Difference between revisions of "Mobile Communications/General Information on the LTE Mobile Communications Standard"

From LNTwww
 
(58 intermediate revisions by 6 users not shown)
Line 2: Line 2:
 
{{Header
 
{{Header
 
|Untermenü=LTE – Long Term Evolution
 
|Untermenü=LTE – Long Term Evolution
|Vorherige Seite=Die Charakteristika von UMTS
+
|Vorherige Seite=Characteristics of UMTS
|Nächste Seite=Technische Neuerungen von LTE
+
|Nächste Seite=Technical Innovations of LTE
 
}}
 
}}
  
== Entwicklung der Mobilfunkteilnehmer bis 2010 ==
+
== # OVERVIEW OF THE FOURTH MAIN CHAPTER # ==
 
<br>
 
<br>
Während der letzten Jahre hat die Anzahl der Mobilanschlüsse drastisch zugenommen. Die Grafik zeigt für die Jahre 2004 bis 2010 bei den absoluten Zahlen der mobilen Endgeräte (rote Balken, linke Skala) eine Zunahme von 1.8 auf ca. 5 Milliarden weltweit. Die blauen Balken (linke Skala) zeigen die Entwicklung der Weltbevölkerung im gleichen Zeitraum. Die (prozentuale) Anzahl der Mobiltelefone (grüne Kurve, rechte Skala) bezogen auf die Weltbevölkerung ist in den Jahren 2004 bis 2010 von knapp 30% auf über 70% gestiegen. Dabei fließen natürlich Nutzer mit mehr als einem Mobiltelefon in die Statistik ein. 2010 besaßen also keineswegs 70% der Weltbevölkerung  ein Mobiltelefon.<br>
+
This chapter provides an overview of&nbsp; &raquo;'''Long Term Evolution'''&laquo;&nbsp; $\rm (LTE)$.&nbsp; From today's perspective&nbsp; $(2011)$,&nbsp; LTE is a new mobile communications standard that should replace UMTS and will probably continue to shape the next few years of mobile voice and data transmission.
  
[[File:P ID2265 LTE T 4 1 S3 v1.png|Absolute und prozentuale Anzahl der mobilen Endgeräte  in den Jahren 2004 – 2010|class=fit]]<br>
+
In the following,&nbsp; a rough overview of the motivation,&nbsp; functionality and characteristics of LTE is given.&nbsp; This is followed by a more detailed system description of the technical processes involved in LTE.&nbsp; This chapter will deal with this in detail:
  
Überproportional zugenommen hat &ndash; insbesondere seit der Einführung von Flatratetarifen &ndash; die Nutzung mobiler Datendienste. Die folgende Aussagen beziehen sich auf das Jahr 2010:
+
# The&nbsp; &raquo;motivation for LTE&laquo;&nbsp; and the&nbsp;&nbsp; &raquo;frequency band allocation&laquo;,
*Der globale mobile Datenverkehr verzeichnete 2010 einen Zuwachs um 159 Prozent und ist damit deutlich stärker angestiegen als erwartet. Mobile Datenübertragung verursacht bereits jetzt mehr Netzwerkbelastung als die Sprachübertragung im Mobilfunknetz.<br>
+
# the&nbsp; &raquo;development of mobile communications standards&laquo;&nbsp; towards LTE,
 +
#some technical details about&nbsp; &raquo;voice and data transmission&laquo;,&nbsp;
 +
#the transmission method&nbsp; &raquo;SC&ndash;FDMA&laquo;&nbsp; used in the uplink and its&nbsp; &raquo;differences to&nbsp; OFDMA&laquo;&nbsp;,
 +
#the&nbsp; &raquo;description and function of the different logical channels&laquo;&nbsp; in the bit transmission layer,
 +
#an outlook on the successor system&nbsp; &raquo;LTE&ndash;Advanced&laquo;.
  
*Allein der mobile Datenverkehr war damit im Vergleichsjahr 2010 dreimal so groß wie das komplette Verkehrsaufkommen im Jahr 2000 (damals vorwiegend Sprachübertragung).<br>
 
  
*Obwohl Smartphones 2010 nur 13 Prozent aller mobilen Endgeräte ausmachten, waren sie für 78 Prozent der Daten&ndash; und Sprachübertragung verantwortlich.<br>
+
<u>Addendum:</u> &nbsp; The LTE chapter was written in 2011, i.e. at the time when LTE had just been introduced.&nbsp; During the last editorial revision in autumn 2017, some earlier statements were revised which no longer corresponded to the facts after six years of intensive use by many customers.&nbsp; However, most of the chapter remained unchanged compared to 2011, as the LTE principle has not changed in the meantime.
  
*Zu dieser Entwicklung haben auch 94 Millionen Laptop&ndash;Nutzer  beigetragen, die das Internet unterwegs über UMTS&ndash;Modems nutzten. Ein solcher Laptop&ndash;Nutzer verursacht dabei im Mittel die 22&ndash;fache Datenmenge eines durchschnittlichen Smartphone&ndash;Benutzers.<br><br>
 
  
== Einige Eigenschaften von LTE ==
+
== Development of mobile users until 2010 ==
 
<br>
 
<br>
Das Kürzel LTE steht für <i>Long Term Evolution</i> und bezeichnet den neuen, UMTS nachfolgenden Mobilfunkstandard. Durch die konzeptionelle Neuentwicklung soll LTE auf lange Zeit (<i>&bdquo;Long Term&rdquo;</i>) den sich immer weiter erhöhenden Bedarf an Bandbreite und nach höheren Geschwindigkeiten stillen.<br>
+
Since the turn of the millennium, the number of mobile connections has increased dramatically.  
 +
[[File:EN_LTE_T_4_1_S3.png|right|frame|Absolute and relative number of mobile devices in the years 2004 - 2010|class=fit]]
 +
*The graph shows for the years 2004 to 2010 an increase from 1.8 to approx. 5 billion mobile devices worldwide in absolute numbers&nbsp; (red bars, left scale).
 +
*The blue bars (left scale) show the development of the world population in the same period.  
  
Der LTE&ndash;Standard wurde erstmals 2008 als UMTS&ndash;Release 8 durch das [http://en.lntwww.de/Mobile_Kommunikation/Allgemeines_zum_Mobilfunkstandard_LTE#3GPP_.E2.80.93_Third_Generation_Partnership_Project 3GGP] (<i>Third Generation Partnership Project</i>) &ndash; einem Konglomerat verschiedener internationaler Telekommunikationsverbände &ndash; definiert und wird seitdem kontinuierlich durch sogenannte &bdquo;Releases&rdquo; fortentwickelt. Durch das Bekenntnis der größten Mobilfunkanbieter weltweit ist LTE der erste (großteils) einheitliche Standard der Mobilfunktechnologie.<br>
+
*The (percentage) number of cell phones&nbsp; (green curve, right scale)&nbsp; in relation to the world population increased from just under 30% to over 70% between 2004 and 2010.  
  
