalent bandwidth is shown dashed for comparison.&nbsp; With the help of the graph and the above equations the following statements can be made:
  
Die obenstehende Grafik sowie Gleichungen erlauben folgende Aussagen:  
+
[[File:P_ID846__LZI_T_1_3_S5_neu.png|right |frame| Trapezoidal low-pass filter:&nbsp; Frequency response and impulse response|class=fit]]
*Die Trapezform entsteht z. B. durch die Faltung zweier Rechtecke der Breiten $Δf$ und $r_f Δf$.  
+
*Entsprechend dem Faltungssatz ist somit die Impulsantwort das Produkt zweier si–Funktionen mit den Argumenten $π · Δf · t$ und $π · rf · Δf · t$.  
+
#The trapezoidal shape is obtained, for example, by convolution of two rectangles of widths&nbsp; $Δf$&nbsp; and&nbsp; $r_f \cdot  Δf$.  
*Die erste si–Funktion ist für alle Werte von $r_f$ Bestandteil der Gleichung für $h(t)$ und führt stets zu äquivalenten Nulldurchgängen im Abstand $1/Δf$.  
+
#According to the convolution theorem the impulse response is thus the product of two&nbsp; $\rm sinc$&ndash;functions with arguments&nbsp; $Δf · t$&nbsp; and&nbsp; $r_{\hspace{-0.05cm}f} · Δf · t$.  
*Für 0 < $r_f$ < 1 gibt es weitere Nullstellen bei Vielfachen von $Δt/r_f$.  
+
#The first&nbsp; $\rm sinc$&ndash;function is part of the&nbsp; $h(t)$&nbsp; equation for all values of&nbsp; $r_{\hspace{-0.05cm}f}$&nbsp; and always results in equivalent zero-crossings in the distance&nbsp; $1/Δf$.  
*Der asymptotische Abfall der Impulsantwort $h(t)$ erfolgt um so schneller, je größer $r_f$ ist, d. h. bei gegebenem $Δf$ mit flacherer Flanke. Der schnellstmögliche Abfall ergibt sich beim Dreiecktiefpass  ⇒  $r_f$ = 1,  $f_1$ = 0,  $f_2$ = $Δf$. Für diesen gilt im Frequenz– und Zeitbereich:
+
#For&nbsp; $0 \lt r_{\hspace{-0.05cm}f} \lt 1$&nbsp; there are further zero-crossings at multiples of&nbsp; $Δt/r_{\hspace{-0.05cm}f}$.  
$$H(f) = \left\{ \begin{array}{c} \hspace{0.25cm}  \frac{{\rm \Delta}f -|f|}{{\rm \Delta}f} \\
+
#The larger&nbsp; $r_{\hspace{-0.05cm}f}$&nbsp; is&nbsp; $($i.e. for a given&nbsp; $Δf$&nbsp; with a flatter edge$)$,&nbsp; the faster is the asymptotic decay of the impulse response&nbsp; $h(t)$.  
 +
#The fastest possible decay is obtained for the triangular low-pass filter &nbsp; ⇒  &nbsp; $r_{\hspace{-0.05cm}f} = 1$,&nbsp; $f_1 = 0$,&nbsp; $f_2 = Δf$.&nbsp; For this,&nbsp; the following holds in frequency and time domains:
 +
::$$H(f) = \left\{ \begin{array}{c} \hspace{0.25cm}  \frac{{\rm \Delta}f -|f|}{{\rm \Delta}f} \\
 
\hspace{0.25cm} 0 \\  \end{array} \right.\quad \quad
 
\hspace{0.25cm} 0 \\  \end{array} \right.\quad \quad
\begin{array}{*{10}c}    {\rm{f\ddot{u}r}}
+
\begin{array}{*{10}c}    {\rm{for}}
\\  {\rm{f\ddot{u}r}}  \\ \end{array}\begin{array}{*{20}c}
+
\\  {\rm{for}}  \\ \end{array}\begin{array}{*{20}c}
 
{\hspace{1cm} \left| \hspace{0.005cm}f\hspace{0.05cm} \right| \le {\rm \Delta}f ,}  \\
 
{\hspace{1cm} \left| \hspace{0.005cm}f\hspace{0.05cm} \right| \le {\rm \Delta}f ,}  \\
{\hspace{1cm}\left|\hspace{0.005cm} f \hspace{0.05cm} \right| \ge {\rm \Delta}f ,}  \\
+
{\hspace{1cm}\left|\hspace{0.005cm} f \hspace{0.05cm} \right| \ge {\rm \Delta}f }  \\
\end{array}$$
+
\end{array},$$  
$$h(t) = \Delta f \cdot {\rm si}^2(\pi \cdot \Delta f \cdot t )\hspace{0.4cm}{\rm{mit}}\hspace{0.4cm}{\rm si}(x) = \frac{\sin(x)}{x}.$$
+
::$$h(t) = \Delta f \cdot {\rm sinc}^2( \Delta f \cdot t ),\hspace{0.2cm}{\rm{where}}\hspace{0.4cm}{\rm sinc}(x)= \frac{\sin(\pi x)}{\pi x}.$$
 +
 
 +
==Raised-cosine low-pass filter ==
 +
<br>
 +
Like the&nbsp; [[Linear_and_Time_Invariant_Systems/Some_Low-Pass_Functions_in_Systems_Theory#Trapezoidal_low-pass_filter|&raquo;trapezoidal low-pass filter&laquo;]]&nbsp;  this low-pass filter is also described by two parameters,&nbsp; which are
 +
*the equivalent bandwidth&nbsp; $Δf$,&nbsp;
 +
 +
*the roll-off factor $r_{\hspace{-0.05cm}f}$.
 +
 
  
[[File:P_ID847__LZI_T_1_3_S5_neu.png | 500px | Trapeztiefpass und zugehörige Impulsantwort]]
+
Its value range lies between&nbsp; $r_{\hspace{-0.05cm}f} = 0$&nbsp; $($rectangular low-pass filter$)$&nbsp; and&nbsp; $r_{\hspace{-0.05cm}f} = 1$&nbsp; $($cosine–squared low-pass filter$)$.
  
