Difference between revisions of "Linear and Time Invariant Systems/Inverse Laplace Transform"

From LNTwww
 
(48 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 
   
 
   
 
{{Header
 
{{Header
|Untermenü=Beschreibung kausaler realisierbarer Systeme
+
|Untermenü=Description of Causal Realizable Systems
 
|Vorherige Seite=Laplace_Transform_and_p-Transfer_Function
 
|Vorherige Seite=Laplace_Transform_and_p-Transfer_Function
 
|Nächste Seite=Some_Results_from_Transmission_Line_Theory
 
|Nächste Seite=Some_Results_from_Transmission_Line_Theory
Line 9: Line 9:
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
 
$\text{Task:}$  This chapter deals with the following problem:  
 
$\text{Task:}$  This chapter deals with the following problem:  
*The  $p$–spectral function  $Y_{\rm L}(p)$   is given in  "pole-zero"  notation.  
+
*The  $p$–spectral function  $Y_{\rm L}(p)$   is given in  »pole-zero notation«.  
*The  '''inverse Laplace transform''', i.e. the associated time function  $y(t)$  is searched-for,  where the following notation should hold:
+
*The  »'''inverse Laplace transform'''«, i.e. the associated time function  $y(t)$  is searched-for,  where the following notation should hold:
 
:$$y(t) = {\rm L}^{-1}\{Y_{\rm L}(p)\}\hspace{0.05cm} , \hspace{0.3cm}{\rm briefly}\hspace{0.3cm}
 
:$$y(t) = {\rm L}^{-1}\{Y_{\rm L}(p)\}\hspace{0.05cm} , \hspace{0.3cm}{\rm briefly}\hspace{0.3cm}
 
  y(t) \quad \circ\!\!-\!\!\!-^{\hspace{-0.25cm}\rm L}\!\!\!-\!\!\bullet\quad Y_{\rm L}(p)\hspace{0.05cm} .$$}}
 
  y(t) \quad \circ\!\!-\!\!\!-^{\hspace{-0.25cm}\rm L}\!\!\!-\!\!\bullet\quad Y_{\rm L}(p)\hspace{0.05cm} .$$}}
 +
 +
[[File:EN_LZI_T_3_3_S1.png |right|frame|Prerequisites for the chapter "Inverse Laplace Transform"]]
  
  
[[File:EN_LZI_T_3_3_S1.png |right|frame|Prerequisites for the chapter "Inverse Laplace Transform"]]
 
<br>
 
 
The graph summarizes the prerequisites for this task.
 
The graph summarizes the prerequisites for this task.
  