Man bezeichnet LTE entsprechend der UMTS&ndash;Release 8 auch als &bdquo;3.9G&rdquo;, da es die von der ITU (<i>International Telecommunication Union</i>) spezifizierten Bedingungen für den Mobilfunk der vierten Generation  (4G) zunächst nicht ganz erfüllt. Das momentan neueste Release 10 (vom Juli 2011) genügt dagegen dem 4G&ndash;Standard. Im Kapitel 4.5 sind die Features dieser als LTE&ndash;A (<i>LTE&ndash;Advanced</i>) bezeichneten Technik angegeben.<br>
+
*The statistics include users with more than one cell phone.&nbsp; 2010 possessed thus by no means 70% of the world population a mobile telephone.<br>
  
Nachfolgend sind wichtige Systemeigenschaften von LTE stichpunktartig zusammengestellt. Einige der Aussagen entstammen der Internetseite [http://www.itwissen.info/definition/lexikon/long-term-evolution-LTE.html ITWissen:]
+
*The use of mobile data services has sharply increased, especially since the introduction of flatrate tarifs.  
 +
<br clear=all>
 +
The following statements refer to the year 2010:
 +
#Global mobile data traffic grew by 159% in 2010, a much stronger increase than expected.&nbsp; Since then, mobile data transmission has caused more network load than voice transmission in the mobile network.<br>
 +
#Mobile data traffic alone was three times as large in 2010 as the entire traffic volume in 2000&nbsp; (at that time mainly voice traffic).<br>
 +
#Although smartphones accounted for only 13% of all mobile devices in 2010, they were responsible for 78% of data and voice transmission.<br>
 +
#To this development also 94 million laptop users contributed, who used the Internet on the way over UMTS modems.
 +
# Such a laptop user causes thereby on the average 22 times the data quantity of an average smartphone user.
  
*LTE basiert auf den Mehrfachzugriffsverfahren OFDMA (<i>Orthogonal Frequency Division Multiple Access</i>) im Downlink bzw. SC&ndash;FDMA (<i>Single Carrier Frequency Division Multiple Access</i>) im Uplink. Die detaillierte Beschreibung von OFDMA und insbesondere auch dessen Unterschiede zu [http://en.lntwww.de/Modulationsverfahren/Allgemeine_Beschreibung_von_OFDM#Das_Prinzip_von_OFDM_.E2.80.93_Systembetrachtung_im_Zeitbereich_.281.29 OFDM] findet sich in [http://en.lntwww.de/Beispiele_von_Nachrichtensystemen/Allgemeine_Beschreibung_von_DSL#Motivation_f.C3.BCr_xDSL Kapitel 4.3.]
 
  
*Die Verwendung dieses Modulationsverfahrens ermöglicht Orthogonalität zwischen den einzelnen Nutzern, was in einer erhöhten Netzwerkkapazität resultiert [HT09]<ref>Holma, H.; Toskala, A.: ''LTE for UMTS – OFDMA and SC–FDMA Based Radio Access.'' Wiley & Sons, 2009.</ref>. Diese Technik ermöglicht in Verbindung mit <i>Multiple Input Multiple Output</i> (MIMO) derzeit (2011) Spitzendatenraten von 100 Mbit/s im Downlink.<br>
+
== Essential properties of LTE ==
 +
<br>
 +
The abbreviation&nbsp; $\rm LTE$&nbsp; stands for&nbsp; "Long Term Evolution"&nbsp; and refers to the mobile communications standard that follows UMTS.&nbsp; The new conceptual development of LTE was intended to satisfy the ever-increasing demand for bandwidth and higher speeds over the long time&nbsp; ("Long Term").
 +
 
 +
&rArr; &nbsp; The LTE standard was first defined in 2008 as&nbsp; "UMTS Release 8"&nbsp; by the&nbsp; [[Mobile_Communications/General_Information_on_the_LTE_Mobile_Communications_Standard#3GPP_-_Third_Generation_Partnership_Project| $\rm 3GPP$]]&nbsp; (Third Generation Partnership Project), a conglomerate of various international telecommunication associations, and has since been continuously developed further by so-called "Releases".&nbsp; The commitment of the world's largest mobile communications providers has made LTE the first (largely) uniform standard for mobile communications technology.<br>
 +
 
 +
According to&nbsp; "UMTS Release 8", LTE is also called&nbsp; $\rm 3.9G$&nbsp; because it initially did not fully meet the conditions specified by the ITU&nbsp; (International Telecommunication Union)&nbsp; for fourth generation&nbsp; $\rm (4G)$&nbsp;  mobile communications.
 +
 
 +
In contrast, the subsequent Release 10&nbsp; (dated July 2011)&nbsp; complies with the&nbsp; $\rm 4G$ standard.&nbsp; The chapter&nbsp; [[Mobile_Communications/LTE-Advanced - a further development of LTE|"LTE Advanced"]]&nbsp; lists the features of this LTE enhancement.&nbsp; This technology is also referred to as&nbsp; $\rm LTE&ndash;A$.<br>
 +
 
 +
&rArr; &nbsp; Here is a summary of the important system features of LTE from the page&nbsp; [http://www.itwissen.info/definition/lexikon/long-term-evolution-LTE.html&nbsp; "ITWissen"]&nbsp;:
 +
 
 +
*LTE is based on the multiple access methods&nbsp; $\rm OFDMA$&nbsp; ("Orthogonal Frequency Division Multiple Access")&nbsp; in the downlink and&nbsp; $\rm SC&ndash;FDMA$&nbsp; ("Single Carrier Frequency Division Multiple Access") in the uplink.&nbsp; The detailed description of OFDMA and especially its differences to&nbsp; [[Modulation_Methods/General_Description_of_OFDM#The_principle_of_OFDM_-_system_consideration_in_the_time_domain|$\rm OFDM$]]&nbsp; can be found in chapter&nbsp; [[Mobile_Communications/The_application_of_OFDMA_and_SC-FDMA_in_LTE|"The application of OFDMA and SC&ndash;FDMA in LTE"]].
 +
 
 +
*The use of this modulation method enables orthogonality between individual users, resulting in an increased network capacity&nbsp;  [HT09]<ref name ='HT09'>Holma, H.; Toskala, A.:&nbsp; LTE for UMTS – OFDMA and SC–FDMA Based Radio Access.&nbsp; Wiley & Sons, 2009.</ref>.&nbsp; In conjunction with "Multiple Input Multiple Output" $\rm (MIMO)$, this technology currently (2011) enables peak data rates of 100 Mbit/s in the downlink.
  
*Neben der gegenüber dem 3G&ndash;System UMTS deutlich höheren Datenrate nutzt die LTE&ndash;Technik die zur Verfügung stehende Bandbreite effizienter aus. Durch die Kombination des aktuellsten Stands der Technologie mit den vorhandenen Erfahrungen von GSM und UMTS ist der neue Standard damit nicht nur sehr viel schneller, sondern zudem auch einfacher und flexibler [Mey10]<ref>Meyer, M.: ''Siebenmeilenfunk.'' c't 2010, Heft 25, 2010.</ref>.
+
*In addition to the significantly higher data rate compared to the&nbsp; $\rm 3G$&nbsp; system UMTS, LTE technology makes more efficient use of the available bandwidth.&nbsp; By combining the latest state-of-the-art technology with the existing experience of GSM and UMTS, the new standard is not only much faster, but also simpler and more flexible.
  