==Cosinus-Rolloff-Tiefpass (1)==
+
{{BlaueBox|TEXT=
Ebenso wie der Trapeztiefpass  wird dieser Tiefpass durch zwei Parameter beschrieben, nämlich durch die äquivalente Bandbreite $Δf$ und den Rolloff–Faktor $r_f$. Dessen Wertebereich liegt zwischen $r_f$ = 0 (Rechtecktiefpass) und $r_f$ = 1 (Cosinus–Quadrat–Tiefpass).
+
$\text{Definition:}$&nbsp;
{{Definition}}
+
With cut-off frequencies&nbsp; $f_1 = Δf · (1 – r_{\hspace{-0.05cm}f})$ &nbsp;and&nbsp; $f_2 = Δf · (1 + r_{\hspace{-0.05cm}f})$&nbsp; the frequency response of the&nbsp; &raquo;'''raised-cosine low-pass filter'''&laquo;&nbsp; $\rm (RCLP)$:
Definiton: Der Frequenzgang des Cosinus–Rolloff–Tiefpasses lautet mit den zwei Eckfrequenzen $f_1$ = $Δf · (1 – r_f)$ und $f_2$ = $Δf · (1 + r_f)$:
+
:$$H(f) = H_{\rm RCLP}(f) =\left\{ \begin{array}{l} \hspace{0.25cm}1  \\ \cos \left( \frac{ \vert f \vert - f_1}{f_2 -f_1}\cdot \pi/2\right) \\
$$H(f) = \left\{ \begin{array}{l} \hspace{0.25cm}1  \\ \cos \left( \frac{|f|- f_1}{f_2 -f_1}\frac{\pi}{2}\right) \\
 
 
\hspace{0.25cm} 0 \\  \end{array} \right.\quad \quad
 
\hspace{0.25cm} 0 \\  \end{array} \right.\quad \quad
\begin{array}{*{10}c}   {\rm{f\ddot{u}r}}  \\ {\rm{f\ddot{u}r}}
+
\begin{array}{*{10}c} \text{for}  \\ \text{for}
\\   {\rm{f\ddot{u}r}}  \\ \end{array}\begin{array}{*{20}c}
+
\\ \text{for}  \\ \end{array}\begin{array}{*{20}c}
{\hspace{0.94cm}\left| \hspace{0.005cm} f\hspace{0.05cm} \right| < f_1,}  \\
+
{\hspace{0.94cm}\vert  \hspace{0.005cm} f\hspace{0.05cm} \vert  < f_1,}  \\
{f_1 \le \left| \hspace{0.005cm}f\hspace{0.05cm} \right| \le f_2,}  \\
+
{f_1 \le \vert  \hspace{0.005cm} f\hspace{0.05cm} \vert \le f_2,}  \\
{\hspace{0.94cm}\left|\hspace{0.005cm} f \hspace{0.05cm} \right| > f_2.}  \\
+
{\hspace{0.94cm}\vert  \hspace{0.005cm} f\hspace{0.05cm} \vert> f_2.}  \\
\end{array}$$
+
\end{array}$$}}
{{end}}
 
  
  
Die nachfolgende Grafik zeigt $H(f)$ sowie die Impulsantwort
+
[[File:EN_LZI_T_1_3_S6_v2.png|frame|  Raised-cosine low-pass filter and respective impulse response|class=fit]]
$$h(t) = \Delta f \cdot {\rm si}(\pi \cdot \Delta f \cdot t )\cdot
+
The graph shows&nbsp; $H(f)$&nbsp; on the left and  on the right the impulse response
\frac {\cos(\pi \cdot r_f \cdot \Delta f \cdot t )}{1 - (2 \cdot
+
:$$h(t) = h_{\rm RCLP}(t) =\Delta f \hspace{-0.05cm}\cdot\hspace{-0.05cm} {\rm sinc}( \Delta f \hspace{-0.05cm}\cdot\hspace{-0.05cm} t )\hspace{-0.05cm}\cdot\hspace{-0.05cm}
 +
\frac {\cos(\pi \cdot r_{\hspace{-0.05cm}f} \cdot \Delta f \cdot t )}{1 - (2 \cdot
 
r_f \cdot \Delta f \cdot t)^2}.$$
 
r_f \cdot \Delta f \cdot t)^2}.$$
  
[[File:P_ID848__LZI_T_1_3_S6_neu.png| 500px | Cosinus–Rolloff–Tiefpass und zugehörige Impulsantwort]]
+
For these graphs the roll-off factor&nbsp; $r_{\hspace{-0.05cm}f} = 0.5$&nbsp; was used.&nbsp; In other words:&nbsp; $f_2 = 3 \cdot f_1.$
  
Für diese Grafiken wurde der Rolloff–Faktor $r_f$ = 0.5 verwendet, das heißt, es gilt $f_2$ = 3 · $f_1$. Gestrichelt sind zum Vergleich
+
The following is drawn in dashed lines for comparison:
*im Frequenzbereich der Trapeztiefpass und
+
*in the frequency domain the trapezoidal low-pass filter and
*im Zeitbereich die si–Funktion
+
eingezeichnet. Es ist zu beachten, dass die si-Funktion nicht die Fourierrücktransformierte des links blau eingezeichneten Trapeztiefpasses ist. Sie beschreibt vielmehr den idealen, rechteckförmigen Tiefpass im Zeitbereich.
+
*in the time domain the&nbsp; $\rm sinc$ function.  
  
==Cosinus-Rolloff-Tiefpass (2)==
 
  
Anhand der oben gezeigten Grafik (Cosinus–Rolloff–Tiefpass und zugehörige Impulsantwort) und den obigen Gleichungen sind folgende Aussagen möglich:
+
$\text{Please note:}$  
*Die Impulsantwort $h(t)$ hat bei allen Vielfachen von $Δt = 1/Δf$ Nullstellen, die auf die im rechten Bild gestrichelt eingezeichnete si–Funktion zurückzuführen sind.
 
*Der letzte Term in der $h(t)$ –Gleichung führt zu weiteren Nullstellen bei Vielfachen von $Δt/r_f$. Ist $1/r_f$ ganzzahlig wie in obiger Grafik $(1/r_f$ = 2), so fallen diese mit den anderen Nullstellen zusammen.
 
*Je größer der Rolloff-Faktor $r_f$ ist und je flacher damit der Flankenabfall erfolgt, desto günstiger ist im Allgemeinen das Einschwingverhalten des Cosinus-Rolloff-Tiefpasses.
 
*Der Cosinus–Rolloff–Tiefpass zeigt meist ein besseres asymptotisches Einschwingverhalten als der Trapeztiefpass mit gleichem $r_f$, obwohl dieser zumindest bei $Δf/2$ eine flachere Flanke aufweist.
 
