Difference between revisions of "Linear and Time Invariant Systems/Inverse Laplace Transform"

From LNTwww
 
(120 intermediate revisions by 9 users not shown)
Line 1: Line 1:
 
   
 
   
 
{{Header
 
{{Header
|Untermenü=Beschreibung kausaler realisierbarer Systeme
+
|Untermenü=Description of Causal Realizable Systems
|Vorherige Seite=Laplace–Transformation und p–Übertragungsfunktion
+
|Vorherige Seite=Laplace_Transform_and_p-Transfer_Function
|Nächste Seite=Einige Ergebnisse der Leitungstheorie
+
|Nächste Seite=Some_Results_from_Transmission_Line_Theory
 
}}
 
}}
==Problemstellung und Voraussetzungen==
+
==Problem formulation and prerequisites==
Das Kapitel 3.3 behandelt die folgende Problemstellung: Bekannt ist die $p$–Spektralfunktion $Y_{\rm L}(p)$ in der Pol–Nullstellen–Form. Gesucht ist die '''Laplace–Rücktransformierte''', die die dazugehörige Zeitfunktion $y(t)$ angibt und die in diesem Tutorial wie folgt bezeichnet wird:
+
<br>
$$y(t) = {\rm L}^{-1}\{Y_{\rm L}(p)\}\hspace{0.05cm} , \hspace{0.3cm}{\rm kurz}\hspace{0.3cm}
+
{{BlaueBox|TEXT= 
  y(t) \quad \circ\!\!-\!\!\!-^{\hspace{-0.25cm}\rm L}\!\!\!-\!\!\bullet\quad Y_{\rm L}(p)\hspace{0.05cm} .$$
+
$\text{Task:}$&nbsp; This chapter deals with the following problem:
 +
*The&nbsp; $p$–spectral function&nbsp; $Y_{\rm L}(p)$&nbsp;  is given in&nbsp; &raquo;pole-zero notation&laquo;.  
 +
*The&nbsp; &raquo;'''inverse Laplace transform'''&laquo;, i.e. the associated time function&nbsp; $y(t)$&nbsp; is searched-for,&nbsp; where the following notation should hold:
 +
:$$y(t) = {\rm L}^{-1}\{Y_{\rm L}(p)\}\hspace{0.05cm} , \hspace{0.3cm}{\rm briefly}\hspace{0.3cm}
 +
  y(t) \quad \circ\!\!-\!\!\!-^{\hspace{-0.25cm}\rm L}\!\!\!-\!\!\bullet\quad Y_{\rm L}(p)\hspace{0.05cm} .$$}}
  
In der Grafik sind die Voraussetzungen für diese Aufgabenstellung zusammengestellt:
+
[[File:EN_LZI_T_3_3_S1.png |right|frame|Prerequisites for the chapter "Inverse Laplace Transform"]]
  
[[File:P_ID1770__LZI_T_3_3_S1_neu.png | Voraussetzungen für Kapitel 3.3]]
 
  
$H_{\rm L}(p)$ beschreibt das kausale Übertragungssystem, während $Y_{\rm L}(p)$ die Laplace–Transformierte des gesuchten Ausgangssignals $y(t)$ unter Berücksichtigung des Eingangssignals $x(t)$ bezeichnet. $Y_{\rm L}(p)$ ist gekennzeichnet durch $N$ Pole, durch $Z ≤ N$ Nullstellen sowie durch die Konstante $K.$
+
The graph summarizes the prerequisites for this task.
*Die Pole und Nullstellen zeigen die in Kapitel 3.2  genannten Eigenschaften. Pole dürfen nur in der linken $p$–Halbebene oder auf der imaginären Achse liegen, Nullstellen sind auch in der rechten $p$–Halbebene erlaubt.
 
*Alle Singularitäten – dies ist der Oberbegriff für Pole und Nullstellen – sind entweder reell oder es treten Paare von konjugiert–komplexen Singularitäten auf. Mehrfache Pole und Nullstellen sind ebenfalls erlaubt.
 
*Verwendet man ein diracförmiges Eingangssignal $x(t) = δ(t)  ⇒  X_{\rm L}(p) = 1  ⇒  Y_{\rm L}(p) = H_{\rm L}(p)$, so beschreibt das Ausgangssignal $y(t)$ die Impulsantwort  $h(t)$ des kausalen Übertragungssystems. Zur Berechnung dürfen nur die grün eingezeichneten Singularitäten herangezogen werden.
 
*Eine Sprungfunktion $x(t) = γ(t)  ⇒  X_{\rm L} = 1/p$ am Eingang bewirkt, dass das Ausgangssignal $y(t)$ gleich der Sprungantwort  $σ(t)$ von $H_{\rm L}(p)$ ist. Zur Berechnung ist neben den Singularitäten von $H_{\rm L}(p)$ nun auch die (in der Grafik rot eingezeichnete) Polstelle bei $p =$ 0 zu berücksichtigen.
 
*Als Eingang $x(t)$ sind nur Signale möglich, für die $X_{ \rm L}(p)$ in Pol–Nullstellen–Form darstellbar ist (siehe Tabelle  im Kapitel 3.2), zum Beispiel ein zum Zeitpunkt $t =$ 0 eingeschaltetes Cosinus– oder Sinussignal. Deren Laplace–Transformierte sind in der obigen Grafik ebenfalls angegeben.  
 
  
 +
*$H_{\rm L}(p)$&nbsp; describes the transfer function of the causal system and &nbsp;$Y_{\rm L}(p)$&nbsp; specifies the Laplace transform of the output signal &nbsp;$y(t)$&nbsp; considering the input signal &nbsp;$x(t)$&nbsp;. &nbsp;$Y_{\rm L}(p)$&nbsp; is characterized by &nbsp;$N$&nbsp; poles,&nbsp; by &nbsp;$Z ≤ N$&nbsp; zeros and by the constant &nbsp;$K.$
 +
 +
*Poles and zeros exhibit the properties mentioned in the&nbsp; [[Linear_and_Time_Invariant_Systems/Laplace_Transform_and_p-Transfer_Function#Properties_of_poles_and_zeros|&raquo;last chapter&laquo;]]:&nbsp; Poles are only allowed in the left &nbsp;$p$–half plane or on the imaginary axis;&nbsp; zeros are also allowed in the right &nbsp;$p$–half plane.
 +
 +
*All&nbsp; &raquo;singularities&laquo;&nbsp; – this is the generic term for poles and zeros – are either real or exist as pairs of conjugate-complex singularities.&nbsp; Multiple poles and zeros are also allowed.
 +
 +
*With the input &nbsp;$x(t) = δ(t)$ &nbsp; &rArr; &nbsp;  $X_{\rm L}(p) = 1$  &nbsp; &rArr; &nbsp;  $Y_{\rm L}(p) = H_{\rm L}(p)$, the output signal &nbsp;$y(t)$&nbsp; then describes the [[Linear_and_Time_Invariant_Systems/System_Description_in_Time_Domain#Impulse_response|&raquo;impulse response&laquo;]]  &nbsp;$h(t)$&nbsp; of the transmission system.&nbsp; For this purpose,&nbsp; only the singularities drawn in green in the graph may be used for computation.
  
Bei der hier beschriebenen Vorgehensweise ist ein Rechteck $x(t) ⇒ X_{\rm L}(p) = (1 e^{pT})/p$ nicht möglich. Die Rechteckantwort $y(t)$ kann aber als Differenz zweier Sprungantworten indirekt berechnet werden.
+
*A unit jump  function &nbsp;$x(t) = γ(t)$ &nbsp; &rArr; &nbsp;  $ X_{\rm L} = 1/p$&nbsp; at the input causes the output signal &nbsp;$y(t)$&nbsp; to be equal to the &nbsp;[[Linear_and_Time_Invariant_Systems/System_Description_in_Time_Domain#Step_response|&raquo;step response&laquo;]] &nbsp; $σ(t)$ of $H_{\rm L}(p)$&nbsp;.&nbsp; In addition to the singularities of &nbsp;$H_{\rm L}(p)$,&nbsp; the pole&nbsp; $($shown in red in the graph$)$&nbsp; at &nbsp;$p = 0$&nbsp; must now also be taken into account for computation.
 +
 +
*Possible as input &nbsp;$x(t)$&nbsp; are only signals for which &nbsp;$X_{ \rm L}(p)$&nbsp; can be expressed in pole-zero notation&nbsp;  (see the &nbsp;[[Linear_and_Time_Invariant_Systems/Laplace_Transform_and_p-Transfer_Function#Some_important_Laplace_correspondences|$\text{table}$]]&nbsp; in the chapter &raquo;Laplace Transform and $p$–Transfer Function&raquo;$)$,&nbsp; for example a cosine or sine signal switched on at time &nbsp;$t = 0$&nbsp;.
 +
 +
*So,&nbsp; a rectangular signal &nbsp;$x(t)\ \  \ \ X_{\rm L}(p) = (1 - {\rm e}^{\hspace{0.05cm}p\hspace{0.05cm}\cdot \hspace{0.05cm} T})/p$&nbsp; is not possible in the approach described here.&nbsp; However, the rectangular response &nbsp;$y(t)$&nbsp; can be computed indirectly as the difference of two step responses.
  
