Difference between revisions of "Modulation Methods/Non-Linear Digital Modulation"

From LNTwww
 
(106 intermediate revisions by 6 users not shown)
Line 1: Line 1:
 
   
 
   
 
{{Header
 
{{Header
|Untermenü=Digitale Modulationsverfahren
+
|Untermenü=Digital Modulation Methods
|Vorherige Seite=Quadratur–Amplitudenmodulation
+
|Vorherige Seite=Quadrature Amplitude Modulation
|Nächste Seite=Aufgaben und Klassifizierung
+
|Nächste Seite=Tasks and Classification
 
}}
 
}}
==Eigenschaften nichtlinearer Verfahren==
+
==Properties of non-linear modulation methods==
Die Gesamtheit aller Modulationsverfahren lassen sich alternativ wie folgt klassifizieren:  
+
<br>
*Amplituden–, Phasen– und Frequenzmodulation,  
+
All modulation methods can be alternatively classified as:  
*analoge und digitale Modulationsverfahren,  
+
*amplitude, phase and frequency modulation,  
*lineare und nichtlineare Modulationsverfahren.  
+
*analog and digital modulation methods,
 +
*linear and non-linear modulation methods.
  
  
Hinsichtlich des letzten Unterscheidungsmerkmals soll gelten:  
+
Considering this last distinction, the following definition applies:
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
$\text{Definition:}$&nbsp; Ein ''lineares Modulationsverfahren'' liegt vor, wenn eine beliebige Linearkombination von Signalen am Modulatoreingang zu einer entsprechenden Linearkombination an dessen Ausgang führt. Andernfalls spricht man von '''nichtlinearer Modulation'''. }}
+
$\text{Definitions:}$&nbsp;  
 +
*A&nbsp; &raquo;'''linear modulation method'''&laquo;&nbsp; is present if any linear combination of signals at modulator input leads to a corresponding linear combination at its output.
 +
*Otherwise,&nbsp; it is a&nbsp; &raquo;'''non-linear modulation'''&laquo;. }}
  
  
Die Grafik zeigt einige der Unterschiede hinsichtlich der oben angegebenen Klassifizierungen.
+
At the &nbsp;[[Modulation_Methods/Objectives_of_Modulation_and_Demodulation#Analog_vs._digital_transmission_systems|"beginning of the present book"]]&nbsp; it was already pointed out that the main difference between an analog and a digital modulation method is that
 +
* in the first one an analog source signal &nbsp;$q(t)$&nbsp; is present,&nbsp; and
 +
*in the second one a digital signal. 
  
[[File:P_ID1737__Mod_T_4_4_S1.png |center|frame| Analoge und digitale AM–, PM– und FM–Verfahren]]
 
  
Am [[Modulationsverfahren/Zielsetzung_von_Modulation_und_Demodulation#Analoges_.C3.9Cbertragungssystem_vs._digitales_.C3.9Cbertragungssystem|Kapitelanfang]] wurde bereits darauf hingewiesen, dass der wesentliche Unterschied zwischen einem analogen und einem digitalen Modulationsverfahren darin besteht, dass beim ersten ein analoges Quellensignal $q(t)$ anliegt und beim zweiten ein Digitalsignal. Bei genauerer Betrachtung wird man jedoch feststellen, dass es zwischen diesen Verfahren noch einige Unterschiede mehr gibt. Darauf wird im Folgenden genauer eingegangen.
+
However,&nbsp; a closer look will reveal that there are a few more differences between these methods.&nbsp;  This will be discussed in more detail below.
  
*Die [[Modulationsverfahren/Zweiseitenband-Amplitudenmodulation|analoge Amplitudenmodulation]] (AM) ist ein lineares Modulationsverfahren. Die Ortskurve – also das äquivalente Tiefpass–Signal  $s_{\rm TP}(t)$ dargestellt in der komplexen Ebene – ist eine Gerade.  
+
[[File:EN_Mod_T_4_4_S1_neu.png|right|frame| Analog and digital AM, PM and FM methods]]
 +
The following diagram shows some of the differences with respect to the classifications given above.
  
 +
*&nbsp;[[Modulation_Methods/Double-Sideband_Amplitude_Modulation|$\text{Analog amplitude modulation}$]]&nbsp; $\rm (AM)$&nbsp; is a linear method.  The locus curve - that is, the equivalent low-pass signal &nbsp;$s_{\rm TP}(t)$&nbsp; represented in the complex plane - is a straight line.
  
*Zwischen der [[Modulationsverfahren/Phasenmodulation_(PM)|analogen Phasenmodulation]] (PM) und der [[Modulationsverfahren/Frequenzmodulation_(FM)|analogen Frequenzmodulation]] (FM) gibt es viele Gemeinsamkeiten &nbsp;  ⇒ gemeinsame Beschreibung als ''Winkelmodulation'' (WM). Hier ist die Ortskurve ein Kreisbogen. Bei einer harmonischen Schwingung gibt es ein Linienspektrum $S(f)$ bei Vielfachen der Nachrichtenfrequenz $f_{\rm N}$ um die Trägerfrequenz  $f_{\rm T}$.  
+
*Many similarities between &nbsp;[[Modulation_Methods/Phase_Modulation_(PM)|$\text{analog phase modulation}$]]&nbsp; $\rm (PM)$&nbsp; and &nbsp;[[Modulation_Methods/Frequency_Modulation_(FM)|$\text{analog frequency modulation}$]]&nbsp; $\rm (FM)$ &nbsp;  ⇒ &nbsp; common description&nbsp; "angle modulation"&nbsp; (German:&nbsp; "Winkelmodulation")&nbsp; $\rm (WM)$.&nbsp;
 +
 +
*In that case,&nbsp; the locus curve is an arc of a circle.&nbsp;  With a harmonic oscillation,&nbsp; there is a line spectrum &nbsp;$S(f)$&nbsp; at multiples of the message frequency&nbsp;$f_{\rm N}$&nbsp; around the carrier frequency &nbsp;$f_{\rm T}$.  
  
 +
*[[Modulation_Methods/Linear_Digital_Modulation#ASK_.E2.80.93_Amplitude_Shift_Keying|$\text{Digital amplitude modulation}$]],&nbsp;  referred to as either &nbsp; "Amplitude Shift Keying"&nbsp; $\rm (ASK)$&nbsp; or as&nbsp; "On–Off–Keying"&nbsp; $\rm (OOK)$,&nbsp; is also linear.&nbsp;  In the binary case,&nbsp; the locus curve consists of only two points.
  
*Die [[Modulationsverfahren/Lineare_digitale_Modulation#ASK_.E2.80.93_Amplitude_Shift_Keying|digitale Amplitudenmodulation]],  die man entweder als ''Amplitude Shift Keying'' (ASK) oder als ''On–Off–Keying'' (OOK) bezeichnet, ist ebenfalls linear. Die Ortskurve besteht im binären Fall nur noch aus zwei Punkten.  
+
*Since&nbsp; [[Modulation_Methods/Linear_Digital_Modulation#BPSK_.E2.80.93_Binary_Phase_Shift_Keying|$\text{binary phase modulation}$]]&nbsp; $($"Binary Phase Shift Keying",&nbsp; $\rm BPSK)$&nbsp; can be represented as&nbsp; $\rm ASK$&nbsp; with bipolar amplitude coefficients,&nbsp; it is also linear.&nbsp; The shape of the BPSK power-spectral density is essentially determined by the magnitude square spectrum &nbsp;$|G_s(f)|^2$&nbsp; of the basic transmission pulse.
  
  
*Da sich die [[Modulationsverfahren/Lineare_digitale_Modulation#BPSK_.E2.80.93_Binary_Phase_Shift_Keying|binäre Phasenmodulation]] (''Binary Phase Shift Keying'', BPSK) als ASK mit bipolaren Amplitudenkoeffizienten darstellen lässt, ist diese ebenfalls linear. Die Form des BPSK–Leistungsdichtespektrums wird wesentlich durch das Betragsquadratspektrum $|G_s(f)|^2$ des Sendegrundimpulses bestimmt.  
+
::However,&nbsp; this also means: &nbsp; The BPSK spectrum is continuous in $f$,&nbsp; unlike the analog PM of a harmonic oscillation&nbsp; (only one frequency!). &nbsp; If one were to consider BPSK as analog PM with digital source signal &nbsp;$q(t)$,&nbsp; then an infinite number of Bessel line spectra would have to be convolved together to calculate the power-spectral density &nbsp;${\it Φ}_s(f)$&nbsp; when  &nbsp;$Q(f)$&nbsp; is represented as an infinite sum of individual frequencies.
  
 +
*Since &nbsp;[[Modulation_Methods/Quadrature_Amplitude_Modulation#Signal_waveforms_for_4.E2.80.93QAM|$\text{quadrature amplitude modulation}$]]&nbsp; with four signal space points &nbsp; $\rm (4–QAM)$&nbsp; can also be described as the sum of two mutually orthogonal,&nbsp; quasi-independent BPSK systems,&nbsp; it too represents a linear modulation scheme.&nbsp;  The same applies to the &nbsp;[[Modulation_Methods/Quadrature_Amplitude_Modulation#Quadratic_QAM_signal_space_constellations|$\text{higher-level QAM methods}$]]&nbsp; such as&nbsp; $\rm 16–QAM$,&nbsp; $\rm 64–QAM$, ...
  
*Das bedeutet aber auch: Die Spektralfunktion der BPSK ist kontinuierlich in $f$. Würde man die BPSK als (analoge) Phasenmodulation mit digitalem Quellensignal $q(t)$ betrachten, so müssten zur Berechnung von ${\it Φ}_s(f)$ unendlich viele Bessel–Linienspektren miteinander gefaltet werden, wenn man $Q(f)$ als unendliche Summe von Einzelfrequenzen darstellt.  
+
*Higher-level &nbsp; "Phase Shift Keying",&nbsp; such as &nbsp;[[Modulation_Methods/Quadrature_Amplitude_Modulation#Other_signal_space_constellations|$\rm 8–PSK$]],&nbsp; is linear only in special cases, see [Klo01]<ref name="Klo01">Klostermeyer, R.:&nbsp; Digitale Modulation.&nbsp; Braunschweig: Vieweg, 2001.</ref>.&nbsp;  Digital frequency modulation&nbsp; $($"Frequency Shift Keying",&nbsp; $\rm FSK)$&nbsp; is always non-linear.&nbsp;  This method is described below,&nbsp; where we restrict our focus to the binary case&nbsp; $\rm (2-FSK)$&nbsp;.
  
 +
==FSK – Frequency Shift Keying==
 +
<br>
 +
{{BlaueBox|TEXT=
 +
$\text{Now we assume:}$&nbsp;
  
*Da die [[Modulationsverfahren/Quadratur–Amplitudenmodulation#Signalverl.C3.A4ufe_der_4.E2.80.93QAM|Quadratur–Amplitudenmodulation]] mit vier Signalraumpunkten (4–QAMauch als Summe zweier zueinander orthogonaler und damit quasi–unabhängiger BPSK–Systeme beschrieben werden kann, stellt auch diese ein lineares Modulationsverfahren dar. Gleiches gilt für die [[Modulationsverfahren/Quadratur–Amplitudenmodulation#QAM.E2.80.93Signalraumkonstellationen|höherstufigen QAM–Verfahren]] wie 16–QAM, 64–QAM usw..  
+
*the transmitted signal of the analog frequency modulation,
 +
:$$s(t) =  s_0 \cdot \cos\hspace{-0.05cm}\big [\psi(t)\big ] \hspace{0.5cm} {\rm with} \hspace{0.5cm} \psi(t) = 2\pi  f_{\rm T}  \hspace{0.05cm}t + K_{\rm FM} \cdot \int q(t)\hspace{0.1cm} {\rm d}t,$$
 +
*the rectangular binary source signal with  &nbsp;$a_ν ∈ \{+1, –1\}$ &nbsp; ⇒ &nbsp; bipolar signaling:
 +
:$$q(t) = \sum_{\nu = - \infty}^{+\infty}a_{ \nu} \cdot g_s (t - \nu
 +
\cdot T) \hspace{0.5cm} {\rm with} \hspace{0.5cm} g_s(t) = \left\{ \begin{array}{l} A \\ 0 \\  \end{array} \right.\quad \begin{array}{*{5}c}{\rm{for} } \\{\rm{ } }  \\ \end{array}\begin{array}{*{10}c}
 +
\hspace{0.05cm}0 < t < T\hspace{0.05cm}, \\ {\rm otherwise} \hspace{0.05cm}. \\ \end{array}$$}}
  