*Dies lässt darauf schließen, dass das Einschwingverhalten nicht nur durch Unstetigkeitsstellen (wie beim Rechteck), sondern auch durch Knickpunkte wie beim Trapeztiefpass beeinträchtigt wird.
 
*Als Sonderfall ergibt sich mit $f_1$ = 0, $f_2$ = $Δf$ ⇒ $r_f$ = 1 der Cosinus–Quadrat–Tiefpass, dessen Impulsantwort auch wie folgt dargestellt werden kann:
 
$$h(t) = \frac{1}{ \Delta t}\cdot{\rm si}(\pi \frac{t}{ \Delta t})
 
\cdot \left[ {\rm si}(\pi \frac{t}{ \Delta t} + 0.5) - {\rm
 
si}(\pi \frac{t}{ \Delta t} - 0.5) \right].$$
 
*Diese Funktion hat Nullstellen bei $t/Δt$ = ±1, ±1.5, ±2, ±2.5 usw., nicht jedoch bei $t/Δt$ = ±0.5. Im Buch „Digitalsignalübertragung” wird gezeigt, dass der Cosinus–Quadrat–Tiefpass als einziger Tiefpass die beiden so genannten Nyquistkriterien  erfüllt.
 
  
==Herleitung systemtheoretischer Hochpassfunktionen==
+
:The&nbsp; $\rm sinc$&ndash;function is not the inverse Fourier transform of the trapezoidal low-pass filter drawn in blue on the left.&nbsp; It rather describes the ideal rectangular low-pass filter in the time domain,&nbsp; which is not shown in the left graph.
In diesem Kapitel wurden fünf häufig verwendete systemtheoretische Tiefpassfunktionen betrachtet. Für jede einzelne Tiefpassfunktion lässt sich auch eine äquivalente Hochpassfunktion angeben.
 
{{Definition}}
 
Definition: Ist $H_{TP}(f)$ eine systemtheoretische Tiefpassfunktion mit $H_{TP}(f = 0)$ = 1, so gilt für die äquivalente Hochpassfunktion:
 
$$H_{\rm HP}(f) = 1 - H_{\rm TP}(f).$$
 
{{end}}
 
  
  
Damit lauten die Beschreibungsgrößen im Zeitbereich:
+
Based on this graph and the above equations the following statements can be made:  
$$ \begin{align*} h_{\rm HP}(t) & = \delta (t) - h_{\rm TP}(t),\\
+
#The impulse response&nbsp; $h(t)$&nbsp; of the raised-cosine low-pass filter has zeros at all multiples of&nbsp; $Δt = 1/Δf$,&nbsp; which are due to the&nbsp; $\rm sinc$&ndash;function shown in dashed lines in the  right-hand figure.
\sigma_{\rm HP}(t) & = \gamma (t) - \sigma_{\rm TP}(t). \end{align*} $$
+
#The last term in the&nbsp; $h(t)$&nbsp; equation results in further zeros at multiples of&nbsp; $Δt/r_f$.&nbsp; If&nbsp; $1/r_f$&nbsp; is an integer as in the above graph&nbsp; $(1/r_f = 2)$,&nbsp; these new zeros coincide with the other zeros and thus are not discernible.
Hierbei bezeichnen:
+
#The larger the roll-off factor&nbsp; $r_f$&nbsp; and thus the flatter the roll-off is,&nbsp; the more favourable is the transient behaviour of the raised-cosine low-pass filter.
*$h_{HP}(t)$ und $h_{TP}(t)$ die Impulsantworten von Hoch– und Tiefpass,  
+
#The raised-cosine low-pass filter usually exhibits a better asymptotic transient behaviour than the trapezoidal low-pass filter with same&nbsp; $r_f$&nbsp; although the latter has a flatter edge at least at frequency&nbsp; $Δf/2$.
*$σ_{HP}(t)$ und $σ_{TP}(t)$ die dazugehörigen Sprungfunktionen,
+
#This suggests that the transient behaviour is not only affected by points of discontinuity&nbsp; $($as in the case of the rectangle$)$&nbsp; but also by kink points as in the case of the trapezoidal low-pass filter.
*$γ(t)$ die Sprungfunktion als Ergebnis der Integration über die Diracfunktion $δ(t)$.  
 
  
  
{{Beispiel}}
+
==Cosine–square low-pass filter==
Beispiel: Wir betrachten den Spalttiefpass, der sich durch einen si–förmigen Frequenzgang, eine rechteckförmige Impulsantwort und eine linear ansteigende Sprungantwort auszeichnet. Diese sind in der nachfolgenden Grafik dargestellt.  
+
<br>
 +
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp;
 +
For&nbsp; $f_1 = 0$,&nbsp; $f_2 = Δf$ &nbsp; ⇒ &nbsp; $r_f = 1$ &nbsp; the&nbsp; &raquo;'''cosine–square low-pass filter'''&laquo;&nbsp; &nbsp; $\rm (CSLP)$&nbsp; is obtained as a special case.&nbsp; Its impulse response can also be represented as follows:
 +
:$$H(f) = H_{\rm CSLP}(f)= \cos^2\Big(\frac{\vert f \vert \hspace{0.05cm}\cdot\hspace{0.05cm} \pi}{2\hspace{0.05cm}\cdot\hspace{0.05cm} \Delta f}\Big).  $$
 +
Outside this inner frequency range,&nbsp; $H_{\rm CSLP}(f)=0$.}}
  
[[File: P_ID851__LZI_T_1_3_S7_neu.png  | 500px | Konstruktion von Hochpassfunktionen aus den entsprechenden Tiefpässen]]
 