==Einige Ergebnisse der Funktionentheorie==
+
==Some results of function theory==
Im Gegensatz zu den Fourierintegralen, die sich in den beiden Transformationsrichtungen nur geringfügig unterscheiden, ist bei Laplace die Berechnung von $y(t)$ aus $Y_{\rm L}(p)$ – also die Rücktransformation –  
+
<br>
*sehr viel schwieriger als die Berechnung von $Y_{\rm L}(p)$ aus $y(t)$,  
+
In contrast to the&nbsp; [[Signal_Representation/Fourier_Transform_and_Its_Inverse#The_first_Fourier_integral|&raquo;Fourier integrals&laquo;]],&nbsp; which differ only slightly in the two directions of transformation,&nbsp; for&nbsp; &raquo;Laplace&laquo;&nbsp; the computation of &nbsp;$y(t)$&nbsp; from &nbsp;$Y_{\rm L}(p)$ – that is the inverse transformation is
*auf elementarem Weg nicht oder nur sehr umständlich lösbar.
+
*much more difficult than computing &nbsp;$Y_{\rm L}(p)$&nbsp; from &nbsp;$y(t)$,
 +
 +
*unresolvable or solvable only very laboriously by elementary means.
  
  
{{Definition}}
+
{{BlaueBox|TEXT= 
Allgemein gilt für die Laplace–Rücktransformation:
+
$\text{Definition:}$&nbsp;
$$y(t) = {\rm L}^{-1}\{Y_{\rm L}(p)\}= \lim_{\beta \hspace{0.05cm}\rightarrow \hspace{0.05cm}\infty}  \hspace{0.15cm} \frac{1}{{\rm j} \cdot 2 \pi}\cdot   \int\limits_{\alpha-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi \beta}^{\alpha+{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi \beta} { Y_{\rm L}(p) \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm e}^{p \hspace{0.05cm}t}}\hspace{0.1cm}{\rm
+
In general, the following holds for the&nbsp; &raquo;'''inverse Laplace transform'''&laquo;:
 +
:$$y(t) = {\rm L}^{-1}\{Y_{\rm L}(p)\}= \lim_{\beta \hspace{0.05cm}\rightarrow \hspace{0.05cm}\infty}  \hspace{0.15cm} \frac{1}{ {\rm j} \cdot 2 \pi}\cdot     \int_{ \alpha - {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi \beta } ^{\alpha+{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi \beta} Y_{\rm L}(p) \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm e}^{\hspace{0.05cm}p \hspace{0.05cm}\cdot \hspace{0.05cm} t}\hspace{0.1cm}{\rm
 
  d}p \hspace{0.05cm} .$$
 
  d}p \hspace{0.05cm} .$$
Die Integration erfolgt parallel zur imaginären Achse (gepunktete Linie in der Grafik). Der Realteil $α$ muss dabei so gewählt werden, dass alle Pole links vom Integrationsweg liegen.
+
#The integration is parallel to the imaginary axis.  
{{end}}
+
#The real part &nbsp;$α$&nbsp; is to be chosen such that all poles are located to the left of the integration path.}}
  
  
Die linke Grafik verdeutlicht dieses Linienintegral entlang der rot gepunkteten Vertikalen Re{ $p$} $= α$. Lösbar ist dieses Integral mit dem Jordanschen Lemma der Funktionstheorie, siehe $\href{https://intern.lntwww.de/cgi-bin/extern/uni.pl?uno=hyperlink&due=entitaet&e_id=4208&hyperlink_typ=entitaet_verweis&session_id=}{[Mar94]}$
+
The left graph illustrates this line integral along the red dotted vertical &nbsp;${\rm Re}\{p\}= α$.&nbsp; This integral is solvable using &nbsp;[https://en.wikipedia.org/wiki/Jordan%27s_lemma &raquo;Jordan's lemma of complex analysis&laquo;].&nbsp; In this tutorial only a very short and simple summary of the approach is depicted:
 +
[[File:EN_LZI_T_3_3_S2.png |right|frame|Line integral together with left and right circular integral]]
 +
 +
#The line integral can be divided into two circular integrals so that all poles are located in the left circular integral while the right circular integral may only contain zeros.
 +
#According to the theory of functions, the right circular integral yields the time function &nbsp;$y(t)$&nbsp; for negative times.&nbsp;
 +
#Due to causality, &nbsp;$y(t < 0)$&nbsp; must be identical to zero,&nbsp; but according to the fundamentals of function theorem this is only true if there are no poles in the right &nbsp;$p$–half-plane.
 +
#In contrast,&nbsp; the integral over the left semicircle yields the time function for &nbsp;$t ≥ 0$.&nbsp;
 +
#This encloses all poles and can be computed using the&nbsp; &raquo;'''residue theorem'''&laquo;&nbsp; in a&nbsp; $($relatively$)$&nbsp; simple way,&nbsp; as it will be shown in the next sections.  
 +
<br clear=all>
 +
==Formulation of the residue theorem==
 +
<br>
 +
It is further assumed that the transfer function &nbsp;$Y_{\rm L}(p)$&nbsp; can be expressed in pole-zero notation  by
 +
*the constant factor&nbsp; $K$,
 +
*the &nbsp;$Z$&nbsp; &raquo;zeros&laquo; &nbsp;$p_{{\rm o}i}$&nbsp; $(i = 1$, ... , $Z)$&nbsp; and
 +
*the &nbsp;$N$&nbsp; &raquo;poles&laquo; &nbsp;$p_{{\rm x}i}$&nbsp; $(i = 1$, ... , $N$).
  
[[File:P_ID1777__LZI_T_3_3_S2_neu.png | Linienintegral sowie linkes und rechtes Kreisintegral]]
 
  
In diesem Tutorial folgt nur eine sehr einfache Zusammenfassung der Vorgehensweise:
+
We also assume &nbsp;$Z < N$.&nbsp; The number of&nbsp; &raquo;distinguishable poles&laquo;&nbsp; is denoted by &nbsp;$I$.&nbsp; Multiple poles are counted only once to determine &nbsp;$I$.&nbsp; Thus,&nbsp; the following holds for the&nbsp; [[Linear_and_Time_Invariant_Systems/Inverse_Laplace_Transform#Some_results_of_function_theory|$\text{sketch}$]]&nbsp; in the last section considering the  double pole: &nbsp; 
*Das Linienintegral kann entsprechend der Skizze in zwei Kreisintegrale aufgeteilt werden, wobei sämtliche Polstellen im linken Kreisintegral liegen, während das rechte Kreisintegral nur Nullstellen beinhalten darf.  
+
:$$N = 5,\hspace{0.3cm} I = 4.$$
*Entsprechend der Funktionstheorie liefert das rechte Kreisintegral die Zeitfunktion $y(t)$ für negative Zeiten. Aufgrund der Kausalität muss $y(t < 0)$ identisch 0 sein, was aber nach dem Hauptsatz der Funktionstheorie nur zutrifft, wenn es in der rechten $p$–Halbebene keine Pole gibt.
 
*Das Integral über den linken Halbkreis liefert dagegen die Zeitfunktion für $t ≥$ 0. Dieses umschließt alle Polstellen und ist mit dem Residuensatz in (relativ) einfacher Weise berechenbar, wie auf den nächsten Seiten gezeigt wird.  
 