== Motivation und Ziele von LTE ==
+
== Motivation and goals of LTE ==
 
<br>
 
<br>
Das amerikanische Telekommunikationsunternehmen <i>Cisco Systems</i> ging 2010 in einem [http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html White Paper] davon aus, dass im Jahre 2015
+
In 2010, the American telecommunications company&nbsp;  "Cisco Systems"&nbsp; published a&nbsp; [http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html "White Paper"]&nbsp; which assumes that in 2015
*die Nutzung mobiler Daten sechsundzwanzigmal höher sein wird als noch 2010,<br>
+
[[File:EN_LTE_T_4_1_S2.png|right|frame|Graphic from the Ericsson Mobility Report 2015|class=fit]]
*diese Nutzung dabei pro Jahr nochmals um 92% zunimmt, und<br>
+
*the use of mobile data will be twenty-six times higher than in 2010,<br>
*die gigantische Menge von 6.3 Exabyte (6.3 &middot; 10<sup>18</sup> Byte) pro Monat erreicht wird.<br><br>
 
  
Es wurde außerdem vorausgesagt, dass 2015 fünf Milliarden Menschen mit dem Internet verbunden sein werden [HT09]<ref>Holma, H.; Toskala, A.: ''LTE for UMTS – OFDMA and SC–FDMA Based Radio Access.'' Wiley & Sons, 2009.</ref>. Darüber hinaus werden aber gleichzeitig weitere kabellose Übertragungstechnologien entwickelt, die ebenso hohe Datenübertragungsraten versprechen. Alle diese Faktoren verlangten und verlangen nach einer Weiterentwicklung des 3GPP&ndash;Mobilfunkstandards &bdquo;UMTS&rdquo;.<br>
+
*this usage is increasing by a further 92% per year, and
 +
 +
*the gigantic amount of 6.3 Exabyte &nbsp; &rArr; &nbsp; $\rm6.3 \cdot 10^{18}$&nbsp; byte per month is reached.<br><br>
  
Der Ericsson Mobility Report: Weltweite Prognose zur LTE-Abdeckung. [http://www.lte-anbieter.info/lte-news/ericsson-mobility-report-weltweite-prognose-zur-lte-abdeckung PDF–Internetdokument], 2015 von 2015 zeigt, dass die Prognose von 2010 übertroffen wurde. 2014 gab es bereits 7.1 Milliarden mobile Teilnehmer mit Internetzugang, 2020 sollen es 9.2 Milliarden sein.<br>
+
It has also been predicted that five billion people will be connected to the Internet in 2015&nbsp; [HT09]<ref name ='HT09'></ref>.&nbsp; In addition, other wireless transmission technologies are being developed at the same time, which promise equally high data transmission rates.&nbsp; All these factors called for further development of the 3GPP mobile communications standard "UMTS".
  
[[File:P ID3130 LTE T 4 1 S2 v2.png|Weltweite Prognose zur LTE–Abdeckung|class=fit]]<br>
+
The&nbsp; [http://www.lte-anbieter.info/lte-news/ericsson-mobility-report-weltweite-prognose-zur-lte-abdeckung "Ericsson Mobility Report"]&nbsp; of 2015 shows that the 2010 forecast has been exceeded.&nbsp; In 2014 there were already 7.1 billion mobile users with Internet access, in 2020 there should be 9.2 billion.
  
Das 3GPP&ndash;Konsortium hat früh mit der Definition der Ziele von LTE begonnen, um mit der rasanten Entwicklung bei leitungsbezogenen Verbindungen mithalten zu können. Die genauen Ziele wurden dann Ende 2004 in der LTE Release 6 vergleichend zur HSPA&ndash;Technologie (<i>High Speed Packet Access</i>) festgeschrieben. Als Hauptziele wurden genannt:
+
The 3GPP consortium started early to define the LTE targets to keep up with the rapid development of line-based connections.&nbsp; The exact targets were then set out in the&nbsp; "LTE Release 6"&nbsp; compared to&nbsp; $\rm HSPA$&nbsp; technology&nbsp; ("High&ndash;Speed Packet Access")&nbsp; at the end of 2004.  
*Eine rein paketorientierte Übertragung und ein hohes Maß an Beweglichkeit und Sicherheit,<br>
 
*geringere Komplexität, Kostenreduzierung und optimierte Batterielaufzeiten der Endgeräte,<br>
 
*Bandbreitenflexibilität zwischen 1.5 MHz und 20 MHz,<br>
 
*eine möglichst hohe spektrale Effizienz (Datenrate pro einem Hertz Bandbreite),<br>
 
*maximal mögliche Datenraten von 100 Mbit/s im Downlink bzw. 50 Mbit/s im Uplink,<br>
 
*Signaldurchlaufszeiten geringer als 10 Millisekunden.<br><br>
 
  
Dies bedeutet eine Erhöhung der spektralen Effizienz um den Faktor zwei bis vier, eine Reduktion der Latenz auf die Hälfte und eine Verzehnfachung der maximalen Datenrate im Vergleich zu HSPA. Auf die einzelnen Punkte, die einen Großteil der LTE&ndash;spezifischen technischen Charakteristika darstellen, wird in [http://en.lntwww.de/Mobile_Kommunikation/Technische_Neuerungen_von_LTE#Zur_Sprach.C3.BCbertragung_bei_LTE Kapitel 4.2] noch genauer eingegangen.
+
The main goals were mentioned:
 +
#A purely packet-oriented transmission and a high degree of mobility and security,<br>
 +
#reduced complexity, cost reduction and optimized battery life of the end devices,<br>
 +
#bandwidth flexibility between 1.5 MHz and 20 MHz,<br>
 +
#a spectral efficiency&nbsp; (data rate per one Hertz bandwidth)&nbsp; as high as possible,<br>
 +
#maximum possible data rates of 100 Mbit/s in downlink and 50 Mbit/s in uplink,<br>
 +
#signal processing times less than 10 milliseconds.<br><br>
  
== Entwicklung der UMTS-Mobilfunkstandards hin zu LTE ==
+
Compared to HSPA, this means an increase in spectral efficiency by a factor of&nbsp; $2 \ \text{...}\ 4$&nbsp; and a reduction in latency by half and a tenfold increase in the maximum data rate.&nbsp; The individual points, which represent a large part of the LTE specific technical characteristics, are described in more detail in the chapter&nbsp; [[Mobile_Communications/Technical innovations of LTE|"Technical Innovations of LTE"]].
 +
 