  
Die untere Skizze zeigt die entsprechenden Hochpassfunktionen. Man erkennt, dass
+
For the impulse response one obtains according to the inverse Fourier transform after some transformations:
*$H_{HP}(f = 0)$ immer den Wert 0 besitzt, wenn $H_{TP}(f = 0)$ = 1 ist,
+
:$$h(t)=h_{\rm CSLP}(t)= \Delta f \cdot  {\rm sinc}(\Delta f \cdot t)\cdot  \big  [{\rm sinc}(\Delta f\cdot t +0.5)+{\rm sinc}(\Delta f\cdot t -0.5)\big ],$$
*demzufolge das Integral über $h_{HP}(t)$ ebenfalls 0 ergeben muss und
+
:$$T=1/\Delta f \hspace{0.5cm}\Rightarrow \hspace{0.5cm}  h(t)=1/T \cdot  {\rm sinc}(t/T)\cdot  \big  [{\rm sinc}(t/T +0.5)+{\rm sinc}(t/T -0.5)\big ].$$
*auch die Sprungantwort $σ_{HP}(t)$ gegen den Endwert 0 tendiert.
+
#Because of the first&nbsp; ${\rm sinc}$&ndash;function,&nbsp; $h(t)=0$&nbsp; for multiples of&nbsp; $T=1/\Delta f$ &nbsp; &rArr; &nbsp; the equidistant zero-crossings of the cosine&ndash;rolloff lowpass are preserved.
{{end}}
+
#Because of the bracket expression,&nbsp; $h(t)$&nbsp; now exhibits further zero-crossings at&nbsp; $t=\pm1.5 T$,&nbsp; $\pm2.5 T$,&nbsp; $\pm3.5 T$, ... &nbsp; but not at&nbsp; $t=\pm0.5 T$.
 +
#For&nbsp; $t=\pm0.5 T$&nbsp; the impulse response has the value&nbsp; $\Delta f/2$.
 +
#The asymptotic decay of&nbsp; $h(t)$&nbsp; in this special case runs with&nbsp; $1/t^3$.&nbsp;
  
  
 +
{{BlaueBox|TEXT=
 +
$\text{Furthermore,&nbsp; it should be mentioned}$ &nbsp; that the&nbsp; &raquo;cosine-square low-pass filter&laquo;&nbsp; is the only low-pass filter that fulfils both&nbsp; [[Digital_Signal_Transmission/Properties_of_Nyquist_Systems#First_Nyquist_criterion_in_the_time_domain|'''&raquo;Nyquist criteria&laquo;]].&nbsp; Here the&nbsp; &raquo;eye&laquo;&nbsp; in digital transmission is&nbsp; '''maximally open both vertically and horizontally''' &nbsp; &rArr; &nbsp; see&nbsp; [[Digital_Signal_Transmission/Error_Probability_with_Intersymbol_Interference#Definition_and_statements_of_the_eye_diagram|&raquo;Definition and statements of the eye diagram&laquo;]].}}
  
  
 +
==Derivation of system theoretical high-pass functions==
 +
<br>
 +
So far,&nbsp; six commonly used system theoretic low-pass functions have been considered.&nbsp; For each individual low-pass function there is also an equivalent high-pass function.
 +
 +
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp;
 +
If&nbsp; $H_{\rm TP}(f)$&nbsp; is a system&ndash;theoretical low-pass function&nbsp; $($German "Tiefpass" &nbsp; &rArr; &nbsp; $\text{TP)}$&nbsp; with&nbsp; $H_{\rm TP}(f = 0) = 1$, then&nbsp; the&nbsp; &raquo;'''equivalent high-pass function'''&laquo;:
 +
:$$H_{\rm HP}(f) = 1 - H_{\rm TP}(f).$$}}
 +
 +
 +
Thus,&nbsp; the descriptive quantities in the time domain are:
 +
:$$h_{\rm HP}(t) = \delta (t) - h_{\rm TP}(t),$$
 +
:$$\sigma_{\rm HP}(t)  = \gamma (t) - \sigma_{\rm TP}(t). $$
 +
 +
Here, the following denotations are used:
 +
#$h_{\rm HP}(t)$ &nbsp;and&nbsp; $h_{\rm TP}(t)$ denote the impulse responses of the high- and low-pass filter,
 +
#$σ_{\rm HP}(t)$ &nbsp;and&nbsp; $σ_{\rm TP}(t)$ denote the respective step responses,
 +
#$γ(t)$&nbsp; denotes the jump function as a result of integration over the Dirac delta function&nbsp; $δ(t)$.
 +
 +
 +
 +
{{GraueBox|TEXT= 
 +
$\text{Example 1:}$&nbsp;
 +
We consider the&nbsp; &raquo;slit low-pass filter&laquo;&nbsp; &rArr; &nbsp; &raquo;rectangular-in-time&raquo;&nbsp; which is characterized by
 +
[[File: P_ID851__LZI_T_1_3_S7_neu.png  |right|frame| Construction of high-pass functions&nbsp; $H_{\rm HP}(f)$,&nbsp; $h_{\rm HP}(t)$,&nbsp; $\sigma_{\rm HP}(t)$&nbsp; from the <br>corresponding low-pass functions&nbsp; $H_{\rm TP}(f)$,&nbsp; $h_{\rm TP}(t)$,&nbsp; $\sigma_{\rm TP}(t)$|class=fit]]
 +
* a&nbsp; $\rm sinc$–shaped frequency response with&nbsp; $H_{\rm TP}(f = 0) = 1$,
 
   
 
   
 +
*a rectangular impulse response, and
 +
 +
*a linearly increasing step response.&nbsp;
 +
 +
 +
These are shown in the upper diagram.&nbsp;
 +
 +
 +
 +
 +
 +
The sketch below shows the corresponding high-pass functions.&nbsp;
 +
 +
It can be seen that
 +
*$H_{\rm HP}(f = 0) = 0$&nbsp;  because &nbsp; $H_{\rm TP}(f = 0) = 1$,
 +
 +
*consequently the integral over&nbsp; $h_{\rm HP}(t)$&nbsp; must also be zero,&nbsp; and
 +
 +
*the step response&nbsp; $σ_{\rm HP}(t)$&nbsp; tends towards the final value
 +
:$$σ_{\rm HP}(t \to \infty)=0.$$}}
 +
 +
==Exercises for the chapter==
 +
<br>
 +
[[Aufgaben:Exercise_1.5:_Rectangular-in-Frequency_Low-Pass_Filter|Exercise 1.5: Rectangular-in-Frequency Low-Pass Filter]]
 +
 +
[[Aufgaben:Exercise_1.5Z:_Sinc-shaped_Impulse_Response|Exercise 1.5Z: Sinc-shaped Impulse Response]]
 +
 +
[[Aufgaben:Exercise_1.6:_Rectangular-in-Time_Low-Pass_Filter|Exercise 1.6: Rectangular-in-Time Low-Pass Filter]]
 +
 +
[[Aufgaben:Exercise_1.6Z:_Interpretation_of_the_Frequency_Response|Exercise 1.6Z: Interpretation of the Frequency Response]]
 +
 +
[[Aufgaben:Exercise_1.7:_Nearly_Causal_Gaussian_Low-Pass_Filter|Exercise 1.7: Nearly Causal Gaussian Low-Pass Filter]]
 +
 +
[[Aufgaben:Exercise_1.7Z:_Overall_Systems_Analysis|Exercise 1.7Z: Overall Systems Analysis]]
 +
 +
[[Aufgaben:Exercise_1.8:_Variable_Edge_Steepness|Exercise 1.8: Variable Edge Steepness]]
 +
 +
[[Aufgaben:Exercise_1.8Z:_Cosine-Square_Low-Pass_Filter|Exercise 1.8Z: Cosine-Square Low-Pass Filter]]
  