  
==Formulierung des Residuensatzes==
+
{{BlaueBox|TEXT=
Es wird weiter vorausgesetzt, dass die Übertragungsfunktion $Y_{\rm L}(p)$ in Pol–Nullstellen–Form durch
+
$\text{Residue Theorem:}$&nbsp;
*den konstanten Faktor $K$,  
+
Considering the above conditions,&nbsp; the&nbsp; &raquo;'''inverse Laplace transform'''&laquo;&nbsp; of &nbsp;$Y_{\rm L}(p)$&nbsp; for times&nbsp; $t ≥ 0$&nbsp; is obtained as the sum of&nbsp; $I$&nbsp; natural oscillations of the poles,&nbsp; which are called the&nbsp; &raquo;residuals&laquo;&nbsp; – abbreviated as&nbsp; $\rm Res$:
*die $Z$ Nullstellen $p_{oi} (i =$ 1, ... , $Z$) und
+
:$$y(t) = \sum_{i=1}^{I}{\rm Res} \bigg \vert _{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}_i}} \hspace{-0.7cm}\{Y_{\rm L}(p)\cdot  {\rm e}^{p \hspace{0.05cm}t}\} \hspace{0.05cm} .$$
*die $N$ Polstellen $p_{xi} (i =$ 1, ... , $N$)
 
  
 +
Since&nbsp; $Y_{\rm L}(p)$&nbsp; is only specifiable for causal signals, &nbsp;$y(t < 0) = 0$&nbsp; always holds for negative times.
  
dargestellt werden kann. Für diese und die nächste Seite setzen wir zudem $Z < N$ voraus.  
+
*In general,&nbsp; the following holds for a pole of multiplicity &nbsp;$l$&nbsp;:
 +
:$${\rm Res} \bigg \vert _{p \hspace{0.05cm}= \hspace{0.05cm}p_{ {\rm x}_i} } \hspace{-0.7cm}\{Y_{\rm L}(p)\cdot {\rm e}^{p t}\}= \frac{1}{(l-1)!}\cdot \frac{ {\rm d}^{\hspace{0.05cm}l-1} }{ {\rm d}p^{\hspace{0.05cm}l-1} }\hspace{0.15cm} \left \{Y_{\rm L}(p)\cdot (p - p_{ {\rm x}_i})^{\hspace{0.05cm}l}\cdot  {\rm e}^{p \hspace{0.05cm}t}\right\} \bigg \vert_{p \hspace{0.05cm}= \hspace{0.05cm}p_{ {\rm x}_i} } \hspace{0.05cm} .$$
 +
*The following is obtained out of it with &nbsp;$l = 1$&nbsp; for a simple pole as a special case:
 +
:$${\rm Res} \bigg\vert_{p \hspace{0.05cm}= \hspace{0.05cm}p_{ {\rm x}_i} } \hspace{-0.7cm}\{Y_{\rm L}(p)\cdot {\rm e}^{p t}\}= Y_{\rm L}(p)\cdot (p - p_{ {\rm x}_i} )\cdot  {\rm e}^{p \hspace{0.05cm}t} \bigg \vert _{p \hspace{0.05cm}= \hspace{0.05cm}p_{ {\rm x}_i} } \hspace{0.05cm} .$$}}
  
  
Die Anzahl der unterscheidbaren Pole bezeichnen wir mit $I$. Zur Bestimung von $I$ werden mehrfache Pole nur einfach gezählt. Für das Beispiel des letzten Abschnitts gilt $N =$ 5 und $I =$ 4.
+
In the next sections,&nbsp; the&nbsp; &raquo;residue theorem&laquo;&nbsp; is illustrated by three detailed examples corresponding to the three constellations in&nbsp; [[Linear_and_Time_Invariant_Systems/Laplace_Transform_and_p-Transfer_Function#Properties_of_poles_and_zeros|$\text{Example 3}$]]&nbsp; of chapter&nbsp; &raquo;Laplace transform and p-transfer function&laquo;:
 +
*So,&nbsp; we consider again the two-port network with an inductance &nbsp;$L = 25 \ \rm &micro;H$&nbsp; in the longitudinal branch as well as the the series connection of an ohmic resistance&nbsp; $R = 50 \ \rm Ω$&nbsp; and a capacitance&nbsp; $C$&nbsp; in the transverse branch.  
  
 +
*For the latter,&nbsp; we consider three different values,&nbsp; namely &nbsp;$C = 62.5 \ \rm nF$, &nbsp;$C = 8 \ \rm nF$&nbsp; and &nbsp;$C = 40 \ \rm nF$.
  
{{Definition}}
+
*The following is always assumed: &nbsp;$x(t) = δ(t) \; ⇒  \; X_{\rm L}(p) = 1$ &nbsp; &rArr; &nbsp; $Y_{\rm L}(p) = H_{\rm L}(p)$  &nbsp; &rArr; &nbsp; the output signal&nbsp; $y(t)$&nbsp; is equal to the impulse response &nbsp;$h(t)$.
Residuensatz: Unter den genannten Voraussetzungen ergibt sich die Laplace–Transformierte von $Y_{\rm L}(p)$ für Zeiten $t ≥$ 0 als die Summe von $I$ Eigenschwingungen der Pole, die man als die ''Residuen'' – abgekürzt mit „Res” – bezeichnet:
 
$$y(t) = \sum_{i=1}^{I}{\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}i}} \hspace{-0.7cm}\{Y_{\rm L}(p)\cdot  {\rm e}^{p \hspace{0.05cm}t}\} \hspace{0.05cm} .$$
 
  
Da $Y_{\rm L}(p)$ nur für kausale Signale angebbar ist, gilt für negative Zeiten stets $y(t < 0) =$ 0.  
+
==Aperiodically decaying impulse response==
 +
<br>
 +
The following is obtained for the&nbsp; $p$&ndash;transfer function computed in the section &nbsp;[[Linear_and_Time_Invariant_Systems/Laplace_Transform_and_p-Transfer_Function#Pole-zero_representation_of_circuits|&raquo;pole-zero representation of circuits&laquo;]]&nbsp; with the capacitance &nbsp;$C = 62.5 \ \rm nF$.&nbsp; The other numerical values are given in the graph below:
 +
[[File: EN_LZI_T_3_3_S3a.png|right|frame|Aperiodically decaying impulse response]]
  
 +
:$$H_{\rm L}(p)= K \cdot \frac {p - p_{\rm o }} {(p - p_{\rm x 1})(p - p_{\rm x 2})}= 2 \cdot \frac {p + 0.32 }
 +
{(p +0.4)(p +1.6 )} \hspace{0.05cm} .$$
 +
 +
Note the normalization of &nbsp;$p$, &nbsp;$K$ and also of all poles and zeros by the factor &nbsp;${\rm 10^6} · 1/\rm s$.
 +
 +
&rArr; &nbsp; The impulse response is composed of &nbsp;$I = N = 2$&nbsp; natural oscillations. For $t < 0$,&nbsp; these are equal to zero.
 +
*The residual of the pole at &nbsp;$p_{{\rm x}1} =\  –0.4$&nbsp; yields the following time function:
 +
:$$h_1(t)  =  {\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}1}} \hspace{-0.7cm}\{H_{\rm L}(p)\cdot {\rm e}^{p t}\}= H_{\rm L}(p)\cdot (p - p_{{\rm x}1})\cdot {\rm e}^{p \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}1}}$$
 +
: $$\Rightarrow \hspace{0.3cm}h_1(t)  =  2 \cdot \frac {p + 0.32 } {p +0.4}\cdot  {\rm e}^{p \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}-0.4}= - \frac {2 } {15}\cdot  {\rm e}^{-0.4 \hspace{0.05cm} t} \hspace{0.05cm}. $$
 +
*In the same way, the residual of the second pole at &nbsp;$p_{{\rm x}2} = \ –1.6$&nbsp; can be computed:
 +
:$$h_2(t)  =  {\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}2}} \hspace{-0.7cm}\{H_{\rm L}(p)\cdot {\rm e}^{p t}\}= H_{\rm L}(p)\cdot (p - p_{{\rm x}2})\cdot  {\rm e}^{p \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}2}}$$
 +
:$$\Rightarrow \hspace{0.3cm}h_2(t)  =  2 \cdot \frac {p + 0.32 } {p +1.6}\cdot  {\rm e}^{p \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}-1.6}=  \frac {32 } {15}\cdot  {\rm e}^{-1.6 \hspace{0.05cm} t} \hspace{0.05cm}. $$
  