 +
== Development of the UMTS mobile phone standards towards LTE ==
 
<br>
 
<br>
Die Entwicklung der Mobilfunkstandards der dritten Generation wurde bereits im dritten Kapitel dieses Buches ausführlich thematisiert. Aus diesem Grund wird hier detailliert nur auf die neueren Entwicklungen eingegangen. Zunächst eine kurze unkommentierte Übersicht der UMTS Releases vor LTE aus [Hin08]<ref>Hindelang, T.: ''Mobile Communications.''
+
The development of third generation mobile communications standards was already discussed in detail in the third chapter of this book.&nbsp; For this reason, only the more recent developments are discussed in detail here.  
Vorlesungsmanuskript. Lehrstuhl für Nachrichtentechnik, Technische Universität München, 2008.</ref>:
+
 
*<b>Release 99</b> (Dezember 1999): <br>
+
First of all, a brief overview of UMTS releases before LTE from&nbsp; [Hin08]<ref name='Hin08'>Hindelang, T.:&nbsp; Mobile Communications.&nbsp; Lecture notes.&nbsp; Institute for Communications Engineering.&nbsp; Munich: Technical University of Munich, 2008.</ref>:
:UMTS 3G FDD und TDD; 3.84 Mchip/s; CDMA&ndash;Luftschnittstelle.<br>
+
 
 +
*&raquo;<b>Release 99</b>&laquo; &nbsp; (December 1999): &nbsp; UMTS 3G FDD and TDD; &nbsp; 3.84 Mchip/s; &nbsp; CDMA air interface.<br>
  
*<b>Release 4</b> (Juli 2001): <br>
+
*&raquo;<b>Release 4</b>&laquo; &nbsp; (July 2001): &nbsp; Lower chip rate (1.28 Mchip/s) for TDD; &nbsp; some fixes and minor improvements.<br>
:Niedrigere Chiprate (1.28 Mchip/s) bei TDD; einige Korrekturen und kleinere Verbesserungen.<br>
 
  
*<b>Release 5</b> (März 2002):<br>
+
*&raquo;<b>Release 5</b>&laquo; &nbsp; (March 2002): &nbsp; [https://en.wikipedia.org/wiki/IP_Multimedia_Subsystem "IP Multimedia Subsystem"]&nbsp; $\rm (IMS)$; &nbsp; [[Examples_of_Communication_Systems/Weiterentwicklungen_von_UMTS#High.E2.80.93Speed_Downlink_Packet_Access|"High-Speed Downlink Packet Access"]]&nbsp; $\rm (HSDPA)$.<br>
:IP Multimedia Subsystem (IMS); [http://en.lntwww.de/Beispiele_von_Nachrichtensystemen/Weiterentwicklungen_von_UMTS#High.E2.80.93Speed_Downlink_Packet_Access High-Speed Downlink Packet Access] (HSDPA).<br>
 
*<b>Release 6</b> (März 2005):<br>
 
:[http://en.lntwww.de/Beispiele_von_Nachrichtensystemen/Weiterentwicklungen_von_UMTS#High.E2.80.93Speed_Uplink_Packet_Access High-Speed Uplink Packet Access] (HSUPA); Multimedia Broadcast&Multicast Services (MBMS); Kooperation mit Wireless LAN; Push&ndash;to&ndash;Talk; Generic Access Network (GAN).<br>
 
*<b>Release 7</b> (Dezember 2007): <br>
 
:Verkleinerung der Latenzzeit; verbessertes Quality of Service (QoS); Echtzeitanwendungen (zum Beispiel VoIP, EDGE Evolution); MIMO bei UMTS; TDD&ndash;Option 7.68 Mchip/s.<br><br>
 
  
Das <b>Release 8</b> vom Dezember 2008 war gleichbedeutend mit der Einführung von <i>Long Term Evolution</i> (LTE) und die Basis für die erste Generation von LTE&ndash;fähigen Endgeräten. Die wichtigsten Neuerungen und Charakteristiken von Release 8 &ndash; zusammengefasst vom [http://en.lntwww.de/Mobile_Kommunikation/Allgemeines_zum_Mobilfunkstandard_LTE#3GPP_.E2.80.93_Third_Generation_Partnership_Project 3GPP &ndash;] waren:
+
*&raquo;<b>Release 6</b>&laquo; &nbsp; (March 2005): &nbsp; [[Examples_of_Communication_Systems/Weiterentwicklungen_von_UMTS#High.E2.80.93Speed_Uplink_Packet_Access|"High-Speed Uplink Packet Access"]]&nbsp; $\rm (HSUPA)$; &nbsp; Multimedia Broadcast & Multicast Services&nbsp; $\rm (MBMS)$; &nbsp; <br> &nbsp; &nbsp; Cooperation with Wireless LAN; &nbsp; Push&ndash;to&ndash;Talk; &nbsp; [https://en.wikipedia.org/wiki/Generic_Access_Network "Generic Access Network"]&nbsp; $\rm (GAN)$.<br>
*Eine hohe spektrale Effizienz und sehr kurze Latenzzeiten,<br>
 
  
*die Unterstützung verschiedener Bandbreiten,<br>
+
*&raquo;<b>Release 7</b>&laquo; &nbsp; (December 2007): &nbsp; Reduced latency; &nbsp; improved Quality of Service&nbsp; $\rm  (QoS)$; &nbsp; MIMO for UMTS; &nbsp; TDD option&nbsp; $7.68$&nbsp; Mchip/s, &nbsp; real-time applications,&nbsp; e.g.&nbsp;
 +
**[https://en.wikipedia.org/wiki/Voice_over_IP "Voice over IP"]&nbsp; $\rm (VoIP)$,&nbsp;
 +
** [https://en.wikipedia.org/wiki/Enhanced_Data_Rates_for_GSM_Evolution "Enhanced Data Rates for GSM Evolution EDGE Evolution"]&nbsp; $\rm (EDGE$&nbsp; evolution$)$.  <br><br>
  
*eine einfache Protokoll&ndash; und Systemarchitektur,<br>
+
The&nbsp;  &raquo;<b>Release 8</b>&laquo;&nbsp;  of December 2008 was synonymous with the introduction of&nbsp;  "Long Term Evolution"&nbsp; $\rm (LTE)$  and the basis for the first generation of LTE capable terminals.&nbsp;  The main innovations and characteristics of Release 8, summarized by&nbsp; [http://www.3gpp.org/about-3gpp $\text{3gpp}$]&nbsp; (Third Generation Partnership Project), were:
 +
*High spectral efficiency and very short latency,<br>
  
*Rückwärtskompatibilität und Kompatibilität zu anderen Systemen wie [http://en.lntwww.de/Mobile_Kommunikation/Die_Charakteristika_von_UMTS#Der_IMT.E2.80.932000.E2.80.93Standard cdma2000,]<br>
+
*the support of different bandwidths,<br>
  
*FDD (<i>Frequency Division Duplex</i>) und TDD (<i>Time Division Duplex</i>) wahlweise nutzbar,<br>
+
*a simple protocol  and system architecture,<br>
  
*Unterstützung von <i>Self-Organizing Networks</i> (SON).<br><br>
+
*backwards compatibility and compatibility to other systems like&nbsp; [[Mobile_Communications/Characteristics_of_UMTS#The_IMT-2000_standard |"cdma2000"]],<br>
  