  
  
 
{{Display}}
 
{{Display}}

Latest revision as of 19:19, 7 November 2023

General remarks


All low-pass functions described in the next sections have the following properties:

  • The frequency response  $H(f)$  is real and even so that according to the  $\text{Assignment Theorem}$  the associated impulse response  $h(t)$  is always real and even,  too.
  • The advantage of these  »system theoretical filter functions«  is the simple description by at most two parameters such that the filter influence can be represented in a transparent way.
  • The most important frequency response parameter is the  »equivalent bandwidth«  according to the definition via the equal-area rectangle:
$$\Delta f = \frac{1}{H(f=0)}\cdot \int_{-\infty}^{+\infty}H(f) \hspace{0.15cm} {\rm d}f.$$
$$\Delta t = \frac{1}{h(t=0)}\cdot \int_{-\infty}^{+\infty}h(t) \hspace{0.15cm} {\rm d}t = \frac{1}{\Delta f}.$$
  • The direct signal  $\rm (DC)$  transmission factor is always assumed to be  $H(f = 0) = 1$  unless explicitly stated otherwise.

Ideal low-pass filter – Rectangular-in-frequency


$\text{Definition:}$  An  »ideal low-pass filter«  is on hand if its frequency response has the following rectangular shape:

$$H(f) = H_{\rm RLP}(f) =\left\{ \begin{array}{l} \hspace{0.25cm}1 \\ 0.5 \\\hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad\begin{array}{*{10}c} \text {for} \\ \text {for} \\ \text {for} \\ \end{array}\begin{array}{*{20}c}{\vert \hspace{0.005cm}f\hspace{0.05cm} \vert< \Delta f/2,} \\{\vert \hspace{0.005cm}f\hspace{0.05cm} \vert = \Delta f/2,} \\{\vert \hspace{0.005cm}f\hspace{0.05cm} \vert > \Delta f/2.} \\\end{array}$$
  1. We sometimes also use the term  »rectangular low-pass filter«  $\rm (RLP)$.
  2. Here  $Δf$  denotes the  »system theoretical bandwidth«. 
  3. $f_{\rm G}=Δf/2$  denotes the  »cut-off frequency«   $($German:  "Grenzfrequenz"   ⇒   subscript  $\rm G)$.


Ideal low-pass filter:  Frequency response and impulse response

The graph shows such an ideal low-pass filter in the frequency and time domain. 

The following can be concluded from these curves:

  • Due to the abrupt,  infinitely steep roll-off the  »3 dB cut-off frequency«   ⇒  
    $f_{\rm G}$  is here exactly half the  »system theoretic bandwidth«  $Δf$.
  • All spectral components with  $f \lt f_{\rm G}$  are transmitted undistorted   ⇒   »pass band«.
  • All components with  $f \gt f_{\rm G}$  are completely suppressed   ⇒   »stop band«.
  • By definition,  $H(f) = 0.5$  holds for  $f = \pm f_{\rm G}$.


Description of the ideal low-pass filter in the time domain:

  • According to the inverse Fourier transform the  »impulse response«  $($right diagram$)$:
$$h(t) = h_{\rm RLP}(t) =\Delta f \cdot {\rm si}(\pi \cdot \Delta f \cdot t)\hspace{0.55cm}{\rm{with}}\hspace{0.7cm}{\rm si}(x) ={\sin(x)}/{x},\hspace{0.5cm}{\rm or}$$
$$h_{\rm RLP}(t) =\Delta f \cdot {\rm sinc}(\Delta f \cdot t)\hspace{0.7cm}{\rm{with}}\hspace{0.7cm}{\rm sinc}(x) ={\sin(\pi x)}/{(\pi x)}.$$
  • $h(t)$  extended to infinity on both sides and exhibits equidistant zero-crossings at an interval of  $Δt = 1/ Δf$.
  • The asymptotic decay is inversely proportional to time  $|t|$:
$$|h(t)| = \frac{\Delta f}{\pi \cdot \Delta f \cdot |t|} \cdot \left |{\rm sin}(\pi \cdot \Delta f\cdot t )\right | \le \frac{1}{\pi \cdot |t|}.$$
  • It follows that the impulse response is certainly less than  $1‰$  of the impulse maximum only for times  $t \gt t_{1‰} = 318 \cdot \Delta t$.
  • The step response  $\sigma(t)$  is obtained from the impulse response by integration and is:
$${\sigma}(t) = \int_{ - \infty }^{ t } {h ( \tau )} \hspace{0.1cm}{\rm d}\tau = \frac{1}{2} + \frac{1}{\pi} \cdot {\rm Si}(\pi \cdot\Delta f \cdot t ).$$
  • Here,  the so-called  »integral sine function«  is used:
$${\rm Si}(x) = \int_{ 0 }^{ x } {{\rm si} ( \xi )} \hspace{0.1cm}{\rm d}\xi = x - \frac{x^3}{3 \cdot 3!} + \frac{x^5}{5 \cdot 5!} - \frac{x^7}{7 \cdot 7!}+\text{ ...}$$
$$\Rightarrow \ {\rm Si}(0) = 0, \hspace{0.3cm}{\rm Si}(\infty) = \frac{\pi}{2}, \hspace{0.3cm}{\rm Si}(-x) = -{\rm Si}(x).$$