Für einen ''Pol der Vielfachheit'' $l$ gilt allgemein:
+
The graph shows &nbsp;$h_1(t)$&nbsp; and &nbsp;$h_2(t)$&nbsp; as well as the sum signal &nbsp;$h(t)$.  
$${\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}i}} \hspace{-0.7cm}\{Y_{\rm L}(p)\cdot {\rm e}^{p t}\}= \frac{1}{(l-1)!}\cdot \frac{{\rm d}^{\hspace{0.05cm}l-1}}{{\rm d}p^{\hspace{0.05cm}l-1}}\hspace{0.15cm} \left \{Y_{\rm L}(p)\cdot (p - p_{{\rm x}i})^{\hspace{0.05cm}l}\cdot  {\rm e}^{p \hspace{0.05cm}t}\right\} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}i}} \hspace{0.05cm} .$$
+
#The normalization factor &nbsp;$1/T = 10^6 · \rm 1/s$&nbsp; is taken into account here so that the time is normalized to &nbsp;$T = 1 \ \rm &micro; s$&nbsp;.  
Als Sonderfall ergibt sich daraus mit $l =$ 1 für einen ''einfachen Pol:''
+
#For &nbsp;$t =0$,&nbsp; $T \cdot h(t=0) = {32 }/ {15} -{2 }/ {15}= 2 \hspace{0.05cm}$&nbsp; is obtained as a result.
$${\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}i}} \hspace{-0.7cm}\{Y_{\rm L}(p)\cdot {\rm e}^{p t}\}= Y_{\rm L}(p)\cdot (p - p_{{\rm x}i})\cdot  {\rm e}^{p \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}i}} \hspace{0.05cm} .$$
+
#For times &nbsp;$t > 2 \ \rm &micro; s$,&nbsp; the impulse response is negative&nbsp; $($although only slightly and difficult to see in the graph$)$.
{{end}}
 
  
  
 +
==Attenuated-oscillatory impulse response==
 +
<br>
 +
The component values &nbsp;$R = 50 \ \rm Ω$, &nbsp;$L = 25 \ \rm &micro; H$&nbsp; and &nbsp;$C = 8 \ \rm nF$ result in two conjugate complex poles at &nbsp;$p_{{\rm x}1} = \ –1 + {\rm j} · 2$&nbsp; and &nbsp;$p_{{\rm x}2} = \ –1 - {\rm j} · 2$.&nbsp;
 +
[[File:EN_LZI_T_3_3_S3b.png|right|frame| Attenuated-oscillatory impulse response]]
 +
 +
*The zero is located at &nbsp;$p_{\rm o} = \ –2.5$.
 +
 +
*$K = 2$&nbsp; holds
  
Nachfolgend wird der Residuensatz anhand dreier ausführlicher Beispiele verdeutlicht, die mit den Beispielen zur Frequenzbereichsbeschreibung  korrespondieren. Wir betrachten also wieder den Vierpol mit einer Induktivität im Längszweig $(L =$ 25 μH) sowie im Querzweig die Serienschaltung aus einem Ohmschen Widerstand $(R =$ 50 Ω) und einer Kapazität $C$. Für Letztere betrachten wir wieder drei verschiedene Werte, nämlich $C =$ 62.5 nF, $C =$ 8 nF und $C =$ 40 nF.  
+
*All numerical values are to be multiplied by factor &nbsp;$1/T$&nbsp; $(T = 1\ \rm &micro; s$).
  
  
Vorausgesetzt ist stets $x(t) = δ(t)  ⇒  X_{\rm L}(p) =$ 1, so dass $Y_{\rm L}(p) = H_{\rm L}(p)$ gilt. Damit ist die berechnete Zeitfunktion $y(t)$ gleich der Impulsantwort $h(t)$.
+
Applying the residue theorem to this configuration then it is obtained:
  
==Anwendung des Residuensatzes (1)==
+
:$$h_1(t) =   K \cdot \frac {p_{\rm x 1} - p_{\rm o }} {p_{\rm x 1} - p_{\rm x 2}} \cdot  {\rm e}^{\hspace{0.05cm}p_{\rm x 1} \cdot \hspace{0.05cm}t} $$
Mit der Kapazität $C =$ 62.5 nF in der unteren Grafik angegebenen Zahlenwerten erhält man für die in Kapitel 3.2  berechnete Übertragungsfunktion:
+
:$$\Rightarrow \hspace{0.3cm}h_1(t) =   2 \cdot \frac {-1 + {\rm j}\cdot 2 +2.5} {(-1 + {\rm j}\cdot 2) - (-1 - {\rm j}\cdot 2)}\cdot  {\rm e}^{\hspace{0.05cm}p_{\rm x 1}
$$H_{\rm L}(p)= K \cdot \frac {p - p_{\rm o }} {(p - p_{\rm x 1})(p - p_{\rm x 2})}= 2 \cdot \frac {p + 0.32 }
+
\cdot\hspace{0.05cm}t}$$
  {(p +0.4)(p +1.6 )} \hspace{0.05cm} .$$
+
:$$\Rightarrow \hspace{0.3cm}h_1(t) = 2 \cdot \frac {1.5 + {\rm j}\cdot 2} {{\rm j}\cdot 4}\cdot  {\rm e}^{\hspace{0.05cm}p_{\rm x 1} \cdot\hspace{0.05cm}t}= (1 - {\rm j}\cdot 0.75)\cdot {\rm
 +
e}^{-t}\cdot {\rm  e}^{\hspace{0.03cm}{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} 2t} \hspace{0.05cm} ,$$
 +
 
 +
:$$ h_2(t) =   K \cdot \frac {p_{\rm x 2} - p_{\rm o }} {p_{\rm x 2} - p_{\rm x 1}}\cdot  {\rm e}^{\hspace{0.05cm}p_{\rm x 2} \hspace{0.03cm}\cdot \hspace{0.05cm}t} $$
 +
:$$\Rightarrow \hspace{0.3cm} h_2(t) = 2 \cdot \frac {-1 - {\rm j}\cdot 2 +2.5} {(-1 - {\rm j}\cdot 2) - (-1 + {\rm j}\cdot 2)}\cdot  {\rm e}^{\hspace{0.05cm}p_{\rm x 2} \hspace{0.03cm}\cdot\hspace{0.05cm}t} $$
 +
:$$\Rightarrow \hspace{0.3cm}h_2(t) =2 \cdot \frac {1.5 - {\rm j}\cdot 2} {-{\rm j}\cdot 4}\cdot  {\rm e}^{\hspace{0.05cm}p_{\rm x 2} \hspace{0.03cm}\cdot\hspace{0.05cm}t}= (1 + {\rm j}\cdot 0.75)\cdot {\rm e}^{-t}\cdot {\rm e}^{\hspace{0.03cm}-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} 2t} \hspace{0.05cm} . $$
 +
 
 +
Using&nbsp; [[Signal_Representation/Calculating_With_Complex_Numbers#Representation_by_magnitude_and_phase|&raquo;Euler's theorem&laquo;]]&nbsp; the following is obtained for the sum signal:
 +
:$$h(t) =  h_1(t) + h_2(t)\hspace{0.3cm}
 +
\Rightarrow \hspace{0.3cm}h(t) = {\rm  e}^{-t}\cdot \big [ (1 - {\rm j}\cdot 0.75)\cdot (\cos() + {\rm j}\cdot \sin())+
 +
+ (1 + {\rm j}\cdot 0.75)\cdot (\cos() - {\rm j}\cdot \sin())\big ]$$
 +
:$$\Rightarrow \hspace{0.3cm}h(t) ={\rm  e}^{-t}\cdot \big [ 2\cdot \cos(2t) + 1.5 \cdot \sin(2t)\big ]\hspace{0.05cm} . $$
 +
 
 +
The graph shows the attenuated-oscillatory impulse response &nbsp;$h(t)$&nbsp; attenuated by &nbsp;${\rm e}^{–t}$&nbsp; for this pole–zero configuration.
 +
 