Auf diese Features (und einige andere mehr) wird in [http://en.lntwww.de/Mobile_Kommunikation/Technische_Neuerungen_von_LTE#Zur_Sprach.C3.BCbertragung_bei_LTE Kapitel 4.2] noch im Detail eingegangen. '''Release 9''' enthält demgegenüber nur kleinere Verbesserungen und wird hier nicht näher betrachtet. Das momentan neueste '''Release 10''' vom Juli 2011 beschreibt die Weiterentwicklung <i>LTE&ndash;Advanced</i> (LTE&ndash;A).<br>
+
*$\rm FDD$&nbsp;  (Frequency Division Duplex) and&nbsp; $\rm TDD$&nbsp; (Time Division Duplex) are optionally usable,<br>
  
== LTE–Frequenzbandaufteilung ==
+
*self-organizing networks&nbsp;  $\rm (SON)$&nbsp;  support.<br><br>
 +
 
 +
These features (and some others more) are discussed in detail in the section&nbsp; [[Mobile_Communications/Technical innovations of LTE|"Technical innovations of LTE"]]&nbsp;.
 +
 
 +
*The&nbsp; &raquo;'''Release 9'''&laquo;, on the other hand, contains only minor improvements and will not be discussed in detail here.
 +
 +
*The&nbsp; &raquo;'''Release 10'''&laquo;&nbsp; from July 2011 describes the further development of LTE &nbsp; &rArr; &nbsp; [[Mobile_Communications/LTE-Advanced - a further development of LTE|"LTE Advanced"]]&nbsp; $\rm (LTE&ndash;A)$.<br>
 +
 
 +
 
 +
== LTE frequency band splitting ==
 
<br>
 
<br>
Für LTE werden neue Frequenzen benötigt. In Deutschland wurden 2010 hierfür zwei Frequenzbereiche versteigert. Die Grafik veranschaulicht die Ergebnisse dieser Frequenzversteigerung.
+
[[File:EN_LTE_T_4_1_S4.png|right|frame|LTE frequencies around&nbsp; $\text{800 MHz}$&nbsp; and&nbsp; $\text{2.6 GHz}$]]
 +
New frequencies were needed for LTE. In Germany, there was an auction of two frequency ranges in 2010, in which all German mobile network operators took part.
 +
 
 +
The chart illustrates the results of this auction of frequencies in
 +
 
 +
*$\text{Range around 800 MHz}$&nbsp; $\text{(791 ... 862 MHz)}$: <br> Here only paired spectra were assigned for FDD: &nbsp; Telekom, O2 and Vodafone; got two times 10 MHz each<br>
  
[[File:P ID2266 LTE T 4 1 S4 v1.png|LTE- Frequenzbereiche um 800 MHz und 2.6 GHz|rechts|rahmenlos]]
+
*$\text{Range around 2.6 GHz}$&nbsp; $\text{(2.5 ... 2.69 GHz)}$: <br> Here, paired spectra for FDD (140 MHz in total) and unpaired spectra for TDD (50 MHz) were assigned.
  
*&bdquo;Bereich um 800 MHz&rdquo; (791 ... 862 MHz): Hier  wurden nur gepaarte Spektren für FDD vergeben; je zweimal 10 MHz für  die Telekom, O2 und Vodafone;<br>
 
  
*&bdquo;Bereich um 2.6 GHz&rdquo; (2.5 ... 2.69 GHz): Hier wurden neben gepaarten Spektren für FDD (insgesamt 140 MHz) auch ungepaarte Spektren für TDD (50 MHz) vergeben. Mehr über den Unterschied zwischen FDD und TDD findet sich in [http://en.lntwww.de/Beispiele_von_Nachrichtensystemen/Allgemeine_Beschreibung_von_DSL#Motivation_f.C3.BCr_xDSL Kapitel 4.2.]<br><br>
+
More about the difference between FDD and TDD can be found in section&nbsp; [[Examples_of_Communication_Systems/General_Description_of_DSL#Motivation_for_xDSL|  "Motivation for xDSL"]]&nbsp; in the book "Examples of communication systems".
  
<br><br>Die beiden versteigerten Frequenzbereiche haben unterschiedliche Systemeigenschaften, die sie jeweils interessant für verschiedene Anwendungsbereiche machen:<br>
 
  
Der Bereich um 800 MHz wird auch als <i>Digitale Dividende</i> bezeichnet, da er durch die Umstellung der (terrestrischen) TV&ndash;Übertragung von PAL auf DVB&ndash;(&bdquo;Digitalisierung&rdquo;) frei wurde. Laut Vereinbarung der Bundesregierung mit den (deutschen) Netzbetreibern muss dieser Bereich dazu genutzt werden, bisher schlecht versorgte Regionen zu &bdquo;Schnellem Internet&rdquo; zu verhelfen. Definiert wurden vier Stufen für den Versorgungsgrad einer Region mit Breitbandinternet. Erst wenn in ganz Deutschland 90% der jeweilig vorangegangenen Stufe abgedeckt sind, darf mit der nächsten Stufe begonnen werden.
+
The two auctioned frequency ranges have different system characteristics, which make them interesting for different applications.
*Die Wahl für dieses Projekt fiel auf den vergleichsweise niedrigen Frequenzbereich um 800 MHz mit besseren Ausbreitungseigenschaften als bei 2600 MHz, was für die kostengünstige Versorgung ländlicher Bereiche sinnvoll und auch notwendig ist. Eine LTE-800 Basisstation erreicht einen maximalen Senderadius von etwa 10 km. Das Verhältnis Nutzer pro Fläche ist geringer als bei LTE&ndash;2600. Daraus ergibt sich, dass LTE&ndash;800 eher für dünn besiedelte Regionen geeignet ist.<br>
+
*The lower frequency range (around 800 MHz) is also called&nbsp; "digital dividend"&nbsp; because it was freed up by the conversion of (terrestrial) TV transmission from&nbsp; $\rm PAL$&nbsp; to&nbsp; $\rm DVB&ndash;T$&nbsp; ("Digitization").  
  
*Der Frequenzbereich von 821 MHz bis 832 MHz bleibt frei, um Interferenzen zwischen dem Uplink und dem Downlink zu vermeiden &nbsp;&#8658;&nbsp; Duplexlücke. Darüber hinaus kann dieser für die Veranstaltungstechnik genutzt werden, da Frequenzen um 800 MHz schon vor Einführung von LTE von Funkmikrofonen genutzt wurde. In solchen Gebieten, in denen LTE flächendeckend verfügbar ist, müssen zukünftig Funkmikrofone auf die Duplexlücke ausweichen können.<br>
+
*By agreement of the Federal Government with the (German) network operators this range must be used to help poorly supplied regions to get "Fast Internet".&nbsp; Four levels were defined for the level of broadband Internet coverage in a region.&nbsp; Only when 90% of one level has been covered throughout Germany the developement of the next level may begin.
  