Slit low-pass filter – Rectangular-in-time


$\text{Definition:}$  An LTI system is called a  »slit low-pass filter«   $\rm (SLP)$  if the frequency response has the following form:

$$H(f) = H_{\rm SLP}(f)= {\rm si}(\pi {f}/{ \Delta f})\hspace{0.7cm}{\rm{where} }\hspace{0.7cm}{\rm si}(x) ={\sin(x)}/{x},\hspace{0.7cm}{\rm or}$$

$$\hspace{2.1cm}H_{\rm SLP}(f)= {\rm sinc}({f}/{ \Delta f})\hspace{0.7cm}{\rm{where} }\hspace{0.7cm}{\rm sinc}(x) ={\sin(\pi x)}/{(\pi x)}.$$


Slit low-pass filter:  Frequecy response and respective impulse response
  1. From the graph on the left it can be seen that the frequency response  $H_{\rm SLP}(f)$  of the slit low-pass filter is identical in shape to the impulse response  $h_{\rm RLP}(t)$  of the rectangular low-pass filter.
  2. According to the  »Duality Theorem«   ⇒   the impulse response  $h_{\rm SLP}(t)$  of the slit low-pass filter must also have the same form as the frequency response $H_{\rm RLP}(f)$ of the ideal low-pass filter   ⇒   "rectangular-in-time".
  3. Thus,  with the  »equivalent duration of the impulse response«  $Δt = 1/ Δf$  the following holds:
$$h(t) = h_{\rm SLP}(t) = \left\{ \begin{array}{l} \hspace{0.25cm}\Delta f \\ \Delta f/2 \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad \begin{array}{*{10}c} \text{for} \\ \text{for} \\ \text{for} \\ \end{array}\begin{array}{*{20}c} {\vert \hspace{0.005cm}t\hspace{0.05cm} \vert < \Delta t/2,} \\ {\vert \hspace{0.005cm}t\hspace{0.05cm} \vert = \Delta t/2,} \\ {\vert \hspace{0.005cm}t\hspace{0.05cm} \vert > \Delta t/2.} \\ \end{array}$$

Based on the graph on the right the following statements can be derived:

  • The slit low-pass filter in this form is also non-causal.  However,  adding a transit time of  $Δt/2$  or more renders the system causal and thus realizable.
  • The slit low-pass filter acts as an integrator over the time period  $Δt$:
$$y(t) = x (t) * h (t) = \frac{1}{\Delta t} \cdot \int\limits_{ t - \Delta t/2 }^{ t + \Delta t/2 } {x ( \tau )} \hspace{0.1cm}{\rm d}\tau.$$
  • If  $x(t)$  is a harmonic oscillation with frequency  $f_0 = k \cdot Δf$  $($where  $k$  is an integer$)$,  then it integrates exactly over  $k$  periods and  $y(t) = 0$  holds. 
  • This is also shown by the zeros of  $H(f)$.

Gaussian low-pass filter


A filter function frequently used for system-theoretical investigations is the Gaussian low-pass filter,  which can also be described by only one parameter,  namely the  »equivalent bandwidth»  $Δf$.

$\text{Definition:}$  For the frequency response and the impulse response of the  »Gaussian low-pass filter«  $\rm (GLP)$  the following holds:

$$H(f) = H_{\rm GLP}(f)= {\rm e}^{-\pi(f/\Delta f)^2}\hspace{0.15cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.15cm}h(t) = h_{\rm GLP}(t) = \Delta f \cdot {\rm e}^{-\pi(\Delta f \cdot \hspace{0.03cm} t)^2} .$$


The name goes back to the mathematician,  physicist and astronomer  $\text{Carl-Friedrich Gauß}$.  Gauß did not deal with this subject matter himself,  but the mathematical form of the frequency response and impulse response bear a resemblance to the so-called  »Gaussian formula«  which he discovered for probability theory.

Gaussian low-pass filter:  Frequency response and impulse response

Based on this graph the following statements can be made:

  1. The  »equivalent pulse duration«  $Δt$  is also defined via the area-equal rectangle and is equal to the reciprocal of the  »equivalent bandwith«  $Δf$.
  2. A narrow-band  $($small  $Δf)$  filter function  $H(f)$  results in a wide  $($large  $Δt)$  and simultaneously low impulse response  $h(t)$.
  3. The so-called  »Reciprocity Theorem«  of time duration and bandwidth can be shown particularly clearly in the example of the Gaussian low-pass filter.
  4. The frequency and time domain representations are in principle of the same form.  The Gaussian function is also said to be invariant to Fourier transform.
  5. The Gaussian low-pass filter is  –   like the ideal low-pass filter  –   strongly non-causal and  $($exactly$)$  realizable only with infinitely large transit time due to the infinite propagation of its impulse response.
  6. However,  it must be taken into account that  $h(t)$  has already decayed to  $1‰$  of its maximum value at  $t = 1.5 \cdot Δt$.  For  $t = 3 \cdot Δt$  we even get  $h(t) ≈ 5 · 10^{–13} · h(0)$.
  7. These numerical values show that the Gaussian low-pass filter can be used feasibly for practical simulations as long as runtimes do not play a system-limiting role.
  8. The  »step response«  $σ(t)$  is given for the  »Gaussian error function«  $ϕ(x)$,  which is usually given in tabular form in formula collections:
$$\sigma(t) = \int_{ -\infty }^{ t } {h(\tau)} \hspace{0.1cm}{\rm d}\tau = {\rm \phi}\left( \sqrt{2 \pi }\cdot{t}/{\Delta t} \right) \hspace{0.7cm}{\rm{where}}\hspace{0.7cm}{\rm \phi}(x) = \frac{1}{\sqrt{2 \pi }} \cdot \int_{ -\infty }^{ x } {{\rm e}^{-u^2/2}} \hspace{0.1cm}{\rm d}u.$$

Trapezoidal low-pass filter


The low-pass functions described so far depend on only one parameter – the  »equivalent bandwidth«  $Δf$.   Here,  the edge steepness for a given filter type was fixed.  Now a low-pass filter with parameterisable edge steepness is described.