 +
 
 +
==Critically attenuated case==
 +
<br>
 +
With &nbsp;$R = 50 \ \rm Ω$, &nbsp;$L = 25 \ \rm &micro; H$&nbsp; and&nbsp; &nbsp;$C = 40 \ \rm nF$&nbsp; we get the so-called&nbsp; &raquo;critically attenuated case&laquo;:
 +
:$$H_{\rm L}(p)= K \cdot \frac {p - p_{\rm o }} {(p - p_{\rm x })^2}= 2 \cdot \frac {p + 0.5 } {(p +1)^2}  \hspace{0.05cm} .$$
 +
 
 +
The capacitance &nbsp;$C = 40 \ \rm nF$&nbsp; is the smallest possible value for which there are just real pole places.&nbsp; These coincide,&nbsp; that &nbsp;$p_{\rm x} = \ -1$&nbsp; is a double pole place.&nbsp; The time function is thus according to the residue theorem with &nbsp;$l = 2$:
 +
:$$h(t) = {\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{ {\rm x} } } \hspace{-0.7cm}\{H_{\rm L}(p)\cdot {\rm e}^{p t}\}= \frac{ {\rm d} }{ {\rm d}p}\hspace{0.15cm}
 +
  \left \{H_{\rm L}(p)\cdot (p - p_{ {\rm x} })^2\cdot {\rm e}^{p \hspace{0.05cm}t}\right\} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{ {\rm x} } } = K \cdot \frac{ {\rm d} }{ {\rm d}p}\hspace{0.15cm}\left \{ (p - p_{ {\rm o} })\cdot {\rm e}^{p \hspace{0.05cm}t}\right\}  \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{ {\rm x} } } \hspace{0.05cm} .$$
 +
 
 +
[[File:EN_LZI_T_3_3_S3c.png |right|frame| Impulse response and step response of the critically attenuated case]]
 +
Using the&nbsp; &raquo;product rule&laquo;&nbsp; of differential calculus,&nbsp; this gives:
 +
:$$h(t) = K \cdot \left [ {\rm e}^{p \hspace{0.05cm}t} + (p - p_{ {\rm o} })\cdot t \cdot {\rm e}^{p \hspace{0.05cm}t} \right ] \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}-1} = {\rm  e}^{-t}\cdot \left ( 2 - t \right)
 +
\hspace{0.05cm} .$$
 +
 
 +
The graph shows this impulse response&nbsp; $($green curve$)$&nbsp; in normalized representation.&nbsp; It differs only slightly from the one with two different poles at&nbsp; $-0.4$&nbsp; and&nbsp; $-1.6$&nbsp;.
 +
 
 +
The signal drawn in red &nbsp; &rArr; &nbsp; $y(t) = 1 - {\rm e}^{-t} + t \cdot {\rm e}^{-t}$&nbsp; results when a step function&nbsp; $\gamma(t)$&nbsp; is considered at the input &nbsp; &rArr; &nbsp; &raquo;step response&laquo;.
  
Beachten Sie bitte die Normierung von $p$, $K$ sowie aller Pole und Nullstellen mit dem Faktor ${\rm 10^6}$ · 1/s.
+
To calculate the step response &nbsp;$\sigma(t) = y(t)$&nbsp; one can alternatively
 +
*consider the additional red pole at &nbsp;$p = 0$ &nbsp; in the residual calculation,&nbsp;
  
[[File: P_ID1772__LZI_T_3_3_S3a_kurz.png  | Aperiodisch abklingende Impulsantwort]]
+
*or form the integral over the impulse response &nbsp;$h(t)$.
  
Die Impulsantwort setzt sich aus $I = N =$ 2 Eigenschwingungen zusammen. Für $t <$ 0 sind diese gleich 0.
 
*Das Residium des Pols bei $p_{x1} =$ –0.4 liefert die Zeitfunktion:
 
$$\begin{align*} h_1(t) \hspace{-0.25cm}& =  \hspace{-0.2cm} {\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}1}} \hspace{-0.7cm}\{H_{\rm L}(p)\cdot {\rm e}^{p t}\}= H_{\rm L}(p)\cdot (p - p_{{\rm x}1})\cdot  {\rm e}^{p \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}1}}=\\ \hspace{-0.25cm}& =  2 \cdot \frac {p + 0.32 } {p +0.4}\cdot  {\rm e}^{p \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}-0.4}= - \frac {2 } {15}\cdot  {\rm e}^{-0.4 \hspace{0.05cm} t} \hspace{0.05cm}. \end{align*}$$
 
*In gleicher Weise kann das Residium des Pols $p_{x2} =$ –1.6 berechnet werden:
 
$$\begin{align*} h_2(t) \hspace{-0.25cm}& =  \hspace{-0.2cm} {\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}2}} \hspace{-0.7cm}\{H_{\rm L}(p)\cdot {\rm e}^{p t}\}= H_{\rm L}(p)\cdot (p - p_{{\rm x}2})\cdot  {\rm e}^{p \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}2}}=\\ \hspace{-0.25cm}& =  2 \cdot \frac {p + 0.32 } {p +1.6}\cdot  {\rm e}^{p \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}-1.6}=  \frac {32 } {15}\cdot  {\rm e}^{-1.6 \hspace{0.05cm} t} \hspace{0.05cm}. \end{align*}$$
 
  
 +
==Partial fraction decomposition==
 +
<br>
 +
Prerequisite for the application of the residue theorem is that there are less zeros than poles &nbsp; &rArr; &nbsp; $Z$&nbsp; must always be smaller than &nbsp;$N$&nbsp;.
  
 +
*If,&nbsp; on the other hand,&nbsp; as in the case of a high-pass filter &nbsp;$Z = N$,&nbsp; then the limit of the p&ndash;transfer function&nbsp; $H_{\rm L}(p)$&nbsp; for large &nbsp;$p$&nbsp; is not equal to zero,
  
Die Grafik zeigt $h_1(t)$ und $h_2(t)$ sowie das Summensignal $h(t)$. Berücksichtigt ist der Normierungsfaktor $1/T = 10^6 · 1/s$, so dass die Zeit auf $T =$ 1 μs normiert ist. Für $t =$ 0 ergibt sich
+
*If the associated time signal &nbsp;$y(t)$&nbsp; also contains &nbsp;[[Signal_Representation/Direct_Current_Signal_-_Limit_Case_of_a_Periodic_Signal#Dirac_.28delta.29_function_in_frequency_domain|&raquo;Dirac delta functions&laquo;]],&nbsp; the residue theorem fails and a&nbsp; [https://en.wikipedia.org/wiki/Partial_fraction_decomposition&nbsp; &raquo;'''partial fraction decomposition'''&laquo;]&nbsp; must be performed.  
$$T \cdot h(t=0) = {32 }/ {15} -{2 }/ {15}= 2 \hspace{0.05cm} .$$
 
Für Zeiten $t >$ 2 μs ist die Impulsantwort – wenn auch nur geringfügig – negativ.
 
  
==Anwendung des Residuensatzes (2)==
 
Die Bauelementewerte $R =$ 50 Ω, $L =$ 25 μH und $C =$ 8 nF ergeben zwei konjugiert komplexe Pole bei $p_{x1} =$ –1 + j · 2 und $p_{x2} =$ –1 – j · 2. Die Nullstelle liegt bei $p_o =$ –2.5, der konstante Faktor beträgt weiterhin $K =$ 2. Alle Zahlenwerte sind wieder mit dem Faktor $1/T$ zu multiplizieren $(T =$ 1 μs).
 
  
[[File:P_ID1780__LZI_T_3_3_S3b_kurz.png | Gedämpft oszillierende Impulsantwort]]
+
The procedure is to be clarified exemplarily for a high-pass of first order.
  