  
*Eine höherstufige PSK, zum Beispiel die [[Modulationsverfahren/Quadratur–Amplitudenmodulation#Weitere_Signalraumkonstellationen|8–PSK]], ist nur in Sonderfällen linear, siehe '''[Klo01]'''<ref name="Klo01"/><ref>Klostermeyer, R.: ''Digitale Modulation''. Braunschweig: Vieweg, 2001.</ref>Die digitale Frequenzmodulation (''Frequency Shift Keying'', FSK) ist dagegen stets nichtlinear. Dieses Verfahren wird nachfolgend beschrieben, wobei wir uns auf die binäre FSK beschränken.
+
*Summarizing the amplitude &nbsp;$A$&nbsp;  and the modulator constant &nbsp;$K_{\rm FM}$&nbsp; into the&nbsp; "frequency deviation" (see below for definition)
 +
::$${\rm \Delta}f_{\rm A} =  \frac{A \cdot K_{\rm FM}}{2 \pi},$$
 +
:then the&nbsp; &raquo;'''FSK transmitted signal'''&laquo;&nbsp; in the &nbsp;$ν$–th time interval is:
 +
::$$s(t) =  s_0 \cdot \cos\hspace{-0.05cm}\big [2 \pi \cdot t \cdot (f_{\rm T}+a_{ \nu} \cdot {\rm \Delta}f_{\rm A} ) \big ]\hspace{0.05cm}.$$
 +
*This can be calculated with the two possible signal frequencies
 +
::$$f_{\rm +1} = f_{\rm T} +{\rm \Delta}f_{\rm A} \hspace{0.05cm},
 +
\hspace{0.2cm}f_{\rm -1} = f_{\rm T} -{\rm \Delta}f_{\rm A}$$
 +
:and written as:
 +
::$$s(t) = \left\{ \begin{array}{l} s_0 \cdot \cos (2 \pi  \cdot f_{\rm +1} \cdot  t )  \\  s_0 \cdot \cos (2 \pi  \cdot f_{\rm -1} \cdot  t ) \\  \end{array} \right.\quad \begin{array}{*{5}c}{\rm{for}} \\{\rm{for}}  \\ \end{array}\begin{array}{*{10}c} \hspace{0.05cm}a_{ \nu} = +1 \hspace{0.05cm}, \\ \hspace{0.05cm}a_{ \nu} = -1\hspace{0.05cm}\\ \end{array}$$
 +
*Thus,&nbsp; at any given time,&nbsp; only one of the two frequencies &nbsp;$f_{+1}$&nbsp; and &nbsp;$f_{–1}$&nbsp; arises.&nbsp; The carrier frequency&nbsp; $f_{\rm T}$&nbsp;  itself does not occur in the signal.
  
==FSK – Frequency Shift Keying==
 
Wir gehen hier aus vom Sendesignal der analogen Frequenzmodulation,
 
:$$s(t) =  s_0 \cdot \cos\hspace{-0.05cm}\big [\psi(t)\big ] \hspace{0.2cm} {\rm mit} \hspace{0.2cm} \psi(t) = 2\pi  f_{\rm T}  \hspace{0.05cm}t + K_{\rm FM} \cdot \int q(t)\hspace{0.1cm} {\rm d}t,$$
 
sowie dem rechteckförmigen Binärsignal mit $a_ν ∈ \{+1, –1\}$  ⇒  bipolare Signalisierung:
 
:$$q(t) = \sum_{\nu = - \infty}^{+\infty}a_{ \nu} \cdot g_s (t - \nu
 
\cdot T) \hspace{0.2cm} {\rm mit} \hspace{0.2cm} g_s(t) = \left\{ \begin{array}{l} A  \\ 0 \\  \end{array} \right.\quad \begin{array}{*{5}c}{\rm{f\ddot{u}r}} \\{\rm{f\ddot{u}r}}  \\ \end{array}\begin{array}{*{10}c}
 
0 < t < T\hspace{0.05cm},  \\ {\rm sonst} \hspace{0.05cm}. \\ \end{array}$$
 
Fasst man die Amplitude $A$ und die Modulatorkonstante $K_{\rm FM}$ zum Frequenzhub (Definition siehe unten)
 
:$${\rm \Delta}f_{\rm A} =  \frac{A \cdot K_{\rm FM}}{2 \pi}$$
 
zusammen, so lautet das '''FSK–Sendesignal''' im $ν$–ten Zeitintervall:
 
:$$s(t) =  s_0 \cdot \cos\hspace{-0.05cm}\big [2 \pi \cdot t \cdot (f_{\rm T}+a_{ \nu} \cdot {\rm \Delta}f_{\rm A} ) \big ]\hspace{0.05cm}.$$
 
Dieses lässt sich mit den beiden möglichen Signalfrequenzen
 
:$$f_{\rm +1} = f_{\rm T} +{\rm \Delta}f_{\rm A} \hspace{0.05cm},
 
\hspace{0.2cm}f_{\rm -1} = f_{\rm T} -{\rm \Delta}f_{\rm A}$$
 
auch in folgender Form schreiben:
 
:$$s(t) = \left\{ \begin{array}{l} s_0 \cdot \cos (2 \pi  \cdot f_{\rm +1} \cdot  t )  \\  s_0 \cdot \cos (2 \pi  \cdot f_{\rm -1} \cdot  t ) \\  \end{array} \right.\quad \begin{array}{*{5}c}{\rm{f\ddot{u}r}} \\{\rm{f\ddot{u}r}}  \\ \end{array}\begin{array}{*{10}c} a_{ \nu} = +1 \hspace{0.05cm},  \\ a_{ \nu} = -1\hspace{0.05cm}.  \\ \end{array}$$
 
Zu jedem Zeitpunkt tritt also stets nur eine der beiden Frequenzen $f_{+1}$ und $f_{–1}$ auf. Die Trägerfrequenz $f_{\rm T}$ selbst kommt im Signal nicht vor.
 
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
$\text{Definition:}$&nbsp; Der '''Frequenzhub''' $Δf_{\rm A}$ ist in gleicher Weise definiert wie bei der analogen FM, nämlich als die maximale Abweichung der Augenblicksfrequenz $f_{\rm A}(t)$ von der Trägerfrequenz $f_{\rm T}$. Häufig wird der Frequenzhub in der Literatur auch mit $Δf$ bzw. $F$ bezeichnet. }}
+
$\text{Definition:}$&nbsp; The&nbsp; &raquo;'''frequency deviation'''&laquo; &nbsp;$Δf_{\rm A}$&nbsp;
 +
*is defined in the same way as for analog frequency modulation, namely
 +
*as the maximum deviation of the instantaneous frequency &nbsp;$f_{\rm A}(t)$&nbsp;  from the carrier frequency &nbsp;$f_{\rm T}$:
 +
::$$ {\rm \Delta}f_{\rm A} =f_{\rm +1} - f_{\rm T}\hspace{0.05cm},
 +
\hspace{0.2cm}f_{\rm -1} = f_{\rm T} -f_{\rm -1}.$$
 +
 
 +
Sometimes,&nbsp; the&nbsp; &raquo;'''total frequency deviation'''&laquo;&nbsp; $ 2 \cdot {\rm \Delta}f_{\rm A} =f_{\rm +1} - f_{\rm -1}$&nbsp; is used in the literature. }}
  
  
Eine weitere wichtige Beschreibungsgröße ist in diesem Zusammenhang der Modulationsindex, der ebenfalls bereits bei der analogen Frequenzmodulation  als $η = Δf_{\rm A}/f_{\rm N}$ definiert wurde. Bei der FSK ist eine etwas andere Definition erforderlich, was durch einen anderen Kennbuchstaben berücksichtigt wird: &nbsp; $η h$.
+
Another important descriptive quantity in this context is the&nbsp; "modulation index",&nbsp; which was also already defined for analog frequency modulation as &nbsp;$η = Δf_{\rm A}/f_{\rm N}.$ &nbsp; &nbsp; For FSK,&nbsp; a slightly different definition is required,&nbsp; which is taken into account here with a different variable symbol: &nbsp; $η &nbsp; &nbsp; h$.
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
$\text{Definition:}$&nbsp; Bei der digitalen Frequenzmodulation (FSK) bezeichnet man als den '''Modulationsindex''' $h$ das Verhältnis aus dem Gesamtfrequenzhub und der Symbolrate $1/T$:
+
$\text{Definitions:}$&nbsp;  
 +
*For digital frequency modulation&nbsp; $\rm  (FSK)$,&nbsp; the&nbsp; &raquo;'''modulation index'''&laquo; &nbsp; $h$&nbsp; denotes the ratio of the total frequency deviation and the symbol rate &nbsp;$1/T$:
 
:$$h  =  \frac{2 \cdot {\rm \Delta}f_{\rm A} }{1/T} = 2 \cdot {\rm \Delta}f_{\rm A}\cdot T \hspace{0.05cm}.$$  
 
:$$h  =  \frac{2 \cdot {\rm \Delta}f_{\rm A} }{1/T} = 2 \cdot {\rm \Delta}f_{\rm A}\cdot T \hspace{0.05cm}.$$  
Manchmal wird in der Fachliteratur $h$ auch als '''Phasenhub''' bezeichnet. }}
+
*Sometimes &nbsp;$h$&nbsp; is also referred to as &raquo;'''phase deviation'''&laquo; in the literature. }}
  
  
 
{{GraueBox|TEXT=
 
{{GraueBox|TEXT=
$\text{Beispiel 1:}$&nbsp; Die Grafik zeigt unten das FSK–Sendesignal $s(t)$ für
+
$\text{Example 1:}$&nbsp; The graph below shows the FSK transmitted signal &nbsp;$s(t)$&nbsp; for
*das oben skizzierte binäre Quellensignal $q(t)$ mit Amplitudenwerten $\pm A =\pm  1 \ \rm V$, und
+
*the binary source signal &nbsp;$q(t)$&nbsp; sketched above with amplitude values &nbsp;$\pm A =\pm  1 \ \rm V$,&nbsp; and
*das darunter gezeichnete Trägersignal $z(t)$ mit vier Schwingungen pro Symboldauer $(f_{\rm T} · T = 4)$.  
+
*the carrier signal &nbsp;$z(t)$&nbsp; drawn below with four oscillations per symbol duration&nbsp; $(f_{\rm T} · T = 4)$.  
 +
[[File:P_ID1729__Mod_T_4_4_S2_neu.png |right|frame|Binary FSK signals &nbsp;$q(t)$, &nbsp;$z(t)$&nbsp; and &nbsp;$s(t)$]]
  
 +
<br><br><br><br><br>
 +
This results in the following characteristic values for the FSK system:
  
Zugrunde liegt der Frequenzhub $Δf_{\rm A} = 1/T$ &nbsp; &rArr; &nbsp; Modulationsindex $h = 2$. Die beiden möglichen Frequenzen sind $f_{\rm +1} = 5/T \hspace{0.05cm},\hspace{0.2cm}f_{\rm -1} = 3/T \hspace{0.05cm}.$
+
#The underlying frequency deviation is&nbsp;$Δf_{\rm A} = 1/T$.
 +
#The modulation index is &nbsp;$h = 2$.  
 +
#The two possible frequencies are &nbsp;$f_{\rm +1} = 5/T \hspace{0.05cm},\hspace{0.2cm}f_{\rm -1} = 3/T \hspace{0.05cm}.$
  
[[File:P_ID1729__Mod_T_4_4_S2_neu.png |center|frame| Signalverläufe q(t), z(t) und s(t) bei binärer FSK]]
 
  
Bei einem FSK–Übertragungssystem mit der Bitrate $1 \ {\rm Mbit/s} \ (T = 1 \ \rm μs)$ müsste somit die folgende FM–Konstante verwendet werden:  
+
Thus, for an FSK transmission system with bit rate &nbsp;$1 \ {\rm Mbit/s} \ \ (T = 1 \ \rm &micro; s)$,&nbsp; the following FM constant would have to be used:
 
:$$K_{\rm FM} =  \frac{2 \pi \cdot {\rm \Delta}f_{\rm A} }{A } = \frac{2 \pi }{A \cdot T } \approx 6.28 \cdot 10^{6}\,\,{\rm V^{-1}s^{-1} }\hspace{0.05cm}.$$}}
 
:$$K_{\rm FM} =  \frac{2 \pi \cdot {\rm \Delta}f_{\rm A} }{A } = \frac{2 \pi }{A \cdot T } \approx 6.28 \cdot 10^{6}\,\,{\rm V^{-1}s^{-1} }\hspace{0.05cm}.$$}}
  
==Kohärente Demodulation der FSK==
+
==Coherent demodulation of FSK==
Die folgende Grafik zeigt den bestmöglichen Demodulator für binäre FSK, der kohärent arbeitet und demzufolge auch Kenntnis über die Phasenlage des FSK–Signals benötigt. Im Blockschaltbild ist dies berücksichtigt, indem das Empfangssignal $r(t)$ identisch mit dem Sendesignal $s(t)$ angenommen wurde – siehe Signalverläufe im vorherigen Abschnitt.  
+
<br>
 +
The diagram shows the best possible demodulator for binary FSK that operates coherently.
  