$\text{Definition:}$  The frequency response of the  »trapezoidal low-pass filter«  $\rm (TLP)$  with cut-off frequencies  $f_1$  and  $f_2 \ge f_1$:

$$H(f) = H_{\rm TLP}(f)= \left\{ \begin{array}{l} \hspace{0.25cm}1 \\ \frac{f_2 - \vert f \vert }{f_2 -f_1} \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad \begin{array}{*{10}c} \text{for} \\ \text{for} \\ \text{for} \\ \end{array}\begin{array}{*{20}c} {\hspace{0.94cm}\vert \hspace{0.005cm} f\hspace{0.05cm} \vert < f_1,} \\ {f_1 \le \vert \hspace{0.005cm} f\hspace{0.05cm} \vert \le f_2,} \\ {\hspace{0.94cm}\vert \hspace{0.005cm} f\hspace{0.05cm} \vert > f_2.} \\ \end{array}$$


Instead of  $f_1$  and  $f_2$  the following parameters can be used to describe  $H(f)$:

  • the  »equivalent bandwidth«  determined via the equal-area rectangle:
$$\Delta f = f_1 + f_2.$$
  • the  »roll-off factor«  $($in frequency domain$)$  as a measure for the edge steepness:
$$r_{\hspace{-0.05cm}f} = \frac{f_2 - f_1}{f_2 + f_1}.$$

Special cases included in the general representation are:

  • the ideal rectangular low-pass filter  $(r_{\hspace{-0.05cm}f} = 0)$,
  • the triangular low-pass filter  $(r_{\hspace{-0.05cm}f} = 1)$.


For a roll-off factor  of  $r_f = 0.5 \ \Rightarrow \ f_2 = 3f_1$  the following graph shows the frequency response  $H(f)= H_{\rm TLP}(f)$  on the left and on the right the impulse response

$$h(t) = h_{\rm TLP}(t) =\Delta f \cdot {\rm sinc}(\Delta f \cdot t )\cdot {\rm sinc}(r_{\hspace{-0.05cm}f} \cdot \Delta f \cdot t )\hspace{0.7cm}{\rm{where}}\hspace{0.7cm}{\rm sinc}(x)= \frac{\sin(\pi x)}{\pi x}.$$

The time-dependent  $\rm sinc$–curve of the rectangular low-pass filter with the same equivalent bandwidth is shown dashed for comparison.  With the help of the graph and the above equations the following statements can be made:

Trapezoidal low-pass filter:  Frequency response and impulse response
  1. The trapezoidal shape is obtained, for example, by convolution of two rectangles of widths  $Δf$  and  $r_f \cdot Δf$.
  2. According to the convolution theorem the impulse response is thus the product of two  $\rm sinc$–functions with arguments  $Δf · t$  and  $r_{\hspace{-0.05cm}f} · Δf · t$.
  3. The first  $\rm sinc$–function is part of the  $h(t)$  equation for all values of  $r_{\hspace{-0.05cm}f}$  and always results in equivalent zero-crossings in the distance  $1/Δf$.
  4. For  $0 \lt r_{\hspace{-0.05cm}f} \lt 1$  there are further zero-crossings at multiples of  $Δt/r_{\hspace{-0.05cm}f}$.
  5. The larger  $r_{\hspace{-0.05cm}f}$  is  $($i.e. for a given  $Δf$  with a flatter edge$)$,  the faster is the asymptotic decay of the impulse response  $h(t)$.
  6. The fastest possible decay is obtained for the triangular low-pass filter   ⇒   $r_{\hspace{-0.05cm}f} = 1$,  $f_1 = 0$,  $f_2 = Δf$.  For this,  the following holds in frequency and time domains:
$$H(f) = \left\{ \begin{array}{c} \hspace{0.25cm} \frac{{\rm \Delta}f -|f|}{{\rm \Delta}f} \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad \begin{array}{*{10}c} {\rm{for}} \\ {\rm{for}} \\ \end{array}\begin{array}{*{20}c} {\hspace{1cm} \left| \hspace{0.005cm}f\hspace{0.05cm} \right| \le {\rm \Delta}f ,} \\ {\hspace{1cm}\left|\hspace{0.005cm} f \hspace{0.05cm} \right| \ge {\rm \Delta}f } \\ \end{array},$$
$$h(t) = \Delta f \cdot {\rm sinc}^2( \Delta f \cdot t ),\hspace{0.2cm}{\rm{where}}\hspace{0.4cm}{\rm sinc}(x)= \frac{\sin(\pi x)}{\pi x}.$$

Raised-cosine low-pass filter


Like the  »trapezoidal low-pass filter«  this low-pass filter is also described by two parameters,  which are

  • the equivalent bandwidth  $Δf$, 
  • the roll-off factor $r_{\hspace{-0.05cm}f}$.


Its value range lies between  $r_{\hspace{-0.05cm}f} = 0$  $($rectangular low-pass filter$)$  and  $r_{\hspace{-0.05cm}f} = 1$  $($cosine–squared low-pass filter$)$.

$\text{Definition:}$  With cut-off frequencies  $f_1 = Δf · (1 – r_{\hspace{-0.05cm}f})$  and  $f_2 = Δf · (1 + r_{\hspace{-0.05cm}f})$  the frequency response of the  »raised-cosine low-pass filter«  $\rm (RCLP)$:

$$H(f) = H_{\rm RCLP}(f) =\left\{ \begin{array}{l} \hspace{0.25cm}1 \\ \cos \left( \frac{ \vert f \vert - f_1}{f_2 -f_1}\cdot \pi/2\right) \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad \begin{array}{*{10}c} \text{for} \\ \text{for} \\ \text{for} \\ \end{array}\begin{array}{*{20}c} {\hspace{0.94cm}\vert \hspace{0.005cm} f\hspace{0.05cm} \vert < f_1,} \\ {f_1 \le \vert \hspace{0.005cm} f\hspace{0.05cm} \vert \le f_2,} \\ {\hspace{0.94cm}\vert \hspace{0.005cm} f\hspace{0.05cm} \vert> f_2.} \\ \end{array}$$


Raised-cosine low-pass filter and respective impulse response

The graph shows  $H(f)$  on the left and on the right the impulse response

$$h(t) = h_{\rm RCLP}(t) =\Delta f \hspace{-0.05cm}\cdot\hspace{-0.05cm} {\rm sinc}( \Delta f \hspace{-0.05cm}\cdot\hspace{-0.05cm} t )\hspace{-0.05cm}\cdot\hspace{-0.05cm} \frac {\cos(\pi \cdot r_{\hspace{-0.05cm}f} \cdot \Delta f \cdot t )}{1 - (2 \cdot r_f \cdot \Delta f \cdot t)^2}.$$

For these graphs the roll-off factor  $r_{\hspace{-0.05cm}f} = 0.5$  was used.  In other words:  $f_2 = 3 \cdot f_1.$

The following is drawn in dashed lines for comparison:

  • in the frequency domain the trapezoidal low-pass filter and
  • in the time domain the  $\rm sinc$ function.