Wendet man den Residuensatz auf diese Konfiguration an, so erhält man:
+
{{GraueBox|TEXT=   
$$\begin{align*} h_1(t) &...  = K \cdot \frac {p_{\rm x 1} - p_{\rm o }} {p_{\rm x 1} - p_{\rm x 2}}\cdot  {\rm e}^{\hspace{0.05cm}p_{\rm x 1} \cdot \hspace{0.05cm}t}=  2 \cdot \frac {-1 + {\rm j}\cdot 2 +2.5} {(-1 + {\rm j}\cdot 2) - (-1 - {\rm j}\cdot 2)}\cdot  {\rm e}^{\hspace{0.05cm}p_{\rm x 1}
+
$\text{Example 1:}$&nbsp;
\cdot\hspace{0.05cm}t}=\\ \hspace{-0.25cm}& =  2 \cdot \frac {1.5 + {\rm j}\cdot 2} {{\rm j}\cdot 4}\cdot  {\rm e}^{\hspace{0.05cm}p_{\rm x 1} \cdot\hspace{0.05cm}t}= (1 - {\rm j}\cdot 0.75)\cdot {\rm
+
The&nbsp; $p$-transfer function of a&nbsp; &raquo;first-order RC high-pass filter&laquo;&nbsp; can be transformed by splitting off a constant as follows:
e}^{-t}\cdot {\rm  e}^{\hspace{0.03cm}{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} 2t} \hspace{0.05cm} ,\end{align*}$$
+
[[File:EN_LZI_T_3_3_S5_v2.png |right|frame| Impulse response of low-pass&nbsp; $($blue$)$&nbsp; and high-pass&nbsp; $($red$)$]]
$$\begin{align*}h_2(t) & =  ...  = K \cdot \frac {p_{\rm x 2} - p_{\rm o }} {p_{\rm x 2} - p_{\rm x 1}}\cdot  {\rm e}^{\hspace{0.05cm}p_{\rm x 2} \hspace{0.03cm}\cdot \hspace{0.05cm}t}=  2 \cdot \frac {-1 - {\rm j}\cdot 2 +2.5} {(-1 - {\rm j}\cdot 2) - (-1 + {\rm j}\cdot 2)}\cdot  {\rm e}^{\hspace{0.05cm}p_{\rm x 2} \hspace{0.03cm}\cdot\hspace{0.05cm}t}=\\ \hspace{-0.25cm}& = & 2 \cdot \frac {1.5 - {\rm j}\cdot 2} {-{\rm j}\cdot 4}\cdot  {\rm e}^{\hspace{0.05cm}p_{\rm x 2} \hspace{0.03cm}\cdot\hspace{0.05cm}t}= (1 + {\rm j}\cdot 0.75)\cdot {\rm e}^{-t}\cdot {\rm  e}^{\hspace{0.03cm}-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} 2t} \hspace{0.05cm} . \end{align*}$$
+
:$$\frac{p}{p + RC} = 1- \frac{RC}{p + RC}\hspace{0.05cm} .$$
 +
Thus,&nbsp; the high-pass impulse response is:
 +
:$$h_{\rm HP}(t) = \delta(t) - h_{\rm TP}(t) \hspace{0.05cm} .$$
  
Mit dem Satz von Euler ergibt sich somit für das Summensignal:
+
The graph shows
$$\begin{align*}h(t)\hspace{-0.25cm}& =  \hspace{-0.2cm} h_1(t) + h_2(t) =\\ \hspace{-0.25cm}& =  \hspace{-0.2cm} {\rm e}^{-t}\cdot \left [ (1 - {\rm j}\cdot 0.75)\cdot (\cos() + {\rm j}\cdot \sin())+
+
*as blue curve the impulse response &nbsp;$h_{\rm TP}(t)$&nbsp; of the equivalent low-pass,
(1 + {\rm j}\cdot 0.75)\cdot (\cos() - {\rm j}\cdot \sin())\right ]=\\ \hspace{-0.25cm}& =  \hspace{-0.2cm}  ... ={\rm  e}^{-t}\cdot \left [ 2\cdot \cos(2t) + 1.5 \cdot \sin(2t)\right ]\hspace{0.05cm} . \end{align*}$$
 
  
 +
*as red curve the high&ndash;pass impulse response &nbsp;$h_{\rm HP}(t)$.
  
Die Grafik zeigt im unteren Diagramm – wieder geeignet normiert – die nun mit $e^{–t}$ gedämpft oszillierende Impulsantwort $h(t)$ für diese Pol–Nullstellen–Konfiguration.
 
  
 +
&rArr; &nbsp; The Dirac delta function is the Laplace transform of the constant value&nbsp; $1$,&nbsp; <br>while the second function to be subtracted gives the impulse response of the equivalent low-pass filter,&nbsp; which is given by  the residue theorem with &nbsp;
 +
:$$Z = 0,\hspace{0.2cm} N =1,\hspace{0.2cm} K = RC.$$ }}
  
  
  
 +
==Exercises for the chapter==
  
 +
[[Aufgaben:Exercise_3.5:_Circuit_with_R,_L_and_C|Exercise 3.5: Circuit with R, L and C]]
  
 +
[[Aufgaben:Exercise_3.5Z:_Application_of_the_Residue_Theorem|Exercise 3.5Z: Application of the Residue Theorem]]
  
 +
[[Aufgaben:Exercise_3.6:_Transient_Behavior|Exercise 3.6: Transient Behavior]]
  
 +
[[Aufgaben:Exercise_3.6Z:_Two_Imaginary_Poles|Exercise 3.6Z: Two Imaginary Poles]]
  
 +
[[Aufgaben:Exercise_3.7:_Impulse_Response_of_a_High-Pass_Filter|Exercise 3.7: Impulse Response of a High-Pass Filter]]
  
 +
[[Aufgaben:Exercise_3.7Z:_Partial_Fraction_Decomposition|Exercise 3.7Z: Partial Fraction Decomposition]]
  
  
 
{{Display}}
 
{{Display}}

Latest revision as of 16:03, 21 November 2023

Problem formulation and prerequisites


$\text{Task:}$  This chapter deals with the following problem:

  • The  $p$–spectral function  $Y_{\rm L}(p)$  is given in  »pole-zero notation«.
  • The  »inverse Laplace transform«, i.e. the associated time function  $y(t)$  is searched-for,  where the following notation should hold:
$$y(t) = {\rm L}^{-1}\{Y_{\rm L}(p)\}\hspace{0.05cm} , \hspace{0.3cm}{\rm briefly}\hspace{0.3cm} y(t) \quad \circ\!\!-\!\!\!-^{\hspace{-0.25cm}\rm L}\!\!\!-\!\!\bullet\quad Y_{\rm L}(p)\hspace{0.05cm} .$$
Prerequisites for the chapter "Inverse Laplace Transform"


The graph summarizes the prerequisites for this task.

  • $H_{\rm L}(p)$  describes the transfer function of the causal system and  $Y_{\rm L}(p)$  specifies the Laplace transform of the output signal  $y(t)$  considering the input signal  $x(t)$ .  $Y_{\rm L}(p)$  is characterized by  $N$  poles,  by  $Z ≤ N$  zeros and by the constant  $K.$
  • Poles and zeros exhibit the properties mentioned in the  »last chapter«:  Poles are only allowed in the left  $p$–half plane or on the imaginary axis;  zeros are also allowed in the right  $p$–half plane.
  • All  »singularities«  – this is the generic term for poles and zeros – are either real or exist as pairs of conjugate-complex singularities.  Multiple poles and zeros are also allowed.
  • With the input  $x(t) = δ(t)$   ⇒   $X_{\rm L}(p) = 1$   ⇒   $Y_{\rm L}(p) = H_{\rm L}(p)$, the output signal  $y(t)$  then describes the »impulse response«  $h(t)$  of the transmission system.  For this purpose,  only the singularities drawn in green in the graph may be used for computation.
  • A unit jump function  $x(t) = γ(t)$   ⇒   $ X_{\rm L} = 1/p$  at the input causes the output signal  $y(t)$  to be equal to the  »step response«   $σ(t)$ of $H_{\rm L}(p)$ .  In addition to the singularities of  $H_{\rm L}(p)$,  the pole  $($shown in red in the graph$)$  at  $p = 0$  must now also be taken into account for computation.
  • Possible as input  $x(t)$  are only signals for which  $X_{ \rm L}(p)$  can be expressed in pole-zero notation  (see the  $\text{table}$  in the chapter »Laplace Transform and $p$–Transfer Function»$)$,  for example a cosine or sine signal switched on at time  $t = 0$ .
  • So,  a rectangular signal  $x(t)\ \ ⇒ \ \ X_{\rm L}(p) = (1 - {\rm e}^{\hspace{0.05cm}p\hspace{0.05cm}\cdot \hspace{0.05cm} T})/p$  is not possible in the approach described here.  However, the rectangular response  $y(t)$  can be computed indirectly as the difference of two step responses.