[[File:P_ID1730__Mod_T_4_4_S3_neu.png |center|frame| Kohärenter FSK–Demodulator]]
+
[[File:EN_Mod_T_4_4_S3.png|right|frame| Coherent FSK demodulator]]  
  
Dieser Demodulator arbeitet nach folgendem Prinzip:  
+
*It thus requires knowledge of the phase of the FSK signal. 
*Es handelt sich hierbei um einen [[Digitalsignalübertragung/Optimale_Empfängerstrategien#MAP.E2.80.93_und_Maximum.E2.80.93Likelihood.E2.80.93Entscheidungsregel|Maximum–Likelihood–Empfänger]] (ML) in der Realisierungsform mit [[Stochastische_Signaltheorie/Matched-Filter|Matched–Filter]]. Dieses Filter mit dem Frequenzgang $H_{\rm MF}(f)$ kann bei dem vorausgesetzten rechteckförmigen Sendegrundimpuls $g_s(t)$ auch als Integrator realisiert werden.  
+
*This is accounted for in the block diagram by assuming that the received signal  &nbsp;$r(t)$&nbsp; is equal to the transmitted signal &nbsp;$s(t)$.
*Die Signale $b_{+1}(t)$ bzw. $b_{–1}(t)$ vor den Matched–Filtern ergeben sich durch die phasenrichtige Multiplikation mit den Schwingungen der Frequenz $f_{+1}$ bzw. $f_{–1}$.  
+
 
*Der ML–Empfänger entscheidet sich bekanntlich für den Zweig (das Symbol) mit der größeren „Metrik”, wobei das nachgeschaltete Matched–Filters zu berücksichtigen ist. Das heißt: &nbsp; Wahrscheinlich wurde  $a_ν = +1$ gesendet, wenn folgende Relation erfüllt ist:  
+
 
:$$d_{\rm +1}(\nu \cdot T) >  d_{\rm -1}(\nu \cdot T) \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
+
This demodulator operates according to following principle&nbsp; (see upper arrangement):
 +
#We are dealing with a&nbsp;[[Digital_Signal_Transmission/Optimal_Receiver_Strategies#Maximum-a-posteriori_and_maximum.E2.80.93likelihood_decision_rule|$\text{maximum–likelihood receiver}$]]&nbsp; $\rm (ML)$&nbsp; with&nbsp; [[Theory_of_Stochastic_Signals/Matched_Filter|$\text{matched filter}$]]&nbsp;  realization.&nbsp; This filter with frequency response&nbsp;$H_{\rm MF}(f)$&nbsp; can also be realized as an integrator with rectangular basic transmission pulse &nbsp;$g_s(t)$.  
 +
#Both signals &nbsp;$b_{+1}(t)$&nbsp; and &nbsp;$b_{–1}(t)$&nbsp; before their corresponding matched filters  are obtained by phase-appropriate multiplication with the oscillations of the frequencies &nbsp;$f_{+1}$&nbsp; and &nbsp;$f_{–1}$,&nbsp; respectively.  
 +
#The maximum-likelihood receiver is known to decide on the branch&nbsp; (for the symbol)&nbsp; with the larger&nbsp; "metric",&nbsp; taking into account the following matched filter.&nbsp; 
 +
#This means:   &nbsp;$a_ν = +1$&nbsp; was probably sent if the following condition is satisfied:
 +
::$$d_{\rm +1}(\nu \cdot T) >  d_{\rm -1}(\nu \cdot T) $$
 +
::$$\Rightarrow \hspace{0.3cm}
 
  d(\nu \cdot T) = d_{\rm +1}(\nu \cdot T) - d_{\rm -1}(\nu \cdot
 
  d(\nu \cdot T) = d_{\rm +1}(\nu \cdot T) - d_{\rm -1}(\nu \cdot
  T) > 0\hspace{0.05cm}.$$  
+
  T) > 0\hspace{0.05cm}.$$
*Das obere Blockschaltbild wurde zum besseren Verständnis in dieser Weise gezeichnet. Natürlich kann man die Matched–Filterung aber auch auf die rechte Seite der Differenzbildung verschieben, wie im unteren Modell dargestellt. Damit muss nur noch ein Filter realisiert werden.
 
  
 +
The upper block diagram has been drawn according to this description for better understanding.
  
In der [[Aufgaben:4.13_FSK–Demodulation|Aufgabe 4.13]] wird dieser FSK–Demodulator ausführlich behandelt. Auf dem entsprechenden Angabenblatt sehen Sie auch die Signalverläufe.  
+
*Of course,&nbsp; matched filtering could instead also be moved to the right of the discrimination,&nbsp; as shown in the lower model.&nbsp;
 +
*Then only one filter has to be implemented.
 +
*In &nbsp;[[Aufgaben:Exercise_4.13:_FSK_Demodulation|"Exercise 4.13"]]&nbsp;, this FSK demodulator is discussed in detail.  
 +
*On the exercise page you can also see the corresponding signal waveforms.
  
==Fehlerwahrscheinlichkeit der orthogonalen FSK==
+
==Error probability of orthogonal FSK==
 +
<br>
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
$\text{Definition:}$&nbsp; Man spricht von '''orthogonaler FSK''',  
+
$\text{Definition:}$&nbsp; One speaks of&nbsp; &raquo;'''orthogonal FSK'''&laquo;,  
*wenn der Modulationsindex $h$ ein ganzzahliges Vielfaches von 0.5 ist, und damit
+
*if the modulation index&nbsp; $h$&nbsp; is an integer multiple of &nbsp;$0.5$,&nbsp; and thus
*der Frequenzhub $Δf_{\rm A}$ ein ganzzahliges Vielfaches von $0.25/T$.}}
+
*the frequency deviation &nbsp;$Δf_{\rm A}$&nbsp; is an integer multiple of&nbsp; $0.25/T$.}}
 +
 
  
 +
For the coherent demodulator,&nbsp; the correlation coefficient between &nbsp;$d_{+1}(T_{\rm D})$&nbsp; and &nbsp;$d_{–1}(T_{\rm D})$&nbsp; is zero at all detection times.&nbsp;  Thus,&nbsp; the magnitude &nbsp;$|d(T_{\rm D})|$&nbsp; &ndash; the distance of the detection samples from the threshold &ndash;&nbsp; is constant.&nbsp;  No intersymbol interference occurs.
  
Beim kohärenten Demodulator ist der Korrelationskoeffizient zwischen $d_{+1}(T_{\rm D})$ und $d_{–1}(T_{\rm D})$ zu allen Detektionszeitpunkten gleich 0. Der Betrag $|d(T_{\rm D})|$ – also der Abstand der Detektionsabtastwerte von der Schwelle – ist somit konstant. Es treten keine Impulsinterferenzen auf.
+
If one assumes
 +
*orthogonal FSK,
 +
*an AWGN channel&nbsp; $($captured by the quotient &nbsp;$E_{\rm B}/N_0)$,&nbsp; and
 +
*the coherent demodulation described here,
  
Geht man von den Voraussetzungen
 
*orthogonale FSK,
 
*AWGN–Kanal (gekennzeichnet durch den Quotienten $E_{\rm B}/N_0)$, und
 
*der hier beschriebenen kohärenten Demodulation
 
  
aus, so ergibt sich die Bitfehlerwahrscheinlichkeit zu:
+
then  the bit error probability is given by:
:$$p_{\rm B} = {\rm Q}\left ( \sqrt{\frac{E_{\rm B}}{N_0 }} \hspace{0.1cm}\right
+
:$$p_{\rm B} = {\rm Q}\left ( \sqrt{{E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right
  ) = \frac{1}{2}\cdot {\rm erfc}\left ( \sqrt{\frac{E_{\rm B}}{2 \cdot N_0 }} \hspace{0.1cm}\right ).$$
+
  ) = {1}/{2}\cdot {\rm erfc}\left ( \sqrt{{E_{\rm B}}/(2 N_0 }) \hspace{0.1cm}\right ).$$
  
Dies entspricht [[Modulationsverfahren/Lineare_digitale_Modulation#Fehlerwahrscheinlichkeiten_-_ein_kurzer_.C3.9Cberblick|gegenüber der BPSK]] einer Degradation von $3 \ \rm dB$, weil
+
This corresponds to a degradation of &nbsp;$3 \ \rm dB$&nbsp; compared to&nbsp;[[Modulation_Methods/Linear_Digital_Modulation#Error_probabilities_-_a_brief_overview|$\text{BSPK}$]]&nbsp; because
*zwar der kohärente FSK–Demodulator bezüglich des Nutzsignals das gleiche Ergebnis liefert,  
+
*although the coherent FSK demodulator gives the same result with respect to the useful signal,  
*auch die Rauschleistungen in den beiden Zweigen genau so groß sind wie bei der BPSK,
+
*and the noise powers in the two branches are also exactly the same as with BPSK,
*es aber wegen der Subtraktion zu einer Verdopplung der Gesamtrauschleistung kommt.
+
*due to the subtraction,&nbsp; the total noise power is doubled.
  
  
Während aber bei der BPSK eine nichtkohärente Demodulation auf keinen Fall möglich ist, gibt es auch einen ''nichtkohärenten FSK–Demodulator'', allerdings mit etwas erhöhter Fehlerwahrscheinlichkeit:
+
However,&nbsp; while non-coherent demodulation is not possible under any circumstances in binary phase modulation (BPSK),&nbsp; there is also a&nbsp; "non-coherent FSK demodulator",&nbsp; but with a somewhat increased probability of error:
 
:$$p_{\rm B} = {1}/{2} \cdot {\rm e}^{- E_{\rm B}/{(2N_0) }}\hspace{0.05cm}.$$
 
:$$p_{\rm B} = {1}/{2} \cdot {\rm e}^{- E_{\rm B}/{(2N_0) }}\hspace{0.05cm}.$$
Die Herleitung dieser Gleichung erfolgt im Kapitel [[Digitalsignalübertragung/Trägerfrequenzsysteme_mit_nichtkohärenter_Demodulation|Trägerfrequenzsysteme mit nichtkohärenter Demodulation]] des Buches „Digitalsignalübertragung”.
+
The derivation of this equation is given in the chapter&nbsp; [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Non-Coherent_Demodulation|"Carrier Frequency Systems with Non-Coherent Demodulation"]]&nbsp; of the book&nbsp; "Digital Signal Transmission".
 +
 
 +
==Binary FSK with Continuous Phase Matching==
 +
<br>
 +
We continue to consider the orthogonal FSK.&nbsp;  The graph shows the source signal &nbsp;$q(t)$&nbsp; at the top and,&nbsp; drawn below,&nbsp; the FSK signal &nbsp;$s_{\rm A}(t)$&nbsp; with frequency deviation &nbsp;$Δf_{\rm A} = 1/T$ ⇒ modulation index &nbsp;$h = 2 · Δf_{\rm A} · T = 2$.&nbsp; The following should be noted about the other signal waveforms:
 +
 
 +
[[File:EN_Mod_T_4_4_S5.png|right|frame| Binary FSK signals with &nbsp;$h = 2$, &nbsp;$h = 1$&nbsp; and &nbsp;$h = 0.5$,&nbsp; partially with phase matching]]
 +
 
 +
* The signal&nbsp;$s_{\rm B}(t)$&nbsp; uses instantaneous frequencies &nbsp;$f_{+1} = 4.5/T$, &nbsp;$f_{–1} = 3.5/T$  &nbsp; ⇒ &nbsp; $Δf_{\rm A} ·T = 0.5$ &nbsp; ⇒  &nbsp;  $h = 1$.&nbsp; This FSK is also orthogonal because of&nbsp;$h = 1$&nbsp; $($multiple of &nbsp;$0.5)$.&nbsp; However,&nbsp; with smaller &nbsp;$h$,&nbsp; the bandwidth efficiency is better &nbsp; ⇒  &nbsp;  the spectrum &nbsp;$S_{\rm B}(f)$&nbsp;  is narrower than &nbsp;$S_{\rm A}(f)$.
  