$\text{Please note:}$

The  $\rm sinc$–function is not the inverse Fourier transform of the trapezoidal low-pass filter drawn in blue on the left.  It rather describes the ideal rectangular low-pass filter in the time domain,  which is not shown in the left graph.


Based on this graph and the above equations the following statements can be made:

  1. The impulse response  $h(t)$  of the raised-cosine low-pass filter has zeros at all multiples of  $Δt = 1/Δf$,  which are due to the  $\rm sinc$–function shown in dashed lines in the right-hand figure.
  2. The last term in the  $h(t)$  equation results in further zeros at multiples of  $Δt/r_f$.  If  $1/r_f$  is an integer as in the above graph  $(1/r_f = 2)$,  these new zeros coincide with the other zeros and thus are not discernible.
  3. The larger the roll-off factor  $r_f$  and thus the flatter the roll-off is,  the more favourable is the transient behaviour of the raised-cosine low-pass filter.
  4. The raised-cosine low-pass filter usually exhibits a better asymptotic transient behaviour than the trapezoidal low-pass filter with same  $r_f$  although the latter has a flatter edge at least at frequency  $Δf/2$.
  5. This suggests that the transient behaviour is not only affected by points of discontinuity  $($as in the case of the rectangle$)$  but also by kink points as in the case of the trapezoidal low-pass filter.


Cosine–square low-pass filter


$\text{Definition:}$  For  $f_1 = 0$,  $f_2 = Δf$   ⇒   $r_f = 1$   the  »cosine–square low-pass filter«    $\rm (CSLP)$  is obtained as a special case.  Its impulse response can also be represented as follows:

$$H(f) = H_{\rm CSLP}(f)= \cos^2\Big(\frac{\vert f \vert \hspace{0.05cm}\cdot\hspace{0.05cm} \pi}{2\hspace{0.05cm}\cdot\hspace{0.05cm} \Delta f}\Big). $$

Outside this inner frequency range,  $H_{\rm CSLP}(f)=0$.


For the impulse response one obtains according to the inverse Fourier transform after some transformations:

$$h(t)=h_{\rm CSLP}(t)= \Delta f \cdot {\rm sinc}(\Delta f \cdot t)\cdot \big [{\rm sinc}(\Delta f\cdot t +0.5)+{\rm sinc}(\Delta f\cdot t -0.5)\big ],$$
$$T=1/\Delta f \hspace{0.5cm}\Rightarrow \hspace{0.5cm} h(t)=1/T \cdot {\rm sinc}(t/T)\cdot \big [{\rm sinc}(t/T +0.5)+{\rm sinc}(t/T -0.5)\big ].$$
  1. Because of the first  ${\rm sinc}$–function,  $h(t)=0$  for multiples of  $T=1/\Delta f$   ⇒   the equidistant zero-crossings of the cosine–rolloff lowpass are preserved.
  2. Because of the bracket expression,  $h(t)$  now exhibits further zero-crossings at  $t=\pm1.5 T$,  $\pm2.5 T$,  $\pm3.5 T$, ...   but not at  $t=\pm0.5 T$.
  3. For  $t=\pm0.5 T$  the impulse response has the value  $\Delta f/2$.
  4. The asymptotic decay of  $h(t)$  in this special case runs with  $1/t^3$. 


$\text{Furthermore,  it should be mentioned}$   that the  »cosine-square low-pass filter«  is the only low-pass filter that fulfils both  »Nyquist criteria«.  Here the  »eye«  in digital transmission is  maximally open both vertically and horizontally   ⇒   see  »Definition and statements of the eye diagram«.


Derivation of system theoretical high-pass functions


So far,  six commonly used system theoretic low-pass functions have been considered.  For each individual low-pass function there is also an equivalent high-pass function.

$\text{Definition:}$  If  $H_{\rm TP}(f)$  is a system–theoretical low-pass function  $($German "Tiefpass"   ⇒   $\text{TP)}$  with  $H_{\rm TP}(f = 0) = 1$, then  the  »equivalent high-pass function«:

$$H_{\rm HP}(f) = 1 - H_{\rm TP}(f).$$


Thus,  the descriptive quantities in the time domain are:

$$h_{\rm HP}(t) = \delta (t) - h_{\rm TP}(t),$$
$$\sigma_{\rm HP}(t) = \gamma (t) - \sigma_{\rm TP}(t). $$

Here, the following denotations are used:

  1. $h_{\rm HP}(t)$  and  $h_{\rm TP}(t)$ denote the impulse responses of the high- and low-pass filter,
  2. $σ_{\rm HP}(t)$  and  $σ_{\rm TP}(t)$ denote the respective step responses,
  3. $γ(t)$  denotes the jump function as a result of integration over the Dirac delta function  $δ(t)$.


$\text{Example 1:}$  We consider the  »slit low-pass filter«  ⇒   »rectangular-in-time»  which is characterized by

Construction of high-pass functions  $H_{\rm HP}(f)$,  $h_{\rm HP}(t)$,  $\sigma_{\rm HP}(t)$  from the
corresponding low-pass functions  $H_{\rm TP}(f)$,  $h_{\rm TP}(t)$,  $\sigma_{\rm TP}(t)$
  • a  $\rm sinc$–shaped frequency response with  $H_{\rm TP}(f = 0) = 1$,
  • a rectangular impulse response, and
  • a linearly increasing step response. 


These are shown in the upper diagram. 



The sketch below shows the corresponding high-pass functions. 

It can be seen that

  • $H_{\rm HP}(f = 0) = 0$  because   $H_{\rm TP}(f = 0) = 1$,
  • consequently the integral over  $h_{\rm HP}(t)$  must also be zero,  and
  • the step response  $σ_{\rm HP}(t)$  tends towards the final value
$$σ_{\rm HP}(t \to \infty)=0.$$

Exercises for the chapter


Exercise 1.5: Rectangular-in-Frequency Low-Pass Filter

Exercise 1.5Z: Sinc-shaped Impulse Response

Exercise 1.6: Rectangular-in-Time Low-Pass Filter

Exercise 1.6Z: Interpretation of the Frequency Response

Exercise 1.7: Nearly Causal Gaussian Low-Pass Filter

Exercise 1.7Z: Overall Systems Analysis

Exercise 1.8: Variable Edge Steepness

Exercise 1.8Z: Cosine-Square Low-Pass Filter