*Die unterschiedliche Bedeutung der beiden Frequenzbereiche für die Netzbetreiber werden auch am Ergebnis der Frequenzversteigerung von 2010 deutlich. Die 60 MHz um 800 MHz erbrachten  knapp 3.6 Milliarden Euro (60 Euro/Hz), die 190 MHz um 2.6 GHz nur 344 Millionen Euro (1,80 Euro/Hz). Zum Vergleich: Die Versteigerung der UMTS&ndash;Frequenzen im Jahr 2000 resultierte in der astronomische Summe von 50 Milliarden Euro für 60 MHz  &nbsp;&#8658;&nbsp; 833 Euro/Hz.<br><br>
+
*The choice for this project was the comparatively low frequency range around 800 MHz with better propagation characteristics than 2600 MHz, which is both sensible and necessary for cost-effective coverage of rural areas.&nbsp;  A LTE&ndash;800 base station reaches a maximum transmission radius of about 10 km.&nbsp; However, the ratio of users per area is lower than with LTE&ndash;2600, which means that LTE&ndash;800 is more suitable for sparsely populated regions.<br>
  
Es besteht zudem die Möglichkeit, LTE nach und nach in das bestehende GSM&ndash;Netz um 900 MHz bzw. 1800 MHz einzuführen. Dies wird insbesondere durch die Spektrumsflexibilität von LTE begünstigt.<br>
+
*The frequency range from 821 MHz to 832 MHz is kept free to avoid interference between the uplink and the downlink.&nbsp; One speaks of the&nbsp; "Duplex Gap".&nbsp; In addition, this frequency range can be used for event technology, since the frequency range around 800 MHz was already common for radio microphones before the introduction of LTE.&nbsp; In areas where LTE is available everywhere, radio microphones must be able to use the duplex gap in the future.<br>
  
== 3GPP Third Generation Partnership Project ==
+
 
 +
The difference in importance of the frequency ranges from the operator's perspective is clearly illustrated by the results of the 2010 frequency auction:
 +
*The 60 MHz around 800 MHz generated almost EUR 3.6 billion&nbsp; $\text{(60 €/Hz)}$,&nbsp; the 190 MHz around 2.6 GHz only EUR 344 million&nbsp; $\text{ (1.80 €/Hz)}$.
 +
*For comparison: &nbsp; The UMTS auction in 2000 resulted in the astronomical sum of 50 billion euros for 60 MHz &nbsp; &#8658; &nbsp; $\text{833 €/Hz}$.<br><br>
 +
 
 +
 
 +
== 3GPP - Third Generation Partnership Project ==
 
<br>
 
<br>
Auf den letzten Seiten wurde schon mehrfach das Third Generation Partnership Project (oder kurz 3GPP) erwähnt. Hier soll ein kurzer Überblick über das Selbstverständnis dieser Gruppe, seine Struktur und seine Aktivitäten gegeben werden. Die Informationen sind direkt der [http://www.3gpp.org/ 3GPP&ndash;Website] entnommen.<br>
+
In the last sections the&nbsp; "Third Generation Partnership Project"&nbsp; $($or short $\rm 3GPP)$&nbsp; has been mentioned several times.&nbsp; Here is a short overview of the self-image of this group, its structure and its activities.&nbsp; The information is taken directly from the&nbsp; [http://www.3gpp.org/about-3gpp "3GPP Website"].
  
Das 3GPP ist eine Gruppe verschiedener internationaler Normierungsorganisationen, die sich zum Zweck der Einheitlichkeit zusammengeschlossen haben. Es wurde am 4.12.1998 von fünf Partnern gegründet:
+
3GPP is a group of various international standardization organizations that have joined forces for the purpose of standardizing mobile radio systems.&nbsp; It was founded in December 1998 by five partners:
*<b>ARIB</b> (<i>Association of Radio Industries and Businesses</i>, Japan)<br>
+
*&raquo;<b>ARIB</b>&laquo; &nbsp; $($'''A'''ssociation of '''R'''adio '''I'''ndustries and '''B'''usinesses, Japan$)$<br>
*<b>ETSI</b> (<i>European Telecommunication Standards Institute</i>)<br>
+
*&raquo;<b>ETSI</b>&laquo; &nbsp; $($'''E'''uropean '''T'''elecommunication '''S'''tandards '''I'''nstitute$)$<br>
*<b>ATIS</b> (<i>Alliance for Telecommunications Industry Solutions</i>, USA)<br>
+
*&raquo;<b>ATIS</b>&laquo; &nbsp; $($'''A'''lliance for '''T'''elecommunications '''I'''ndustry '''S'''olutions, USA$)$<br>
*<b>TTA</b> (<i>Telecommunications Technology Association</i>, Korea)<br>
+
*&raquo;<b>TTA</b>&laquo; &nbsp; $($'''T'''elecommunications '''T'''echnology '''A'''ssociation, Korea$)$<br>
*<b>TTC</b> (<i>Telecommunications Technology Committee</i>, Japan)<br><br>
+
*&raquo;<b>TTC</b>&laquo; &nbsp; $($'''T'''elecommunications '''T'''echnology '''C'''ommittee, Japan$)$<br><br>
  
Das 3GPP entwickelt, akzeptiert und pflegt einen weltweit anwendbaren Standard im Mobilfunk. Die regelmäßig und häufig abgehaltenen Konferenzen sind die wichtigsten Instanzen bei der Fortschreibung der Standardisierung der technischen Spezifikationen von LTE. Änderungsanträge durchlaufen einen festgesetzten Standardisierungsprozess mit drei Stufen, der hohe Qualität und eine gute Strukturierung der Arbeit des 3GPP ermöglicht. Hat ein Release die letzte Stufe erreicht und ist fertiggestellt, wird er von den Partnern bzw. den in den Partnerorganisationen vereinigten Telekommunikationsunternehmen an den Markt weitergegeben.<br>
+
The 3GPP develops, accepts and maintains a globally applicable standard in mobile communications.&nbsp; The conferences, which are held regularly and frequently, are the most important bodies in the updating of the standardization of the technical specifications of LTE.  
 +
*Change requests go through a fixed standardization process with three stages, which enables high quality and good structuring of 3GPP's work.
 +
 +
*When a release has reached the last stage and is completed, it is passed on to the market by the telecommunications companies united in the partner organizations.<br>
  
In [Gut10]<ref>Gutt, E.: ''LTE – eine neue Dimension mobiler Breitbandnutzung.'' [http://www.ltemobile.de/uploads/media/LTE_Einfuehrung_V1.pdf PDF-Dokument] im Internet, 2010.</ref> findet man folgende Einschätzung: &bdquo;<i>Ziel der 3GPP&ndash;Standardisierung ist die Erstellung von technischen Spezifikationen (TS), die alle technischen Details einer Mobilfunktechnologie detailliert beschreiben. Die Spezifikationen für LTE sind extrem umfangreich. Der Detailgrad ist so hoch gewählt, damit Mobilfunkgeräte unterschiedlicher Hersteller in allen Netzen problemlos funktionieren</i>&rdquo;.
 