==Binäre FSK mit kontinuierlicher Phasenanpassung==
+
Wir betrachten weiter die orthogonale FSK. Die Grafik zeigt oben das Quellensignal $q(t)$ und und darunter gezeichnet das FSK–Signal $s_{\rm A}(t)$ mit dem Frequenzhub $Δf_{\rm A} = 1/T$  &nbsp; ⇒  &nbsp; Modulationsindex $h = 2 · Δf_{\rm A} · T = 2$.  
+
*However,&nbsp; in the signal&nbsp;$s_{\rm B}(t)$,&nbsp; one can see a phase jump by &nbsp;$π$&nbsp; at each symbol boundary,&nbsp; which again results in a broadening of the spectrum.&nbsp; Such phase jumps can be avoided by phase matching.&nbsp; This is then referred to as&nbsp; &raquo;'''Continuous Phase Modulation'''&laquo;&nbsp; $\rm (CPM)$.
  
[[File:P_ID1731__Mod_T_4_4_S5_neu.png |center|frame| FSK–Signale mit <i>h</i> = 2, <i>h</i> = 1 und <i>h</i> = 0.5, teilweise mit Phasenanpassung]]
+
 +
*Also,&nbsp; for the CPM signal &nbsp;$s_{\rm C}(t)$,&nbsp; $f_{+1} = 4.5/T,&nbsp; f_{–1} = 3.5/T$&nbsp; and &nbsp;$h = 1$&nbsp; hold.&nbsp; In the range &nbsp;$0$ ... $T$,&nbsp; the coefficient &nbsp;$a_1 = +1$&nbsp; is represented by &nbsp;$\cos (2π·f_{+1}·t)$,&nbsp; and in the range &nbsp;$T$ ... $2T$,&nbsp; on the other hand,&nbsp; the also positive coefficient &nbsp;$a_2 = +1$&nbsp; is represented by &nbsp;$\ –\cos (2π·f_{+1}·t)$ &nbsp; &rArr; &nbsp; shifted by &nbsp;$π$.
  
Zu den weiteren Signalverläufen ist Folgendes anzumerken:
+
* Das FSK–Signal $s_{\rm B}(t)$ verwendet die Momentanfrequenzen $f_{+1} = 4.5/T$ und $f_{–1} = 3.5/T$  &nbsp; ⇒ &nbsp; $Δf_{\rm A} ·T = 0.5$ &nbsp; ⇒  &nbsp;  $h = 1.$ Auch diese FSK ist orthogonal, da $h = 1$ ein Vielfaches von $0.5$ ist. Bei kleinerem $h$ ist aber die Bandbreiteneffizienz besser  &nbsp; ⇒  &nbsp;   das Spektrum $S_{\rm B}(f)$ ist weniger breit als das Spektrum $S_{\rm A}(f)$.
+
*The modulation index &nbsp;$h = 0.5$&nbsp; of signal $s_{\rm D}(t)$&nbsp; is the smallest value that allows orthogonal FSK &nbsp; ⇒ &nbsp; &raquo;'''Minimum Shift Keying'''&laquo;&nbsp; $\rm (MSK)$.&nbsp; In MSK,&nbsp; four different initial phases are possible at each symbol boundary,&nbsp; depending on the previous symbols.
*Allerdings erkennt man im Signal $s_{\rm B}(t)$ an jeder Symbolgrenze einen Phasensprung um $π$, wodurch sich wieder eine Verbreiterung des Spektrums ergibt. Solche Phasensprünge lassen sich durch Phasenanpassung vermeiden. Man spricht dann von '''Continuous Phase Modulation''' (CPM).
 
*Auch beim CPM–Signal $s_{\rm C}(t)$ gilt $f_{+1} = 4.5/T, f_{–1} = 3.5/T$ und $h = 1$. Im Bereich von $0$ ... $T$ wird der Koeffizient $a_1 = +1$ mit $\cos (2π·f_{+1}·t)$ repräsentiert, im Bereich $T$ ... $2T$ wird der ebenfalls positive Koeffizient $a_2 = +1$ durch die um $π$ verschobene Funktion $\ –\cos (2π·f_{+1}·t)$ dargestellt.
 
*Der Modulationsindex $h = 0.5$ von Signal $s_{\rm D}(t)$ ist der kleinstmögliche Wert, der eine orthogonale FSK ermöglicht  &nbsp; ⇒ &nbsp;   Bezeichnung '''Minimum Shift Keying''' (MSK). Bei MSK sind bei jeder Symbolgrenze – je nach den vorherigen Symbolen – vier unterschiedliche Anfangsphasen möglich.  
 
  
  
Zur Verdeutlichung des hier dargelegten Sachverhaltens gibt es das Interaktionsmodul [[Continuous Phase Modulation (CPM)]].  
+
&rArr; &nbsp; The&nbsp; (German language)&nbsp; SWF applet&nbsp; [[Applets:Frequency_Shift_Keying_%26_Continuous_Phase_Modulation|"Frequency Shift Keying & Continuous Phase Modulation"]]&nbsp; illustrate the facts presented here.  
  
 
==MSK – Minimum Shift Keying==
 
==MSK – Minimum Shift Keying==
Die Grafik zeigt das Blockschaltbild zur Erzeugung einer MSK–Modulation und typische Signalverläufe an verschiedenen Punkten des MSK–Senders. [[File:P_ID1732__Mod_T_4_4_S6.png | right|frame|  Blockschaltbild zur Erzeugung eines MSK–Signals]]
+
<br>
Man erkennt
+
The graphic shows the block diagram for generating an MSK modulation and typical signal properties at various points of the MSK transmitter. One can recognize
*das digitale Quellensignal am Punkt (1), eine Folge von Diracimpulsen im Abstand $T$, gewichtet mit den Koeffizienten $a_ν ∈ \{–1, +1\}$:  
+
[[File:EN_Mod_T_4_4_S6.png | right|frame|  Block diagram for generating a MSK signal]]
 +
 +
*the digital source signal at point&nbsp; '''(1)''',&nbsp; a sequence of Dirac delta pulses spaced by &nbsp;$T$,&nbsp; weighted by the coefficients &nbsp;$a_ν ∈ \{–1, +1\}$:  
 
:$$q_\delta(t) = \sum_{\nu = - \infty}^{+\infty}a_{ \nu} \cdot \delta (t - \nu
 
:$$q_\delta(t) = \sum_{\nu = - \infty}^{+\infty}a_{ \nu} \cdot \delta (t - \nu
\cdot T)\hspace{0.05cm},$$
+
\cdot T)\hspace{0.05cm};$$
*das Rechtecksignal $q_{\rm R}(t)$ am Punkt (2) nach Faltung mit dem Rechteckimpuls $g(t)$ der Dauer $T$ und der Höhe $1/T$:  
+
*the rectangular signal &nbsp;$q_{\rm R}(t)$&nbsp; at point&nbsp; '''(2)'''&nbsp; after convolution with the rectangular pulse&nbsp;$g(t)$&nbsp; of duration&nbsp; $T$&nbsp; and height &nbsp;$1/T$:  
 
:$$q_{\rm R}(t) = \sum_{\nu = - \infty}^{+\infty}a_{ \nu} \cdot g (t - \nu
 
:$$q_{\rm R}(t) = \sum_{\nu = - \infty}^{+\infty}a_{ \nu} \cdot g (t - \nu
 
\cdot T)\hspace{0.05cm},$$
 
\cdot T)\hspace{0.05cm},$$
*den [[Modulationsverfahren/Frequenzmodulation_(FM)#Signalverl.C3.A4ufe_bei_Frequenzmodulation|Frequenzmodulator]], (Integrator und nachgeschalteter Phasenmodulator). Für das Signal am Punkt (3) gilt:  
+
*the &nbsp;[[Modulation_Methods/Frequency_Modulation_(FM)#Signal_characteristics_with_frequency_modulation|$\text{frequency modulator}$]]&nbsp; (integrator and following phase modulator).&nbsp;  For the signal at point '''(3)''':  
 
:$$\phi(t) =  {\pi}/{2}\cdot  \int_{0}^{t}
 
:$$\phi(t) =  {\pi}/{2}\cdot  \int_{0}^{t}
 
q_{\rm R}(\tau)\hspace{0.1cm} {\rm d}\tau \hspace{0.05cm}.$$
 
q_{\rm R}(\tau)\hspace{0.1cm} {\rm d}\tau \hspace{0.05cm}.$$
 +
:The phase values at multiples of the symbol duration &nbsp;$T$&nbsp; are multiples of &nbsp;$π/2$, when taking into account the modulation index &nbsp;$h = 0.5$&nbsp; for the MSK method. The phase response is linear. 
 +
*From this,&nbsp; the MSK signal at point&nbsp; '''(4)'''&nbsp; of the diagram is given by:
 +
:$$s(t)  =  s_0 \cdot \cos (2 \pi  f_{\rm T}  \hspace{0.05cm}t +
 +
\phi(t)) $$
 +
:$$\Rightarrow \hspace{0.3cm} s(t)  =  s_0 \cdot \cos (2 \pi \cdot t \cdot (f_{\rm T}+a_{ \nu} \cdot {\rm \Delta}f_{\rm A} )) \hspace{0.05cm}.$$
  
 +
==Realizing MSK as Offset–QPSK==
 +
<br>
 +
"Minimum Shift Keying"&nbsp; $\rm  (MSK)$&nbsp;can also be realized by modified implementation of&nbsp; [[Modulation_Methods/Quadrature_Amplitude_Modulation#Offset.E2.80.93Quadrature_amplitude_modulation|$\text{Offset–QPSK}$]].
  
 +
Compared with the conventional offset QPSK implementation (upper graph),&nbsp; the following modifications must be taken into account,&nbsp; which are highlighted in red in the lower graph:
 +
 +
[[File: EN_Mod_T_4_4_S7.png  | right|frame| Conventional Offset-QPSK&nbsp; ("O-QPSK")&nbsp; and Offset-QPSK in MSK mode]]
 +
 +
*The MSK symbol duration &nbsp;$T$&nbsp; is equal to the bit duration &nbsp;$T_{\rm B}$&nbsp; of the binary input signal,&nbsp; while in original Offset-QPSK,  &nbsp;$T = 2 \cdot T_{\rm B}$.
 +
 +
 +
*Instead of serial-to-parallel conversion and signal space allocation,&nbsp; the source symbols must now be recoded:
 +
:$$a_k = (–1)^{k+1} · a_{k–1} · q_k.$$
 +
 +
*All amplitude coefficients &nbsp;$a_k$&nbsp; with an even index &nbsp;$(a_0,\ a_2$, ...$)$&nbsp; are applied to the Dirac comb in the upper branch,&nbsp; while &nbsp;$a_1,\ a_3$, ...&nbsp; are transmitted in the lower branch.
  
Die Phasenwerte bei Vielfachen der Symboldauer $T$ sind Vielfache von $π$/2, wobei der für MSK gültige Modulationsindex $h = 0.5$ berücksichtigt ist. Der Phasenverlauf ist linear. Daraus ergibt sich das MSK–Signal am Punkt (4) des Blockschaltbildes zu
 
:$$s(t)  =  s_0 \cdot \cos (2 \pi  f_{\rm T}  \hspace{0.05cm}t +
 
\phi(t)) =  s_0 \cdot \cos (2 \pi \cdot t \cdot (f_{\rm T}+a_{ \nu} \cdot {\rm \Delta}f_{\rm A} )) \hspace{0.05cm}.$$
 
  
==Realisierung der MSK als Offset–QPSK==
+
*The spacing of the individual Dirac delta pulses of the&nbsp; "Dirac comb"&nbsp; is now &nbsp;$2T$&nbsp; instead of &nbsp;$T$&nbsp; and the offset in the quadrature branch is no longer &nbsp;$T/2$,&nbsp; but &nbsp;$T$.&nbsp; In both cases,&nbsp; the offset is equal to &nbsp;$T_{\rm B}$.
Durch einen modifizierten Betrieb von Offset Quaternary Phase Shift Keying (O–QPSK) gemäß der unteren Grafik lässt sich ''Minimum Shift Keying'' (MSK) realisieren.  
 
  
[[File: P_ID1733__Mod_T_4_4_S7_neu.png  | center|frame|  Herkömmliches O–QPSK und O–QPSK in MSK–Betriebsart]]
 
  
Gegenüber dem herkömmlichen Betrieb (obere Grafik) sind folgende Modifikationen zu berücksichtigen, die in der unteren Grafik rot hervorgehoben sind:
+
*While in conventional Offset-QPSK implementation any basic transmission pulse &nbsp;$g_s(t)$&nbsp;is possible, e.g. a rectangular or a root-Nyquist pulse,&nbsp; there is only one suitable basic pulse for MSK implementation.&nbsp; This spans two symbol durations:
*Die Symboldauer $T$ der MSK ist gleich der Bitdauer $T_{\rm B}$ des binären Eingangssignals, während bei der originären O–QPSK $T = 2 T_{\rm B}$ gilt.
+
:$$g_{\rm MSK}(t) = \left\{ \begin{array}{l} s_0 \cdot \cos \big ({\pi/2 \cdot t}/T \big )  \\
*Anstelle der Seriell–Parallel–Wandlung und Signalraumzuordnung müssen nun die Quellensymbole umcodiert entsprechend $a_k = (–1)^{k+1} · a_{k–1} · q_k$ werden.
 