Some results of function theory


In contrast to the  »Fourier integrals«,  which differ only slightly in the two directions of transformation,  for  »Laplace«  the computation of  $y(t)$  from  $Y_{\rm L}(p)$ – that is the inverse transformation – is

  • much more difficult than computing  $Y_{\rm L}(p)$  from  $y(t)$,
  • unresolvable or solvable only very laboriously by elementary means.


$\text{Definition:}$  In general, the following holds for the  »inverse Laplace transform«:

$$y(t) = {\rm L}^{-1}\{Y_{\rm L}(p)\}= \lim_{\beta \hspace{0.05cm}\rightarrow \hspace{0.05cm}\infty} \hspace{0.15cm} \frac{1}{ {\rm j} \cdot 2 \pi}\cdot \int_{ \alpha - {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi \beta } ^{\alpha+{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi \beta} Y_{\rm L}(p) \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm e}^{\hspace{0.05cm}p \hspace{0.05cm}\cdot \hspace{0.05cm} t}\hspace{0.1cm}{\rm d}p \hspace{0.05cm} .$$
  1. The integration is parallel to the imaginary axis.
  2. The real part  $α$  is to be chosen such that all poles are located to the left of the integration path.


The left graph illustrates this line integral along the red dotted vertical  ${\rm Re}\{p\}= α$.  This integral is solvable using  »Jordan's lemma of complex analysis«.  In this tutorial only a very short and simple summary of the approach is depicted:

Line integral together with left and right circular integral
  1. The line integral can be divided into two circular integrals so that all poles are located in the left circular integral while the right circular integral may only contain zeros.
  2. According to the theory of functions, the right circular integral yields the time function  $y(t)$  for negative times. 
  3. Due to causality,  $y(t < 0)$  must be identical to zero,  but according to the fundamentals of function theorem this is only true if there are no poles in the right  $p$–half-plane.
  4. In contrast,  the integral over the left semicircle yields the time function for  $t ≥ 0$. 
  5. This encloses all poles and can be computed using the  »residue theorem«  in a  $($relatively$)$  simple way,  as it will be shown in the next sections.


Formulation of the residue theorem


It is further assumed that the transfer function  $Y_{\rm L}(p)$  can be expressed in pole-zero notation by

  • the constant factor  $K$,
  • the  $Z$  »zeros«  $p_{{\rm o}i}$  $(i = 1$, ... , $Z)$  and
  • the  $N$  »poles«  $p_{{\rm x}i}$  $(i = 1$, ... , $N$).


We also assume  $Z < N$.  The number of  »distinguishable poles«  is denoted by  $I$.  Multiple poles are counted only once to determine  $I$.  Thus,  the following holds for the  $\text{sketch}$  in the last section considering the double pole:  

$$N = 5,\hspace{0.3cm} I = 4.$$

$\text{Residue Theorem:}$  Considering the above conditions,  the  »inverse Laplace transform«  of  $Y_{\rm L}(p)$  for times  $t ≥ 0$  is obtained as the sum of  $I$  natural oscillations of the poles,  which are called the  »residuals«  – abbreviated as  $\rm Res$:

$$y(t) = \sum_{i=1}^{I}{\rm Res} \bigg \vert _{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}_i}} \hspace{-0.7cm}\{Y_{\rm L}(p)\cdot {\rm e}^{p \hspace{0.05cm}t}\} \hspace{0.05cm} .$$

Since  $Y_{\rm L}(p)$  is only specifiable for causal signals,  $y(t < 0) = 0$  always holds for negative times.

  • In general,  the following holds for a pole of multiplicity  $l$ :
$${\rm Res} \bigg \vert _{p \hspace{0.05cm}= \hspace{0.05cm}p_{ {\rm x}_i} } \hspace{-0.7cm}\{Y_{\rm L}(p)\cdot {\rm e}^{p t}\}= \frac{1}{(l-1)!}\cdot \frac{ {\rm d}^{\hspace{0.05cm}l-1} }{ {\rm d}p^{\hspace{0.05cm}l-1} }\hspace{0.15cm} \left \{Y_{\rm L}(p)\cdot (p - p_{ {\rm x}_i})^{\hspace{0.05cm}l}\cdot {\rm e}^{p \hspace{0.05cm}t}\right\} \bigg \vert_{p \hspace{0.05cm}= \hspace{0.05cm}p_{ {\rm x}_i} } \hspace{0.05cm} .$$
  • The following is obtained out of it with  $l = 1$  for a simple pole as a special case:
$${\rm Res} \bigg\vert_{p \hspace{0.05cm}= \hspace{0.05cm}p_{ {\rm x}_i} } \hspace{-0.7cm}\{Y_{\rm L}(p)\cdot {\rm e}^{p t}\}= Y_{\rm L}(p)\cdot (p - p_{ {\rm x}_i} )\cdot {\rm e}^{p \hspace{0.05cm}t} \bigg \vert _{p \hspace{0.05cm}= \hspace{0.05cm}p_{ {\rm x}_i} } \hspace{0.05cm} .$$


In the next sections,  the  »residue theorem«  is illustrated by three detailed examples corresponding to the three constellations in  $\text{Example 3}$  of chapter  »Laplace transform and p-transfer function«:

  • So,  we consider again the two-port network with an inductance  $L = 25 \ \rm µH$  in the longitudinal branch as well as the the series connection of an ohmic resistance  $R = 50 \ \rm Ω$  and a capacitance  $C$  in the transverse branch.
  • For the latter,  we consider three different values,  namely  $C = 62.5 \ \rm nF$,  $C = 8 \ \rm nF$  and  $C = 40 \ \rm nF$.
  • The following is always assumed:  $x(t) = δ(t) \; ⇒ \; X_{\rm L}(p) = 1$   ⇒   $Y_{\rm L}(p) = H_{\rm L}(p)$   ⇒   the output signal  $y(t)$  is equal to the impulse response  $h(t)$.

Aperiodically decaying impulse response


The following is obtained for the  $p$–transfer function computed in the section  »pole-zero representation of circuits«  with the capacitance  $C = 62.5 \ \rm nF$.  The other numerical values are given in the graph below:

Aperiodically decaying impulse response
$$H_{\rm L}(p)= K \cdot \frac {p - p_{\rm o }} {(p - p_{\rm x 1})(p - p_{\rm x 2})}= 2 \cdot \frac {p + 0.32 } {(p +0.4)(p +1.6 )} \hspace{0.05cm} .$$

Note the normalization of  $p$,  $K$ and also of all poles and zeros by the factor  ${\rm 10^6} · 1/\rm s$.

⇒   The impulse response is composed of  $I = N = 2$  natural oscillations. For $t < 0$,  these are equal to zero.

  • The residual of the pole at  $p_{{\rm x}1} =\ –0.4$  yields the following time function:
$$h_1(t) = {\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}1}} \hspace{-0.7cm}\{H_{\rm L}(p)\cdot {\rm e}^{p t}\}= H_{\rm L}(p)\cdot (p - p_{{\rm x}1})\cdot {\rm e}^{p \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}1}}$$
$$\Rightarrow \hspace{0.3cm}h_1(t) = 2 \cdot \frac {p + 0.32 } {p +0.4}\cdot {\rm e}^{p \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}-0.4}= - \frac {2 } {15}\cdot {\rm e}^{-0.4 \hspace{0.05cm} t} \hspace{0.05cm}. $$
  • In the same way, the residual of the second pole at  $p_{{\rm x}2} = \ –1.6$  can be computed:
$$h_2(t) = {\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}2}} \hspace{-0.7cm}\{H_{\rm L}(p)\cdot {\rm e}^{p t}\}= H_{\rm L}(p)\cdot (p - p_{{\rm x}2})\cdot {\rm e}^{p \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}2}}$$
$$\Rightarrow \hspace{0.3cm}h_2(t) = 2 \cdot \frac {p + 0.32 } {p +1.6}\cdot {\rm e}^{p \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}-1.6}= \frac {32 } {15}\cdot {\rm e}^{-1.6 \hspace{0.05cm} t} \hspace{0.05cm}. $$

The graph shows  $h_1(t)$  and  $h_2(t)$  as well as the sum signal  $h(t)$.

  1. The normalization factor  $1/T = 10^6 · \rm 1/s$  is taken into account here so that the time is normalized to  $T = 1 \ \rm µ s$ .
  2. For  $t =0$,  $T \cdot h(t=0) = {32 }/ {15} -{2 }/ {15}= 2 \hspace{0.05cm}$  is obtained as a result.
  3. For times  $t > 2 \ \rm µ s$,  the impulse response is negative  $($although only slightly and difficult to see in the graph$)$.