  
==Aufgaben==
+
In&nbsp; [Gut10]<ref name ='Gut10'>Gutt, E.:&nbsp; LTE – eine neue Dimension mobiler Breitbandnutzung.&nbsp; [http://www.ltemobile.de/uploads/media/LTE_Einfuehrung_V1.pdf "PDF document"] on the Internet, 2010.</ref>&nbsp; the following assessment can be found:
<br>
+
:"The goal of 3GPP standardization is the creation of technical specifications&nbsp; $\rm (TS)$&nbsp; that describe all technical details of a mobile communications technology in detail.&nbsp; The specifications for LTE are extremely comprehensive.&nbsp; The level of detail is chosen so high that mobile devices from different manufacturers can function without problems in all networks</i>".
[[Aufgaben:4.1 Allgemeine Fragen zu LTE|A4.1 Allgemeine Fragen zu LTE]]
+
 
 +
== Exercise for the chapter==
 +
 
 +
[[Aufgaben:Exercise 4.1: General Questions about LTE]]
 +
 
 +
==References==
  
==Quellenverzeichnis==
 
  
 
<references/>
 
<references/>
  
 
{{Display}}
 
{{Display}}

Latest revision as of 16:49, 9 February 2023

# OVERVIEW OF THE FOURTH MAIN CHAPTER #


This chapter provides an overview of  »Long Term Evolution«  $\rm (LTE)$.  From today's perspective  $(2011)$,  LTE is a new mobile communications standard that should replace UMTS and will probably continue to shape the next few years of mobile voice and data transmission.

In the following,  a rough overview of the motivation,  functionality and characteristics of LTE is given.  This is followed by a more detailed system description of the technical processes involved in LTE.  This chapter will deal with this in detail:

  1. The  »motivation for LTE«  and the   »frequency band allocation«,
  2. the  »development of mobile communications standards«  towards LTE,
  3. some technical details about  »voice and data transmission«, 
  4. the transmission method  »SC–FDMA«  used in the uplink and its  »differences to  OFDMA« ,
  5. the  »description and function of the different logical channels«  in the bit transmission layer,
  6. an outlook on the successor system  »LTE–Advanced«.


Addendum:   The LTE chapter was written in 2011, i.e. at the time when LTE had just been introduced.  During the last editorial revision in autumn 2017, some earlier statements were revised which no longer corresponded to the facts after six years of intensive use by many customers.  However, most of the chapter remained unchanged compared to 2011, as the LTE principle has not changed in the meantime.


Development of mobile users until 2010


Since the turn of the millennium, the number of mobile connections has increased dramatically.

Absolute and relative number of mobile devices in the years 2004 - 2010
  • The graph shows for the years 2004 to 2010 an increase from 1.8 to approx. 5 billion mobile devices worldwide in absolute numbers  (red bars, left scale).
  • The blue bars (left scale) show the development of the world population in the same period.
  • The (percentage) number of cell phones  (green curve, right scale)  in relation to the world population increased from just under 30% to over 70% between 2004 and 2010.
  • The statistics include users with more than one cell phone.  2010 possessed thus by no means 70% of the world population a mobile telephone.
  • The use of mobile data services has sharply increased, especially since the introduction of flatrate tarifs.


The following statements refer to the year 2010:

  1. Global mobile data traffic grew by 159% in 2010, a much stronger increase than expected.  Since then, mobile data transmission has caused more network load than voice transmission in the mobile network.
  2. Mobile data traffic alone was three times as large in 2010 as the entire traffic volume in 2000  (at that time mainly voice traffic).
  3. Although smartphones accounted for only 13% of all mobile devices in 2010, they were responsible for 78% of data and voice transmission.
  4. To this development also 94 million laptop users contributed, who used the Internet on the way over UMTS modems.
  5. Such a laptop user causes thereby on the average 22 times the data quantity of an average smartphone user.


Essential properties of LTE


The abbreviation  $\rm LTE$  stands for  "Long Term Evolution"  and refers to the mobile communications standard that follows UMTS.  The new conceptual development of LTE was intended to satisfy the ever-increasing demand for bandwidth and higher speeds over the long time  ("Long Term").

⇒   The LTE standard was first defined in 2008 as  "UMTS Release 8"  by the  $\rm 3GPP$  (Third Generation Partnership Project), a conglomerate of various international telecommunication associations, and has since been continuously developed further by so-called "Releases".  The commitment of the world's largest mobile communications providers has made LTE the first (largely) uniform standard for mobile communications technology.

According to  "UMTS Release 8", LTE is also called  $\rm 3.9G$  because it initially did not fully meet the conditions specified by the ITU  (International Telecommunication Union)  for fourth generation  $\rm (4G)$  mobile communications.

In contrast, the subsequent Release 10  (dated July 2011)  complies with the  $\rm 4G$ standard.  The chapter  "LTE Advanced"  lists the features of this LTE enhancement.  This technology is also referred to as  $\rm LTE–A$.

⇒   Here is a summary of the important system features of LTE from the page  "ITWissen" :

  • LTE is based on the multiple access methods  $\rm OFDMA$  ("Orthogonal Frequency Division Multiple Access")  in the downlink and  $\rm SC–FDMA$  ("Single Carrier Frequency Division Multiple Access") in the uplink.  The detailed description of OFDMA and especially its differences to  $\rm OFDM$  can be found in chapter  "The application of OFDMA and SC–FDMA in LTE".
  • The use of this modulation method enables orthogonality between individual users, resulting in an increased network capacity  [HT09][1].  In conjunction with "Multiple Input Multiple Output" $\rm (MIMO)$, this technology currently (2011) enables peak data rates of 100 Mbit/s in the downlink.
  • In addition to the significantly higher data rate compared to the  $\rm 3G$  system UMTS, LTE technology makes more efficient use of the available bandwidth.  By combining the latest state-of-the-art technology with the existing experience of GSM and UMTS, the new standard is not only much faster, but also simpler and more flexible.

Motivation and goals of LTE


In 2010, the American telecommunications company  "Cisco Systems"  published a  "White Paper"  which assumes that in 2015

Graphic from the Ericsson Mobility Report 2015
  • the use of mobile data will be twenty-six times higher than in 2010,
  • this usage is increasing by a further 92% per year, and
  • the gigantic amount of 6.3 Exabyte   ⇒   $\rm6.3 \cdot 10^{18}$  byte per month is reached.

It has also been predicted that five billion people will be connected to the Internet in 2015  [HT09][1].  In addition, other wireless transmission technologies are being developed at the same time, which promise equally high data transmission rates.  All these factors called for further development of the 3GPP mobile communications standard "UMTS".

The  "Ericsson Mobility Report"  of 2015 shows that the 2010 forecast has been exceeded.  In 2014 there were already 7.1 billion mobile users with Internet access, in 2020 there should be 9.2 billion.

The 3GPP consortium started early to define the LTE targets to keep up with the rapid development of line-based connections.  The exact targets were then set out in the  "LTE Release 6"  compared to  $\rm HSPA$  technology  ("High–Speed Packet Access")  at the end of 2004.