*Alle Amplitudenkoeffizienten $a_k$ mit geradzahligem Index $(a_0, a_2, ....)$ werden dem Diracpuls im oberen Zweig eingeprägt, während $a_1, a_3, ...$ im unteren Zweig übertragen werden.
 
*Der Abstand der einzelnen Diracimpulse beträgt nun $2T$ anstelle von $T$ und der Versatz (Offset) im Quadraturzweig ist nicht mehr $T/2$, sondern $T$. In beiden Fällen ist aber der Offset gleich $T_{\rm B}$.
 
*Während beim herkömmlichen O–QPSK–Betrieb jeder beliebige Grundimpuls $g_s(t)$ möglich ist, zum Beispiel ein Rechteck– oder ein Wurzel–Nyquist–Impuls, gibt es für den MSK–Betrieb nur einen einzigen geeigneten Grundimpuls. Dieser erstreckt sich über zwei Symboldauern:  
 
$$g_{\rm MSK}(t) = \left\{ \begin{array}{l} s_0 \cdot \cos (\frac{\pi  \cdot t}{2  \cdot T})  \\
 
 
  0 \\  \end{array} \right.\quad
 
  0 \\  \end{array} \right.\quad
\begin{array}{*{5}c}{\rm{f\ddot{u}r}}
+
\begin{array}{*{5}c} {\rm{for}}  
\\{\rm{f\ddot{u}r}}  \\ \end{array}\begin{array}{*{10}c}
+
\\ \\ \end{array}\begin{array}{*{10}c}
 
-T \le t \le +T \hspace{0.05cm},  \\
 
-T \le t \le +T \hspace{0.05cm},  \\
{\rm sonst}\hspace{0.05cm}.  \\
+
{\rm otherwise}\hspace{0.05cm}.  \\
 
\end{array}$$
 
\end{array}$$
 +
<br clear=all>
 +
{{GraueBox|TEXT=$\text{Example 2:}$&nbsp; The graph shows 
 +
[[File:P_ID1734__Mod_T_4_4_S7b_neu.png |right|frame|  Signal waveforms of O–QPSK in MSK mode]]
  
==Realisierung der MSK als Offset–QPSK (2)==
+
*the binary bipolar source signal &nbsp;$q(t)$&nbsp; at the top,
{{Beispiel}}
+
*in the middle,&nbsp; the equivalent low-pass signals &nbsp;$s_{\rm I}(t)$&nbsp; and &nbsp;$s_{\rm Q}(t)$&nbsp; in the &nbsp;$\rm I$ and &nbsp;$\rm Q$ branches, resp.,
Die Grafik zeigt
+
*below,&nbsp; the phase response &nbsp;$ϕ(t)$&nbsp; of the total MSK transmitted signal &nbsp;$s(t)$.  
*oben das binäre bipolare Quellensignal $q(t)$,  
 
*in der Mitte die äquivalenten TP–Signale $s_{\rm I}(t)$ und $s_{\rm Q}(t)$ im I– und Q–Zweig, sowie
 
*unten den Phasenverlauf $ϕ(t)$ des gesamten MSK–Sendesignals $s(t)$.  
 
  
  
Die Umcodierung $a_k = (–1)^{k+1} · a_{k–1} · q_k$ ist bereits berücksichtigt, ebenso der MSK–Grundimpuls.  
+
The recoding &nbsp;$a_k = (–1)^{k+1} · a_{k–1} · q_k$&nbsp; is already taken into account,&nbsp; as well as the MSK basic pulse:
 +
:$$g_{\rm MSK}(t) = \left\{ \begin{array} {l} s_0 \cdot \cos ({\pi  \cdot t}/{2  \cdot T})  \\
 +
0 \\  \end{array} \right.\quad
 +
\begin{array}{*{5}c}{\rm{for} }
 +
\\  \\ \end{array}\begin{array}{*{10}c}
 +
-T \le t \le +T \hspace{0.05cm},  \\
 +
{\rm otherwise}\hspace{0.05cm}.  \\
 +
\end{array}$$
 +
 +
From the comparison of the top and the bottom diagrams,&nbsp; one can see:
 +
#The MSK phase response &nbsp;$ϕ(t)$&nbsp; is step-wise linear and increases or decreases by &nbsp;$90^\circ \ (π/2)$ within each symbol duration,&nbsp; depending on whether &nbsp;$q_k = +1$&nbsp; or &nbsp;$q_k = -1$&nbsp; currently holds.
 +
#The associated transmitted signal &nbsp;$s(t)$&nbsp; contains the two frequencies &nbsp;$f_{\rm T} ± 1/(4T)$ in sections.  It has basically the same shape as the signal &nbsp;$s_{\rm D}(t)$&nbsp; in the section [[Modulation_Methods/Nonlinear_Digital_Modulation#Binary_FSK_with_Continuous_Phase_Matching|"Binary FSK with CPM"]].
  
[[File:P_ID1734__Mod_T_4_4_S7b_neu.png | center|frame|  Signalverläufe der O–QPSK im MSK–Betrieb]]
 
  
Man erkennt aus dem Vergleich des obersten und des untersten Diagramms:  
+
&rArr; &nbsp; You can represent this MSK realization form with the SWF applet&nbsp; [[Applets:QPSK_und_Offset-QPSK_(Applet)|"Quaternary Phase Shift Keying and Offset-QPSK"]]&nbsp;  using the following settings: &nbsp; "Offset–QPSK" &nbsp;&ndash;&nbsp;  "MSK allocation" &nbsp;&ndash;&nbsp;  "cosine pulse". }}  
*Der MSK–Phasenverlauf $ϕ(t)$ ist abschnittsweise linear und steigt bzw. fällt innerhalb einer jeden Symboldauer um 90° (π/2), je nachdem, ob gerade $q_k =$ +1 oder $q_k =$ –1 anliegt.
 
*Das zugehörige Sendesignal $s(t)$ beinhaltet abschnittsweise die beiden Frequenzen $f_{\rm T} ± 1/(4T)$. Es hat den prinzipiell gleichen Verlauf wie das Signal $s_{\rm D}(t)$ in Abschnitt 5 dieses Kapitels.
 
{{end}}  
 
  
  
Diese Form der MSK–Realisierung können Sie mit dem nachfolgenden Interaktionsmodul darstellen, wenn Sie die Einstellungen O–QPSK, MSK–Zuordnung und Cosinusimpuls wählen:
 
  
Quaternary Phase Shift Keying (4–QAM/QPSK bzw. O–QPSK)
+
==General Description of Continuous Phase Modulation==
 +
<br>
 +
We will further assume that the source is characterized by the amplitude coefficients &nbsp;$a_ν$.&nbsp;
 +
#These can be binary as well as &nbsp;$M$–levelled. 
 +
#However,&nbsp; they should always be considered bipolar,&nbsp; e.g. &nbsp; $a_ν\in \{+1, -1\}$.
  
==Allgemeingültige Beschreibung der CPM==
 
Wir gehen wieder davon aus, dass die Quelle durch die Amplitudenkoeffizienten $a_ν$ charakterisiert wird. Diese können sowohl binär (±1) als auch $M$–stufig sein. Sie sind aber stets bipolar zu betrachten.
 
  
Die Phasenfunktion $ϕ(t)$ kann bei ''Continuous Phase Modulation'' (CPM) allgemein in folgender Form dargestellt werden $(h$ bezeichnet wieder den Modulationsindex):  
+
The&nbsp; &raquo;'''phase function'''&laquo; &nbsp;$ϕ(t)$&nbsp; in&nbsp; "Continuous Phase Modulation"&nbsp; $\rm (CPM)$&nbsp; can be generally represented in the following form &nbsp; $(h$&nbsp; denotes the modulation index$)$:  
$$\phi(t) =  {\pi}\cdot h  \cdot\int_{-\infty}^{t}
+
:$$\phi(t) =  {\pi}\cdot h  \cdot\int_{-\infty}^{t}
 
\sum_{\nu = - \infty}^{+\infty}a_{ \nu} \cdot g (\tau - \nu \cdot
 
\sum_{\nu = - \infty}^{+\infty}a_{ \nu} \cdot g (\tau - \nu \cdot
 
T)\hspace{0.1cm} {\rm d}\tau \hspace{0.05cm}.$$
 
T)\hspace{0.1cm} {\rm d}\tau \hspace{0.05cm}.$$
In dieser Darstellung bezeichnet $g(t)$ den Frequenzimpuls, der folgende Bedingung erfüllen muss:  
+
*In this representation, &nbsp;$g(t)$&nbsp; denotes the&nbsp; &raquo;'''frequency pulse'''&laquo;,&nbsp; which must satisfy the following condition:
$$\int_{-\infty}^{+\infty} g (t)\hspace{0.1cm} {\rm d}t = 1 \hspace{0.05cm}.$$
+
:$$\int_{-\infty}^{+\infty} g (t)\hspace{0.1cm} {\rm d}t = 1 \hspace{0.05cm}.$$
Mit dem Phasenimpuls $g_ϕ(t)$ gilt aber auch der folgende Zusammenhang:
+
*But the following relationship also holds with the &nbsp; &raquo;'''phase pulse'''&laquo; &nbsp; $g_ϕ(t)$:
$$\phi(t) =  {\pi}\cdot h  \cdot
+
:$$\phi(t) =  {\pi}\cdot h  \cdot
 
\sum_{\nu = - \infty}^{+\infty}a_{ \nu} \cdot g_\phi (t - \nu
 
\sum_{\nu = - \infty}^{+\infty}a_{ \nu} \cdot g_\phi (t - \nu
\cdot T),\hspace{0.2cm}{\rm wobei}\hspace{0.2cm}g_\phi(t) =
+
\cdot T),\hspace{0.2cm}{\rm where}\hspace{0.2cm}g_\phi(t) =
 
\int_{-\infty}^{t} g (\tau )\hspace{0.1cm} {\rm
 
\int_{-\infty}^{t} g (\tau )\hspace{0.1cm} {\rm
 
d}\tau\hspace{0.05cm}.$$
 
d}\tau\hspace{0.05cm}.$$
  
Durch geeignete Wahl der Impulse $g(t)$ bzw. $g_ϕ(t)$ lassen sich viele CPM–Varianten realisieren. Einige davon sind in der nachfolgenden Grafik dargestellt.
+
Many CPM variants can be realized by appropriately choosing the pulses  &nbsp;$g(t)$&nbsp; and &nbsp;$g_ϕ(t)$&nbsp;. Some of them are shown on the right.
  
 +
[[File:P_ID1735__Mod_T_4_4_S8_neu.png |right|frame|  Frequency pulse and phase pulse of some CPM variants]]
  
[[File:P_ID1735__Mod_T_4_4_S8_neu.png |center|frame|  Frequenzimpuls und Phasenimpuls einiger CPM–Varianten]]
+
#The individual graphs show the CPM frequency pulse&nbsp;$g(t)$&nbsp; above and the CPM phase pulse &nbsp;$g_ϕ(t)$&nbsp; below.
 +
#The two graphs on the left describe&nbsp; "$\rm MSK$".
 +
#The&nbsp; "$\rm 1–REC$"&nbsp; designation indicates that &nbsp;$g(t)$&nbsp; spans a single symbol duration &nbsp;$(T)$&nbsp; and is rectangular in shape.  
  
  
Die obige Grafik zeigt jeweils
+
The other CPM variants were designed with the goal of further reducing the already small bandwidth of the MSK signal:
*oben den CPM–Frequenzimpuls $g(t)$,
+
*For&nbsp; "$\rm 1–RC$",&nbsp; a narrower power-spectral density results just because of the&nbsp; "softer"&nbsp; raised-cosine pulse &nbsp;$g(t)$&nbsp; compared to the rectangular pulse.
*unten den CPM–Phasenimpuls $g_ϕ(t)$.  
+
*"$\rm 2–RC$"&nbsp; and&nbsp; "$\rm 2–REC$"&nbsp;are partial–response pulses,&nbsp; each over &nbsp;$2T$.&nbsp; This softens the phase response.&nbsp;  However,&nbsp; it also makes demodulation more difficult,&nbsp; since selective pseudo-steps are introduced into the data signal.
  