Attenuated-oscillatory impulse response


The component values  $R = 50 \ \rm Ω$,  $L = 25 \ \rm µ H$  and  $C = 8 \ \rm nF$ result in two conjugate complex poles at  $p_{{\rm x}1} = \ –1 + {\rm j} · 2$  and  $p_{{\rm x}2} = \ –1 - {\rm j} · 2$. 

Attenuated-oscillatory impulse response
  • The zero is located at  $p_{\rm o} = \ –2.5$.
  • $K = 2$  holds
  • All numerical values are to be multiplied by factor  $1/T$  $(T = 1\ \rm µ s$).


Applying the residue theorem to this configuration then it is obtained:

$$h_1(t) = K \cdot \frac {p_{\rm x 1} - p_{\rm o }} {p_{\rm x 1} - p_{\rm x 2}} \cdot {\rm e}^{\hspace{0.05cm}p_{\rm x 1} \cdot \hspace{0.05cm}t} $$
$$\Rightarrow \hspace{0.3cm}h_1(t) = 2 \cdot \frac {-1 + {\rm j}\cdot 2 +2.5} {(-1 + {\rm j}\cdot 2) - (-1 - {\rm j}\cdot 2)}\cdot {\rm e}^{\hspace{0.05cm}p_{\rm x 1} \cdot\hspace{0.05cm}t}$$
$$\Rightarrow \hspace{0.3cm}h_1(t) = 2 \cdot \frac {1.5 + {\rm j}\cdot 2} {{\rm j}\cdot 4}\cdot {\rm e}^{\hspace{0.05cm}p_{\rm x 1} \cdot\hspace{0.05cm}t}= (1 - {\rm j}\cdot 0.75)\cdot {\rm e}^{-t}\cdot {\rm e}^{\hspace{0.03cm}{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} 2t} \hspace{0.05cm} ,$$
$$ h_2(t) = K \cdot \frac {p_{\rm x 2} - p_{\rm o }} {p_{\rm x 2} - p_{\rm x 1}}\cdot {\rm e}^{\hspace{0.05cm}p_{\rm x 2} \hspace{0.03cm}\cdot \hspace{0.05cm}t} $$
$$\Rightarrow \hspace{0.3cm} h_2(t) = 2 \cdot \frac {-1 - {\rm j}\cdot 2 +2.5} {(-1 - {\rm j}\cdot 2) - (-1 + {\rm j}\cdot 2)}\cdot {\rm e}^{\hspace{0.05cm}p_{\rm x 2} \hspace{0.03cm}\cdot\hspace{0.05cm}t} $$
$$\Rightarrow \hspace{0.3cm}h_2(t) =2 \cdot \frac {1.5 - {\rm j}\cdot 2} {-{\rm j}\cdot 4}\cdot {\rm e}^{\hspace{0.05cm}p_{\rm x 2} \hspace{0.03cm}\cdot\hspace{0.05cm}t}= (1 + {\rm j}\cdot 0.75)\cdot {\rm e}^{-t}\cdot {\rm e}^{\hspace{0.03cm}-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} 2t} \hspace{0.05cm} . $$

Using  »Euler's theorem«  the following is obtained for the sum signal:

$$h(t) = h_1(t) + h_2(t)\hspace{0.3cm} \Rightarrow \hspace{0.3cm}h(t) = {\rm e}^{-t}\cdot \big [ (1 - {\rm j}\cdot 0.75)\cdot (\cos() + {\rm j}\cdot \sin())+ + (1 + {\rm j}\cdot 0.75)\cdot (\cos() - {\rm j}\cdot \sin())\big ]$$
$$\Rightarrow \hspace{0.3cm}h(t) ={\rm e}^{-t}\cdot \big [ 2\cdot \cos(2t) + 1.5 \cdot \sin(2t)\big ]\hspace{0.05cm} . $$

The graph shows the attenuated-oscillatory impulse response  $h(t)$  attenuated by  ${\rm e}^{–t}$  for this pole–zero configuration.


Critically attenuated case


With  $R = 50 \ \rm Ω$,  $L = 25 \ \rm µ H$  and   $C = 40 \ \rm nF$  we get the so-called  »critically attenuated case«:

$$H_{\rm L}(p)= K \cdot \frac {p - p_{\rm o }} {(p - p_{\rm x })^2}= 2 \cdot \frac {p + 0.5 } {(p +1)^2} \hspace{0.05cm} .$$

The capacitance  $C = 40 \ \rm nF$  is the smallest possible value for which there are just real pole places.  These coincide,  that  $p_{\rm x} = \ -1$  is a double pole place.  The time function is thus according to the residue theorem with  $l = 2$:

$$h(t) = {\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{ {\rm x} } } \hspace{-0.7cm}\{H_{\rm L}(p)\cdot {\rm e}^{p t}\}= \frac{ {\rm d} }{ {\rm d}p}\hspace{0.15cm} \left \{H_{\rm L}(p)\cdot (p - p_{ {\rm x} })^2\cdot {\rm e}^{p \hspace{0.05cm}t}\right\} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{ {\rm x} } } = K \cdot \frac{ {\rm d} }{ {\rm d}p}\hspace{0.15cm}\left \{ (p - p_{ {\rm o} })\cdot {\rm e}^{p \hspace{0.05cm}t}\right\} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{ {\rm x} } } \hspace{0.05cm} .$$
Impulse response and step response of the critically attenuated case

Using the  »product rule«  of differential calculus,  this gives:

$$h(t) = K \cdot \left [ {\rm e}^{p \hspace{0.05cm}t} + (p - p_{ {\rm o} })\cdot t \cdot {\rm e}^{p \hspace{0.05cm}t} \right ] \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}-1} = {\rm e}^{-t}\cdot \left ( 2 - t \right) \hspace{0.05cm} .$$

The graph shows this impulse response  $($green curve$)$  in normalized representation.  It differs only slightly from the one with two different poles at  $-0.4$  and  $-1.6$ .

The signal drawn in red   ⇒   $y(t) = 1 - {\rm e}^{-t} + t \cdot {\rm e}^{-t}$  results when a step function  $\gamma(t)$  is considered at the input   ⇒   »step response«.

To calculate the step response  $\sigma(t) = y(t)$  one can alternatively

  • consider the additional red pole at  $p = 0$   in the residual calculation, 
  • or form the integral over the impulse response  $h(t)$.


Partial fraction decomposition


Prerequisite for the application of the residue theorem is that there are less zeros than poles   ⇒   $Z$  must always be smaller than  $N$ .

  • If,  on the other hand,  as in the case of a high-pass filter  $Z = N$,  then the limit of the p–transfer function  $H_{\rm L}(p)$  for large  $p$  is not equal to zero,


The procedure is to be clarified exemplarily for a high-pass of first order.

$\text{Example 1:}$  The  $p$-transfer function of a  »first-order RC high-pass filter«  can be transformed by splitting off a constant as follows:

Impulse response of low-pass  $($blue$)$  and high-pass  $($red$)$
$$\frac{p}{p + RC} = 1- \frac{RC}{p + RC}\hspace{0.05cm} .$$

Thus,  the high-pass impulse response is:

$$h_{\rm HP}(t) = \delta(t) - h_{\rm TP}(t) \hspace{0.05cm} .$$

The graph shows

  • as blue curve the impulse response  $h_{\rm TP}(t)$  of the equivalent low-pass,
  • as red curve the high–pass impulse response  $h_{\rm HP}(t)$.


⇒   The Dirac delta function is the Laplace transform of the constant value  $1$, 
while the second function to be subtracted gives the impulse response of the equivalent low-pass filter,  which is given by the residue theorem with  

$$Z = 0,\hspace{0.2cm} N =1,\hspace{0.2cm} K = RC.$$


Exercises for the chapter

Exercise 3.5: Circuit with R, L and C

Exercise 3.5Z: Application of the Residue Theorem

Exercise 3.6: Transient Behavior

Exercise 3.6Z: Two Imaginary Poles

Exercise 3.7: Impulse Response of a High-Pass Filter

Exercise 3.7Z: Partial Fraction Decomposition