The main goals were mentioned:

  1. A purely packet-oriented transmission and a high degree of mobility and security,
  2. reduced complexity, cost reduction and optimized battery life of the end devices,
  3. bandwidth flexibility between 1.5 MHz and 20 MHz,
  4. a spectral efficiency  (data rate per one Hertz bandwidth)  as high as possible,
  5. maximum possible data rates of 100 Mbit/s in downlink and 50 Mbit/s in uplink,
  6. signal processing times less than 10 milliseconds.

Compared to HSPA, this means an increase in spectral efficiency by a factor of  $2 \ \text{...}\ 4$  and a reduction in latency by half and a tenfold increase in the maximum data rate.  The individual points, which represent a large part of the LTE specific technical characteristics, are described in more detail in the chapter  "Technical Innovations of LTE".

Development of the UMTS mobile phone standards towards LTE


The development of third generation mobile communications standards was already discussed in detail in the third chapter of this book.  For this reason, only the more recent developments are discussed in detail here.

First of all, a brief overview of UMTS releases before LTE from  [Hin08][2]:

  • »Release 99«   (December 1999):   UMTS 3G FDD and TDD;   3.84 Mchip/s;   CDMA air interface.
  • »Release 4«   (July 2001):   Lower chip rate (1.28 Mchip/s) for TDD;   some fixes and minor improvements.

The  »Release 8«  of December 2008 was synonymous with the introduction of  "Long Term Evolution"  $\rm (LTE)$ and the basis for the first generation of LTE capable terminals.  The main innovations and characteristics of Release 8, summarized by  $\text{3gpp}$  (Third Generation Partnership Project), were:

  • High spectral efficiency and very short latency,
  • the support of different bandwidths,
  • a simple protocol and system architecture,
  • backwards compatibility and compatibility to other systems like  "cdma2000",
  • $\rm FDD$  (Frequency Division Duplex) and  $\rm TDD$  (Time Division Duplex) are optionally usable,
  • self-organizing networks  $\rm (SON)$  support.

These features (and some others more) are discussed in detail in the section  "Technical innovations of LTE" .

  • The  »Release 9«, on the other hand, contains only minor improvements and will not be discussed in detail here.
  • The  »Release 10«  from July 2011 describes the further development of LTE   ⇒   "LTE Advanced"  $\rm (LTE–A)$.


LTE frequency band splitting


LTE frequencies around  $\text{800 MHz}$  and  $\text{2.6 GHz}$

New frequencies were needed for LTE. In Germany, there was an auction of two frequency ranges in 2010, in which all German mobile network operators took part.

The chart illustrates the results of this auction of frequencies in

  • $\text{Range around 800 MHz}$  $\text{(791 ... 862 MHz)}$:
    Here only paired spectra were assigned for FDD:   Telekom, O2 and Vodafone; got two times 10 MHz each
  • $\text{Range around 2.6 GHz}$  $\text{(2.5 ... 2.69 GHz)}$:
    Here, paired spectra for FDD (140 MHz in total) and unpaired spectra for TDD (50 MHz) were assigned.


More about the difference between FDD and TDD can be found in section  "Motivation for xDSL"  in the book "Examples of communication systems".


The two auctioned frequency ranges have different system characteristics, which make them interesting for different applications.

  • The lower frequency range (around 800 MHz) is also called  "digital dividend"  because it was freed up by the conversion of (terrestrial) TV transmission from  $\rm PAL$  to  $\rm DVB–T$  ("Digitization").
  • By agreement of the Federal Government with the (German) network operators this range must be used to help poorly supplied regions to get "Fast Internet".  Four levels were defined for the level of broadband Internet coverage in a region.  Only when 90% of one level has been covered throughout Germany the developement of the next level may begin.
  • The choice for this project was the comparatively low frequency range around 800 MHz with better propagation characteristics than 2600 MHz, which is both sensible and necessary for cost-effective coverage of rural areas.  A LTE–800 base station reaches a maximum transmission radius of about 10 km.  However, the ratio of users per area is lower than with LTE–2600, which means that LTE–800 is more suitable for sparsely populated regions.
  • The frequency range from 821 MHz to 832 MHz is kept free to avoid interference between the uplink and the downlink.  One speaks of the  "Duplex Gap".  In addition, this frequency range can be used for event technology, since the frequency range around 800 MHz was already common for radio microphones before the introduction of LTE.  In areas where LTE is available everywhere, radio microphones must be able to use the duplex gap in the future.


The difference in importance of the frequency ranges from the operator's perspective is clearly illustrated by the results of the 2010 frequency auction:

  • The 60 MHz around 800 MHz generated almost EUR 3.6 billion  $\text{(60 €/Hz)}$,  the 190 MHz around 2.6 GHz only EUR 344 million  $\text{ (1.80 €/Hz)}$.
  • For comparison:   The UMTS auction in 2000 resulted in the astronomical sum of 50 billion euros for 60 MHz   ⇒   $\text{833 €/Hz}$.


3GPP - Third Generation Partnership Project


In the last sections the  "Third Generation Partnership Project"  $($or short $\rm 3GPP)$  has been mentioned several times.  Here is a short overview of the self-image of this group, its structure and its activities.  The information is taken directly from the  "3GPP Website".

3GPP is a group of various international standardization organizations that have joined forces for the purpose of standardizing mobile radio systems.  It was founded in December 1998 by five partners:

  • »ARIB«   $($Association of Radio Industries and Businesses, Japan$)$
  • »ETSI«   $($European Telecommunication Standards Institute$)$
  • »ATIS«   $($Alliance for Telecommunications Industry Solutions, USA$)$
  • »TTA«   $($Telecommunications Technology Association, Korea$)$
  • »TTC«   $($Telecommunications Technology Committee, Japan$)$

The 3GPP develops, accepts and maintains a globally applicable standard in mobile communications.  The conferences, which are held regularly and frequently, are the most important bodies in the updating of the standardization of the technical specifications of LTE.

  • Change requests go through a fixed standardization process with three stages, which enables high quality and good structuring of 3GPP's work.
  • When a release has reached the last stage and is completed, it is passed on to the market by the telecommunications companies united in the partner organizations.


In  [Gut10][3]  the following assessment can be found:

"The goal of 3GPP standardization is the creation of technical specifications  $\rm (TS)$  that describe all technical details of a mobile communications technology in detail.  The specifications for LTE are extremely comprehensive.  The level of detail is chosen so high that mobile devices from different manufacturers can function without problems in all networks".

Exercise for the chapter

Exercise 4.1: General Questions about LTE

References

  1. 1.0 1.1 Holma, H.; Toskala, A.:  LTE for UMTS – OFDMA and SC–FDMA Based Radio Access.  Wiley & Sons, 2009.
  2. Hindelang, T.:  Mobile Communications.  Lecture notes.  Institute for Communications Engineering.  Munich: Technical University of Munich, 2008.
  3. Gutt, E.:  LTE – eine neue Dimension mobiler Breitbandnutzung.  "PDF document" on the Internet, 2010.