 +
 +
The spectral calculation of CPM methods is complicated in general.&nbsp; Only the special case&nbsp; "MSK"&nbsp; leads to equations which are easy to handle,&nbsp; as shown in &nbsp;[[Aufgaben:Exercise_4.14:_Phase_Progression_of_the_MSK|"Exercise 4.14"]].
  
Die Bezeichnung „1–REC” für die Darstellungen der linke Spalte gibt an, dass der Frequenzimpuls sich über eine Symboldauer erstreckt und rechteckförmig ist. Diese Grafiken beschreiben also die MSK.  
+
{{BlaueBox|TEXT=
 +
$\text{Conclusion:}$&nbsp; The&nbsp; &raquo;'''Continuous Phase Modulation'''&laquo;&nbsp; $\rm (CPM)$&nbsp; it is not a phase modulation,&nbsp; but is a&nbsp; &raquo;'''non-linear digital frequency modulation'''&laquo;&nbsp; $\rm (FSK)$,&nbsp; with the goal
 +
* of guaranteeing a constant magnitude envelope&nbsp; $($dips in the envelope lead to problems even with small non-linearities$)$,&nbsp; and
 +
*to enable a continuous phase progression&nbsp; $($phase jumps broaden the spectrum$)$.
  
Die Weiteren in der Grafik berücksichtigten CPM–Varianten wurden mit dem Ziel entworfen, die bereits kleine Bandbreite des MSK–Signals asymptotisch weiter zu verringern:
 
*Bei „1–RC” ergibt sich allein durch den „weicheren” Raised–Cosine–Impuls $g(t)$ gegenüber dem Rechteck ein schmaleres Leistungsdichtespektrum.
 
*Bei „2–RC” und „2–REC” handelt es sich um Partial–Response–Impulse, die sich jeweils über zwei Symboldauern erstrecken. Hierdurch wird der Phasenverlauf ebenfalls weicher. Gleichzeitig wird dadurch aber die Demodulation und Detektion erschwert, da in das Datensignal am Eingang des Frequenzmodulators gezielte Pseudomehrstufigkeiten eingebracht werden.
 
  
 +
For detailed information we refer to the technical literature,&nbsp; for example in the recommended text book &nbsp; '''[Kam04]'''<ref>Kammeyer, K.D.:&nbsp; Nachrichtenübertragung.&nbsp; Stuttgart: B.G. Teubner, 4. Auflage, 2004.</ref>. }}
  
Die Berechnung der CPM–Verfahren im Spektralbereich ist im allgemeinen kompliziert. Hier sei auf die Fachliteratur verwiesen, zum Beispiel auf das empfehlenswerte Buch [Kam04]<ref>Kammeyer, K.D.: ''Nachrichtenübertragung.'' Stuttgart: B.G. Teubner, 4. Auflage, 2004.</ref>. Nur der Sonderfall „MSK” führt zu einfach handhabbaren Gleichungen, wie in der Aufgabe A4.14 gezeigt werden wird.
 
  
 +
==GMSK – Gaussian Minimum Shift Keying==
 +
<br>
 +
One advantage of Minimum Shift Keying is the low bandwidth requirement,&nbsp; because:&nbsp;  '''Bandwidth is always expensive'''.
 +
*A slight modification to&nbsp; &raquo;'''Gaussian Minimum Shift Keying'''&laquo;&nbsp; $\rm (GMSK)$&nbsp; further narrows the spectrum.
 +
*This type of modulation is used,&nbsp; for example,&nbsp; in the [[Examples_of_Communication_Systems/General_Description_of_GSM|$\text{GSM}$]]&nbsp;  mobile communications standard.
  
{{Box}}
+
[[File:EN_Mod_T_4_4_S9_v3.png |right|frame|  Signal waveforms in Gaussian Minimum Shift Keying&nbsp; $\rm (GMSK)$]]
Kurze Zusammenfassung: Die '''Continuous Phase Modulation (CPM)''' ist keine Phasenmodulation, sondern stellt eine '''nichtlineare digitale Frequenzmodulation (FSK)''' dar, mit dem Ziel
 
*eine konstante Betragseinhüllende zu garantieren, und
 
*einen stetigen Phasenverlauf zu ermöglichen (Phasensprünge verbreitern das Spektrum).  
 
{{end}}
 
 
 
==GMSK – Gaussian Minimum Shift Keying==
 
Ein Vorteil der MSK gegenüber anderen Verfahren ist der geringere Bandbreitenbedarf. Durch eine geringfügige Modifikation hin zum Gaussian Minimum Shift Keying – abgekürzt GMSK– wird das Spektrum weiter verschmälert. GMSK wird zum Beispiel beim Mobilfunkstandard GSM angewendet.
 
  
  
[[File:P_ID1748__Mod_T_4_4_S9_neu.png  |center|frame|  Signalverläufe bei Gaussian Minimum Shift Keying (GMSK)]]
+
From the graph one can see:
 +
*the frequency pulse &nbsp;$g(t)= g_{\rm G}(t)$&nbsp; is now no longer rectangular like &nbsp;$g_{\rm R}(t)$,&nbsp; but has flatter edges.
  
  
Man erkennt aus dem Grafik, dass der Frequenzimpuls $g(t)$ nun nicht mehr rechteckförmig ist wie $g_{\rm R}(t)$, sondern flachere Flanken aufweist. Dadurch ergibt sich ein weicherer Phasenverlauf am Punkt 3 als beim MSK–Verfahren (siehe letzter Abschnitt), bei dem $ϕ(t)$ symbolweise linear ansteigt bzw. abfällt.  
+
*This results in a smoother phase response at point &nbsp; '''(3)'''&nbsp; than in  &nbsp;[[Modulation_Methods/Nonlinear_Digital_Modulation#MSK_.E2.80.93_Minimum_Shift_Keying|$\text{MSK}$]],&nbsp; where &nbsp;$ϕ(t)$&nbsp; rises / falls linearly within each symbol.
  
Man erreicht die sanfteren GMSK–Phasenübergänge durch einen Gaußtiefpass. Dessen Frequenzgang und Impulsantwort lauten mit der systemtheoretischen Grenzfrequenz $f_{\rm G}$:  
+
$$H_{\rm G}(f) = {\rm e}^{-\pi\cdot (\frac{f}{2 \cdot f_{\rm G}})^2} \hspace{0.2cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.2cm}
+
*One achieves the smoother GMSK phase transitions by using a&nbsp; [[Linear_and_Time_Invariant_Systems/Some_Low-Pass_Functions_in_Systems_Theory#Gaussian_low-pass_filter|$\text{Gaussian low-pass}$]].&nbsp; With the system-theoretic cutoff frequency&nbsp; $f_{\rm G}$,&nbsp; its frequency response and impulse response are as follows:  
 +
:$$H_{\rm G}(f) = {\rm e}^{-\pi\cdot (\frac{f}{2 \cdot f_{\rm G}})^2} \hspace{0.2cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.2cm}
 
  h_{\rm G}(t) = 2 f_{\rm G} \cdot {\rm e}^{-\pi\cdot (2 \cdot f_{\rm G}\cdot t)^2}\hspace{0.05cm}.$$
 
  h_{\rm G}(t) = 2 f_{\rm G} \cdot {\rm e}^{-\pi\cdot (2 \cdot f_{\rm G}\cdot t)^2}\hspace{0.05cm}.$$
Der resultierende Frequenzimpuls $g(t)$ am Punkt 2 ergibt sich aus der Faltung von $g_{\rm R}(t)$ und $h_{\rm G}(t)$. Das Signal $s(t)$ am Punkt 4 weist bei GMSK nun nicht mehr abschnittsweise (je Symboldauer) eine konstante Frequenz auf wie bei MSK, auch wenn dies aus obiger Grafik mit bloßem Auge schwer zu erkennen ist.
 
  
 +
*The resulting frequency pulse &nbsp;$g(t)$&nbsp; at point&nbsp; '''(2)'''&nbsp; is obtained by convolution of&nbsp; $g_{\rm R}(t)$ &nbsp; and &nbsp; $h_{\rm G}(t)$.
  
{{Beispiel}}
+
Beim GSM–Verfahren ist die 3dB–Grenzfrequenz zu $f_{\rm 3dB} = 0.3/T$ spezifiziert, wobei zwischen der systemtheoretischen und der 3dB–Grenzfrequenz folgender Zusammenhang besteht:  
+
*The GMSK transmitted signal &nbsp;$s(t)$&nbsp; at point&nbsp; '''(4)'''&nbsp; has no longer a constant frequency&nbsp;  $($section by section,&nbsp;  per symbol duration$)$&nbsp; as it does in MSK,&nbsp; even though this is difficult to see with the naked eye from the above graph.
$$H_{\rm G}(f= f_{\rm 3 \hspace{0.03cm}dB}) = {\rm e}^{-\pi\cdot ({f_{\rm 3 \hspace{0.03cm}{dB}}}/{2 f_{\rm G}})^2} = {1}/{\sqrt{2}}\hspace{0.15cm}\Rightarrow\hspace{0.15cm}
+
<br clear=all>
  f_{\rm 3 dB} = f_{\rm G} \cdot \sqrt {{4}/{\pi}\cdot {\rm ln
+
{{GraueBox|TEXT=$\text{Example 3:}$&nbsp; In the GSM method,&nbsp; the  cutoff frequency is specified as &nbsp;$f_\text{3dB} = 0.3/T$,&nbsp; where the following relationship exists
  }\sqrt{2}}\approx {2}/{3}\cdot f_{\rm G}
+
*between the&nbsp;  "system-theoretic cutoff frequency"&nbsp; $f_\text{G}$&nbsp;
 +
*and the&nbsp;  "3dB cutoff frequency"&nbsp; $f_\text{3dB}$:
 +
:$$H_{\rm G}(f= f_{\rm 3 \hspace{0.03cm}dB}) = {\rm e}^{-\pi\cdot ({f_{\rm 3 \hspace{0.03cm}{dB} } }/{2 f_{\rm G} })^2} =  
 +
{1}/{\sqrt{2} }\hspace{0.3cm} \Rightarrow\hspace{0.3cm}
 +
  f_{\rm 3 dB} = f_{\rm G} \cdot \sqrt { {4}/{\pi}\cdot {\rm ln
 +
  }\sqrt{2} }\approx {2}/{3}\cdot f_{\rm G}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
Aus $f_{\rm 3dB} = 0.3/T$ folgt damit auch $f_{\rm G} · T $ 0.45.  
+
From &nbsp;$f_{\rm 3dB} = 0.3/T$ &nbsp; &rArr; &nbsp;$f_{\rm G} ≈ 0.45/T$. }}
{{end}}
+
 
 +
 
 +
==Exercises for the chapter==
 +
<br>
 +
[[Aufgaben:Exercise_4.13:_FSK_Demodulation|Exercise 4.13: FSK Demodulation]]
 +
 
 +
[[Aufgaben:Exercise_4.14:_Phase_Progression_of_the_MSK|Exercise 4.14: Phase Progression of the MSK]]
 +
 
 +
[[Aufgaben:Exercise_4.14Z:_Offset_QPSK_vs._MSK|Exercise 4.14Z: Offset QPSK vs. MSK]]
 +
 
 +
[[Aufgaben:Exercise_4.15:_MSK_Compared_with_BPSK_and_QPSK|Exercise 4.15: MSK Compared with BPSK and QPSK]]
 +
 
 +
[[Aufgaben:Exercise_4.15Z:_MSK_Basic_Pulse_and_MSK_Spectrum|Exercise 4.15Z: MSK Basic Pulse and MSK Spectrum]]
  
 +
[[Aufgaben:Erercise_4.16:_Comparison_between_Binary_PSK_and_Binary_FSK|Exercise 4.16: Comparison between Binary PSK and Binary FSK]]
  
==Quellenverzeichnis==
+
==References==
 
<references/>
 
<references/>
  
 
{{Display}}
 
{{Display}}

Latest revision as of 15:21, 17 January 2023

Properties of non-linear modulation methods


All modulation methods can be alternatively classified as:

  • amplitude, phase and frequency modulation,
  • analog and digital modulation methods,
  • linear and non-linear modulation methods.


Considering this last distinction, the following definition applies:

$\text{Definitions:}$ 

  • A  »linear modulation method«  is present if any linear combination of signals at modulator input leads to a corresponding linear combination at its output.
  • Otherwise,  it is a  »non-linear modulation«.


At the  "beginning of the present book"  it was already pointed out that the main difference between an analog and a digital modulation method is that

  • in the first one an analog source signal  $q(t)$  is present,  and
  • in the second one a digital signal.


However,  a closer look will reveal that there are a few more differences between these methods.  This will be discussed in more detail below.

Analog and digital AM, PM and FM methods

The following diagram shows some of the differences with respect to the classifications given above.

  •  $\text{Analog amplitude modulation}$  $\rm (AM)$  is a linear method. The locus curve - that is, the equivalent low-pass signal  $s_{\rm TP}(t)$  represented in the complex plane - is a straight line.
  • In that case,  the locus curve is an arc of a circle.  With a harmonic oscillation,  there is a line spectrum  $S(f)$  at multiples of the message frequency $f_{\rm N}$  around the carrier frequency  $f_{\rm T}$.
  • $\text{Digital amplitude modulation}$,  referred to as either   "Amplitude Shift Keying"  $\rm (ASK)$  or as  "On–Off–Keying"  $\rm (OOK)$,  is also linear.  In the binary case,  the locus curve consists of only two points.
  • Since  $\text{binary phase modulation}$  $($"Binary Phase Shift Keying",  $\rm BPSK)$  can be represented as  $\rm ASK$  with bipolar amplitude coefficients,  it is also linear.  The shape of the BPSK power-spectral density is essentially determined by the magnitude square spectrum  $|G_s(f)|^2$  of the basic transmission pulse.


However,  this also means:   The BPSK spectrum is continuous in $f$,  unlike the analog PM of a harmonic oscillation  (only one frequency!).   If one were to consider BPSK as analog PM with digital source signal  $q(t)$,  then an infinite number of Bessel line spectra would have to be convolved together to calculate the power-spectral density  ${\it Φ}_s(f)$  when  $Q(f)$  is represented as an infinite sum of individual frequencies.
  • Higher-level   "Phase Shift Keying",  such as  $\rm 8–PSK$,  is linear only in special cases, see [Klo01][1].  Digital frequency modulation  $($"Frequency Shift Keying",  $\rm FSK)$  is always non-linear.  This method is described below,  where we restrict our focus to the binary case  $\rm (2-FSK)$ .

FSK – Frequency Shift Keying


$\text{Now we assume:}$ 

  • the transmitted signal of the analog frequency modulation,
$$s(t) = s_0 \cdot \cos\hspace{-0.05cm}\big [\psi(t)\big ] \hspace{0.5cm} {\rm with} \hspace{0.5cm} \psi(t) = 2\pi f_{\rm T} \hspace{0.05cm}t + K_{\rm FM} \cdot \int q(t)\hspace{0.1cm} {\rm d}t,$$
  • the rectangular binary source signal with  $a_ν ∈ \{+1, –1\}$   ⇒   bipolar signaling:
$$q(t) = \sum_{\nu = - \infty}^{+\infty}a_{ \nu} \cdot g_s (t - \nu \cdot T) \hspace{0.5cm} {\rm with} \hspace{0.5cm} g_s(t) = \left\{ \begin{array}{l} A \\ 0 \\ \end{array} \right.\quad \begin{array}{*{5}c}{\rm{for} } \\{\rm{ } } \\ \end{array}\begin{array}{*{10}c} \hspace{0.05cm}0 < t < T\hspace{0.05cm}, \\ {\rm otherwise} \hspace{0.05cm}. \\ \end{array}$$


  • Summarizing the amplitude  $A$  and the modulator constant  $K_{\rm FM}$  into the  "frequency deviation" (see below for definition)
$${\rm \Delta}f_{\rm A} = \frac{A \cdot K_{\rm FM}}{2 \pi},$$
then the  »FSK transmitted signal«  in the  $ν$–th time interval is:
$$s(t) = s_0 \cdot \cos\hspace{-0.05cm}\big [2 \pi \cdot t \cdot (f_{\rm T}+a_{ \nu} \cdot {\rm \Delta}f_{\rm A} ) \big ]\hspace{0.05cm}.$$
  • This can be calculated with the two possible signal frequencies
$$f_{\rm +1} = f_{\rm T} +{\rm \Delta}f_{\rm A} \hspace{0.05cm}, \hspace{0.2cm}f_{\rm -1} = f_{\rm T} -{\rm \Delta}f_{\rm A}$$
and written as:
$$s(t) = \left\{ \begin{array}{l} s_0 \cdot \cos (2 \pi \cdot f_{\rm +1} \cdot t ) \\ s_0 \cdot \cos (2 \pi \cdot f_{\rm -1} \cdot t ) \\ \end{array} \right.\quad \begin{array}{*{5}c}{\rm{for}} \\{\rm{for}} \\ \end{array}\begin{array}{*{10}c} \hspace{0.05cm}a_{ \nu} = +1 \hspace{0.05cm}, \\ \hspace{0.05cm}a_{ \nu} = -1\hspace{0.05cm}. \\ \end{array}$$
  • Thus,  at any given time,  only one of the two frequencies  $f_{+1}$  and  $f_{–1}$  arises.  The carrier frequency  $f_{\rm T}$  itself does not occur in the signal.


$\text{Definition:}$  The  »frequency deviation«  $Δf_{\rm A}$ 

  • is defined in the same way as for analog frequency modulation, namely
  • as the maximum deviation of the instantaneous frequency  $f_{\rm A}(t)$  from the carrier frequency  $f_{\rm T}$:
$$ {\rm \Delta}f_{\rm A} =f_{\rm +1} - f_{\rm T}\hspace{0.05cm}, \hspace{0.2cm}f_{\rm -1} = f_{\rm T} -f_{\rm -1}.$$

Sometimes,  the  »total frequency deviation«  $ 2 \cdot {\rm \Delta}f_{\rm A} =f_{\rm +1} - f_{\rm -1}$  is used in the literature.


Another important descriptive quantity in this context is the  "modulation index",  which was also already defined for analog frequency modulation as  $η = Δf_{\rm A}/f_{\rm N}.$     For FSK,  a slightly different definition is required,  which is taken into account here with a different variable symbol:   $η   ⇒   h$.

$\text{Definitions:}$ 

  • For digital frequency modulation  $\rm (FSK)$,  the  »modulation index«   $h$  denotes the ratio of the total frequency deviation and the symbol rate  $1/T$:
$$h = \frac{2 \cdot {\rm \Delta}f_{\rm A} }{1/T} = 2 \cdot {\rm \Delta}f_{\rm A}\cdot T \hspace{0.05cm}.$$
  • Sometimes  $h$  is also referred to as »phase deviation« in the literature.


$\text{Example 1:}$  The graph below shows the FSK transmitted signal  $s(t)$  for

  • the binary source signal  $q(t)$  sketched above with amplitude values  $\pm A =\pm 1 \ \rm V$,  and
  • the carrier signal  $z(t)$  drawn below with four oscillations per symbol duration  $(f_{\rm T} · T = 4)$.
Binary FSK signals  $q(t)$,  $z(t)$  and  $s(t)$






This results in the following characteristic values for the FSK system:

  1. The underlying frequency deviation is $Δf_{\rm A} = 1/T$.
  2. The modulation index is  $h = 2$.
  3. The two possible frequencies are  $f_{\rm +1} = 5/T \hspace{0.05cm},\hspace{0.2cm}f_{\rm -1} = 3/T \hspace{0.05cm}.$


Thus, for an FSK transmission system with bit rate  $1 \ {\rm Mbit/s} \ \ (T = 1 \ \rm µ s)$,  the following FM constant would have to be used:

$$K_{\rm FM} = \frac{2 \pi \cdot {\rm \Delta}f_{\rm A} }{A } = \frac{2 \pi }{A \cdot T } \approx 6.28 \cdot 10^{6}\,\,{\rm V^{-1}s^{-1} }\hspace{0.05cm}.$$

Coherent demodulation of FSK


The diagram shows the best possible demodulator for binary FSK that operates coherently.

Coherent FSK demodulator
  • It thus requires knowledge of the phase of the FSK signal.
  • This is accounted for in the block diagram by assuming that the received signal  $r(t)$  is equal to the transmitted signal  $s(t)$.


This demodulator operates according to following principle  (see upper arrangement):

  1. We are dealing with a $\text{maximum–likelihood receiver}$  $\rm (ML)$  with  $\text{matched filter}$  realization.  This filter with frequency response $H_{\rm MF}(f)$  can also be realized as an integrator with rectangular basic transmission pulse  $g_s(t)$.
  2. Both signals  $b_{+1}(t)$  and  $b_{–1}(t)$  before their corresponding matched filters are obtained by phase-appropriate multiplication with the oscillations of the frequencies  $f_{+1}$  and  $f_{–1}$,  respectively.
  3. The maximum-likelihood receiver is known to decide on the branch  (for the symbol)  with the larger  "metric",  taking into account the following matched filter. 
  4. This means:  $a_ν = +1$  was probably sent if the following condition is satisfied:
$$d_{\rm +1}(\nu \cdot T) > d_{\rm -1}(\nu \cdot T) $$
$$\Rightarrow \hspace{0.3cm} d(\nu \cdot T) = d_{\rm +1}(\nu \cdot T) - d_{\rm -1}(\nu \cdot T) > 0\hspace{0.05cm}.$$

The upper block diagram has been drawn according to this description for better understanding.

  • Of course,  matched filtering could instead also be moved to the right of the discrimination,  as shown in the lower model. 
  • Then only one filter has to be implemented.
  • In  "Exercise 4.13" , this FSK demodulator is discussed in detail.
  • On the exercise page you can also see the corresponding signal waveforms.

Error probability of orthogonal FSK


$\text{Definition:}$  One speaks of  »orthogonal FSK«,

  • if the modulation index  $h$  is an integer multiple of  $0.5$,  and thus
  • the frequency deviation  $Δf_{\rm A}$  is an integer multiple of  $0.25/T$.


For the coherent demodulator,  the correlation coefficient between  $d_{+1}(T_{\rm D})$  and  $d_{–1}(T_{\rm D})$  is zero at all detection times.  Thus,  the magnitude  $|d(T_{\rm D})|$  – the distance of the detection samples from the threshold –  is constant.  No intersymbol interference occurs.

If one assumes

  • orthogonal FSK,
  • an AWGN channel  $($captured by the quotient  $E_{\rm B}/N_0)$,  and
  • the coherent demodulation described here,


then the bit error probability is given by:

$$p_{\rm B} = {\rm Q}\left ( \sqrt{{E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ) = {1}/{2}\cdot {\rm erfc}\left ( \sqrt{{E_{\rm B}}/(2 N_0 }) \hspace{0.1cm}\right ).$$

This corresponds to a degradation of  $3 \ \rm dB$  compared to $\text{BSPK}$  because

  • although the coherent FSK demodulator gives the same result with respect to the useful signal,
  • and the noise powers in the two branches are also exactly the same as with BPSK,
  • due to the subtraction,  the total noise power is doubled.


However,  while non-coherent demodulation is not possible under any circumstances in binary phase modulation (BPSK),  there is also a  "non-coherent FSK demodulator",  but with a somewhat increased probability of error:

$$p_{\rm B} = {1}/{2} \cdot {\rm e}^{- E_{\rm B}/{(2N_0) }}\hspace{0.05cm}.$$

The derivation of this equation is given in the chapter  "Carrier Frequency Systems with Non-Coherent Demodulation"  of the book  "Digital Signal Transmission".

Binary FSK with Continuous Phase Matching


We continue to consider the orthogonal FSK.  The graph shows the source signal  $q(t)$  at the top and,  drawn below,  the FSK signal  $s_{\rm A}(t)$  with frequency deviation  $Δf_{\rm A} = 1/T$ ⇒ modulation index  $h = 2 · Δf_{\rm A} · T = 2$.  The following should be noted about the other signal waveforms:

Binary FSK signals with  $h = 2$,  $h = 1$  and  $h = 0.5$,  partially with phase matching
  • The signal $s_{\rm B}(t)$  uses instantaneous frequencies  $f_{+1} = 4.5/T$,  $f_{–1} = 3.5/T$   ⇒   $Δf_{\rm A} ·T = 0.5$   ⇒   $h = 1$.  This FSK is also orthogonal because of $h = 1$  $($multiple of  $0.5)$.  However,  with smaller  $h$,  the bandwidth efficiency is better   ⇒   the spectrum  $S_{\rm B}(f)$  is narrower than  $S_{\rm A}(f)$.


  • However,  in the signal $s_{\rm B}(t)$,  one can see a phase jump by  $π$  at each symbol boundary,  which again results in a broadening of the spectrum.  Such phase jumps can be avoided by phase matching.  This is then referred to as  »Continuous Phase Modulation«  $\rm (CPM)$.


  • Also,  for the CPM signal  $s_{\rm C}(t)$,  $f_{+1} = 4.5/T,  f_{–1} = 3.5/T$  and  $h = 1$  hold.  In the range  $0$ ... $T$,  the coefficient  $a_1 = +1$  is represented by  $\cos (2π·f_{+1}·t)$,  and in the range  $T$ ... $2T$,  on the other hand,  the also positive coefficient  $a_2 = +1$  is represented by  $\ –\cos (2π·f_{+1}·t)$   ⇒   shifted by  $π$.


  • The modulation index  $h = 0.5$  of signal $s_{\rm D}(t)$  is the smallest value that allows orthogonal FSK   ⇒   »Minimum Shift Keying«  $\rm (MSK)$.  In MSK,  four different initial phases are possible at each symbol boundary,  depending on the previous symbols.


⇒   The  (German language)  SWF applet  "Frequency Shift Keying & Continuous Phase Modulation"  illustrate the facts presented here.

MSK – Minimum Shift Keying


The graphic shows the block diagram for generating an MSK modulation and typical signal properties at various points of the MSK transmitter. One can recognize

Block diagram for generating a MSK signal
  • the digital source signal at point  (1),  a sequence of Dirac delta pulses spaced by  $T$,  weighted by the coefficients  $a_ν ∈ \{–1, +1\}$:
$$q_\delta(t) = \sum_{\nu = - \infty}^{+\infty}a_{ \nu} \cdot \delta (t - \nu \cdot T)\hspace{0.05cm};$$
  • the rectangular signal  $q_{\rm R}(t)$  at point  (2)  after convolution with the rectangular pulse $g(t)$  of duration  $T$  and height  $1/T$:
$$q_{\rm R}(t) = \sum_{\nu = - \infty}^{+\infty}a_{ \nu} \cdot g (t - \nu \cdot T)\hspace{0.05cm},$$
$$\phi(t) = {\pi}/{2}\cdot \int_{0}^{t} q_{\rm R}(\tau)\hspace{0.1cm} {\rm d}\tau \hspace{0.05cm}.$$
The phase values at multiples of the symbol duration  $T$  are multiples of  $π/2$, when taking into account the modulation index  $h = 0.5$  for the MSK method. The phase response is linear.
  • From this,  the MSK signal at point  (4)  of the diagram is given by:
$$s(t) = s_0 \cdot \cos (2 \pi f_{\rm T} \hspace{0.05cm}t + \phi(t)) $$
$$\Rightarrow \hspace{0.3cm} s(t) = s_0 \cdot \cos (2 \pi \cdot t \cdot (f_{\rm T}+a_{ \nu} \cdot {\rm \Delta}f_{\rm A} )) \hspace{0.05cm}.$$

Realizing MSK as Offset–QPSK


"Minimum Shift Keying"  $\rm (MSK)$ can also be realized by modified implementation of  $\text{Offset–QPSK}$.

Compared with the conventional offset QPSK implementation (upper graph),  the following modifications must be taken into account,  which are highlighted in red in the lower graph:

Conventional Offset-QPSK  ("O-QPSK")  and Offset-QPSK in MSK mode
  • The MSK symbol duration  $T$  is equal to the bit duration  $T_{\rm B}$  of the binary input signal,  while in original Offset-QPSK,  $T = 2 \cdot T_{\rm B}$.


  • Instead of serial-to-parallel conversion and signal space allocation,  the source symbols must now be recoded:
$$a_k = (–1)^{k+1} · a_{k–1} · q_k.$$
  • All amplitude coefficients  $a_k$  with an even index  $(a_0,\ a_2$, ...$)$  are applied to the Dirac comb in the upper branch,  while  $a_1,\ a_3$, ...  are transmitted in the lower branch.


  • The spacing of the individual Dirac delta pulses of the  "Dirac comb"  is now  $2T$  instead of  $T$  and the offset in the quadrature branch is no longer  $T/2$,  but  $T$.  In both cases,  the offset is equal to  $T_{\rm B}$.


  • While in conventional Offset-QPSK implementation any basic transmission pulse  $g_s(t)$ is possible, e.g. a rectangular or a root-Nyquist pulse,  there is only one suitable basic pulse for MSK implementation.  This spans two symbol durations:
$$g_{\rm MSK}(t) = \left\{ \begin{array}{l} s_0 \cdot \cos \big ({\pi/2 \cdot t}/T \big ) \\ 0 \\ \end{array} \right.\quad \begin{array}{*{5}c} {\rm{for}} \\ \\ \end{array}\begin{array}{*{10}c} -T \le t \le +T \hspace{0.05cm}, \\ {\rm otherwise}\hspace{0.05cm}. \\ \end{array}$$


$\text{Example 2:}$  The graph shows

Signal waveforms of O–QPSK in MSK mode
  • the binary bipolar source signal  $q(t)$  at the top,
  • in the middle,  the equivalent low-pass signals  $s_{\rm I}(t)$  and  $s_{\rm Q}(t)$  in the  $\rm I$ and  $\rm Q$ branches, resp.,
  • below,  the phase response  $ϕ(t)$  of the total MSK transmitted signal  $s(t)$.


The recoding  $a_k = (–1)^{k+1} · a_{k–1} · q_k$  is already taken into account,  as well as the MSK basic pulse:

$$g_{\rm MSK}(t) = \left\{ \begin{array} {l} s_0 \cdot \cos ({\pi \cdot t}/{2 \cdot T}) \\ 0 \\ \end{array} \right.\quad \begin{array}{*{5}c}{\rm{for} } \\ \\ \end{array}\begin{array}{*{10}c} -T \le t \le +T \hspace{0.05cm}, \\ {\rm otherwise}\hspace{0.05cm}. \\ \end{array}$$

From the comparison of the top and the bottom diagrams,  one can see:

  1. The MSK phase response  $ϕ(t)$  is step-wise linear and increases or decreases by  $90^\circ \ (π/2)$ within each symbol duration,  depending on whether  $q_k = +1$  or  $q_k = -1$  currently holds.
  2. The associated transmitted signal  $s(t)$  contains the two frequencies  $f_{\rm T} ± 1/(4T)$ in sections. It has basically the same shape as the signal  $s_{\rm D}(t)$  in the section "Binary FSK with CPM".


⇒   You can represent this MSK realization form with the SWF applet  "Quaternary Phase Shift Keying and Offset-QPSK"  using the following settings:   "Offset–QPSK"  –  "MSK allocation"  –  "cosine pulse".


General Description of Continuous Phase Modulation


We will further assume that the source is characterized by the amplitude coefficients  $a_ν$. 

  1. These can be binary as well as  $M$–levelled.
  2. However,  they should always be considered bipolar,  e.g.   $a_ν\in \{+1, -1\}$.


The  »phase function«  $ϕ(t)$  in  "Continuous Phase Modulation"  $\rm (CPM)$  can be generally represented in the following form   $(h$  denotes the modulation index$)$:

$$\phi(t) = {\pi}\cdot h \cdot\int_{-\infty}^{t} \sum_{\nu = - \infty}^{+\infty}a_{ \nu} \cdot g (\tau - \nu \cdot T)\hspace{0.1cm} {\rm d}\tau \hspace{0.05cm}.$$
  • In this representation,  $g(t)$  denotes the  »frequency pulse«,  which must satisfy the following condition:
$$\int_{-\infty}^{+\infty} g (t)\hspace{0.1cm} {\rm d}t = 1 \hspace{0.05cm}.$$
  • But the following relationship also holds with the   »phase pulse«   $g_ϕ(t)$:
$$\phi(t) = {\pi}\cdot h \cdot \sum_{\nu = - \infty}^{+\infty}a_{ \nu} \cdot g_\phi (t - \nu \cdot T),\hspace{0.2cm}{\rm where}\hspace{0.2cm}g_\phi(t) = \int_{-\infty}^{t} g (\tau )\hspace{0.1cm} {\rm d}\tau\hspace{0.05cm}.$$

Many CPM variants can be realized by appropriately choosing the pulses  $g(t)$  and  $g_ϕ(t)$ . Some of them are shown on the right.

Frequency pulse and phase pulse of some CPM variants
  1. The individual graphs show the CPM frequency pulse $g(t)$  above and the CPM phase pulse  $g_ϕ(t)$  below.
  2. The two graphs on the left describe  "$\rm MSK$".
  3. The  "$\rm 1–REC$"  designation indicates that  $g(t)$  spans a single symbol duration  $(T)$  and is rectangular in shape.


The other CPM variants were designed with the goal of further reducing the already small bandwidth of the MSK signal:

  • For  "$\rm 1–RC$",  a narrower power-spectral density results just because of the  "softer"  raised-cosine pulse  $g(t)$  compared to the rectangular pulse.
  • "$\rm 2–RC$"  and  "$\rm 2–REC$" are partial–response pulses,  each over  $2T$.  This softens the phase response.  However,  it also makes demodulation more difficult,  since selective pseudo-steps are introduced into the data signal.


The spectral calculation of CPM methods is complicated in general.  Only the special case  "MSK"  leads to equations which are easy to handle,  as shown in  "Exercise 4.14".

$\text{Conclusion:}$  The  »Continuous Phase Modulation«  $\rm (CPM)$  it is not a phase modulation,  but is a  »non-linear digital frequency modulation«  $\rm (FSK)$,  with the goal

  • of guaranteeing a constant magnitude envelope  $($dips in the envelope lead to problems even with small non-linearities$)$,  and
  • to enable a continuous phase progression  $($phase jumps broaden the spectrum$)$.


For detailed information we refer to the technical literature,  for example in the recommended text book   [Kam04][2].


GMSK – Gaussian Minimum Shift Keying


One advantage of Minimum Shift Keying is the low bandwidth requirement,  because:  Bandwidth is always expensive.

  • A slight modification to  »Gaussian Minimum Shift Keying«  $\rm (GMSK)$  further narrows the spectrum.
  • This type of modulation is used,  for example,  in the $\text{GSM}$  mobile communications standard.
Signal waveforms in Gaussian Minimum Shift Keying  $\rm (GMSK)$


From the graph one can see:

  • the frequency pulse  $g(t)= g_{\rm G}(t)$  is now no longer rectangular like  $g_{\rm R}(t)$,  but has flatter edges.


  • This results in a smoother phase response at point   (3)  than in  $\text{MSK}$,  where  $ϕ(t)$  rises / falls linearly within each symbol.


  • One achieves the smoother GMSK phase transitions by using a  $\text{Gaussian low-pass}$.  With the system-theoretic cutoff frequency  $f_{\rm G}$,  its frequency response and impulse response are as follows:
$$H_{\rm G}(f) = {\rm e}^{-\pi\cdot (\frac{f}{2 \cdot f_{\rm G}})^2} \hspace{0.2cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.2cm} h_{\rm G}(t) = 2 f_{\rm G} \cdot {\rm e}^{-\pi\cdot (2 \cdot f_{\rm G}\cdot t)^2}\hspace{0.05cm}.$$
  • The resulting frequency pulse  $g(t)$  at point  (2)  is obtained by convolution of  $g_{\rm R}(t)$   and   $h_{\rm G}(t)$.


  • The GMSK transmitted signal  $s(t)$  at point  (4)  has no longer a constant frequency  $($section by section,  per symbol duration$)$  as it does in MSK,  even though this is difficult to see with the naked eye from the above graph.


$\text{Example 3:}$  In the GSM method,  the cutoff frequency is specified as  $f_\text{3dB} = 0.3/T$,  where the following relationship exists

  • between the  "system-theoretic cutoff frequency"  $f_\text{G}$ 
  • and the  "3dB cutoff frequency"  $f_\text{3dB}$:
$$H_{\rm G}(f= f_{\rm 3 \hspace{0.03cm}dB}) = {\rm e}^{-\pi\cdot ({f_{\rm 3 \hspace{0.03cm}{dB} } }/{2 f_{\rm G} })^2} = {1}/{\sqrt{2} }\hspace{0.3cm} \Rightarrow\hspace{0.3cm} f_{\rm 3 dB} = f_{\rm G} \cdot \sqrt { {4}/{\pi}\cdot {\rm ln }\sqrt{2} }\approx {2}/{3}\cdot f_{\rm G} \hspace{0.05cm}.$$

From  $f_{\rm 3dB} = 0.3/T$   ⇒  $f_{\rm G} ≈ 0.45/T$.


Exercises for the chapter


Exercise 4.13: FSK Demodulation

Exercise 4.14: Phase Progression of the MSK

Exercise 4.14Z: Offset QPSK vs. MSK

Exercise 4.15: MSK Compared with BPSK and QPSK

Exercise 4.15Z: MSK Basic Pulse and MSK Spectrum

Exercise 4.16: Comparison between Binary PSK and Binary FSK

References

  1. Klostermeyer, R.:  Digitale Modulation.  Braunschweig: Vieweg, 2001.
  2. Kammeyer, K.D.:  Nachrichtenübertragung.  Stuttgart: B.G. Teubner, 4. Auflage, 2004.