*$H_{\rm L}(p)$&nbsp; describes the transfer function of the causal system and &nbsp;$Y_{\rm L}(p)$&nbsp; specifies the Laplace transform of the output signal &nbsp;$y(t)$&nbsp; considering the input signal &nbsp;$x(t)$&nbsp;. &nbsp;$Y_{\rm L}(p)$&nbsp; is characterized by &nbsp;$N$&nbsp; poles,&nbsp; by &nbsp;$Z ≤ N$&nbsp; zeros and by the constant &nbsp;$K.$  
+
*$H_{\rm L}(p)$&nbsp; describes the transfer function of the causal system and &nbsp;$Y_{\rm L}(p)$&nbsp; specifies the Laplace transform of the output signal &nbsp;$y(t)$&nbsp; considering the input signal &nbsp;$x(t)$&nbsp;. &nbsp;$Y_{\rm L}(p)$&nbsp; is characterized by &nbsp;$N$&nbsp; poles,&nbsp; by &nbsp;$Z ≤ N$&nbsp; zeros and by the constant &nbsp;$K.$
*Poles and zeros exhibit the properties mentioned in the&nbsp; [[Linear_and_Time_Invariant_Systems/Laplace_Transform_and_p-Transfer_Function#Properties_of_poles_and_zeros|last chapter]]:&nbsp; Poles are only allowed in the left &nbsp;$p$–half plane or on the imaginary axis;&nbsp; zeros are also allowed in the right &nbsp;$p$–half plane.  
+
*All singularities – this is the generic term for poles and zeros – are either real or exist as pairs of conjugate-complex singularities.&nbsp; Multiple poles and zeros are also allowed.  
+
*Poles and zeros exhibit the properties mentioned in the&nbsp; [[Linear_and_Time_Invariant_Systems/Laplace_Transform_and_p-Transfer_Function#Properties_of_poles_and_zeros|&raquo;last chapter&laquo;]]:&nbsp; Poles are only allowed in the left &nbsp;$p$–half plane or on the imaginary axis;&nbsp; zeros are also allowed in the right &nbsp;$p$–half plane.
*With the input &nbsp;$x(t) = δ(t)$ &nbsp; &rArr; &nbsp;  $X_{\rm L}(p) = 1$  &nbsp; &rArr; &nbsp;  $Y_{\rm L}(p) = H_{\rm L}(p)$, the output signal &nbsp;$y(t)$&nbsp; then describes the [[Linear_and_Time_Invariant_Systems/System_Description_in_Time_Domain#Impulse_response|impulse response]]  &nbsp;$h(t)$&nbsp; of the transmission system.&nbsp; For this purpose, only the singularities drawn in green in the graph may be used for computation.  
+
*A step function &nbsp;$x(t) = γ(t)$ &nbsp; &rArr; &nbsp;  $ X_{\rm L} = 1/p$&nbsp; at the input causes the output signal &nbsp;$y(t)$&nbsp; to be equal to the &nbsp;[[Linear_and_Time_Invariant_Systems/System_Description_in_Time_Domain#Step_response|step response]] &nbsp; $σ(t)$ of $H_{\rm L}(p)$&nbsp;.&nbsp; In addition to the singularities of &nbsp;$H_{\rm L}(p)$,&nbsp; the pole (shown in red in the graph) at &nbsp;$p = 0$&nbsp; must now also be taken into account for computation.  
+
*All&nbsp; &raquo;singularities&laquo;&nbsp; – this is the generic term for poles and zeros – are either real or exist as pairs of conjugate-complex singularities.&nbsp; Multiple poles and zeros are also allowed.
*Only signals for which &nbsp;$X_{ \rm L}(p)$&nbsp; can be expressed in pole-zero notation are possible as input &nbsp;$x(t)$&nbsp; (see the &nbsp;[[Linear_and_Time_Invariant_Systems/Laplace_Transform_and_p-Transfer_Function#Some_important_Laplace_correspondences|table]]&nbsp; in the chapter "Laplace Transform and $p$–Transfer Function"), for example a cosine or sine signal switched on at time &nbsp;$t = 0$&nbsp;.  
+
*So, a rectangle as input signal &nbsp;$x(t)\ \  ⇒ \ \ X_{\rm L}(p) = (1 - {\rm e}^{\hspace{0.05cm}p\hspace{0.05cm}\cdot \hspace{0.05cm} T})/p$&nbsp; is not possible in the approach described here.&nbsp; However, the rectangular response &nbsp;$y(t)$&nbsp; can be computed indirectly as the difference of two step responses.
+
*With the input &nbsp;$x(t) = δ(t)$ &nbsp; &rArr; &nbsp;  $X_{\rm L}(p) = 1$  &nbsp; &rArr; &nbsp;  $Y_{\rm L}(p) = H_{\rm L}(p)$, the output signal &nbsp;$y(t)$&nbsp; then describes the [[Linear_and_Time_Invariant_Systems/System_Description_in_Time_Domain#Impulse_response|&raquo;impulse response&laquo;]]  &nbsp;$h(t)$&nbsp; of the transmission system.&nbsp; For this purpose,&nbsp; only the singularities drawn in green in the graph may be used for computation.  
 +
 
 +
*A unit jump  function &nbsp;$x(t) = γ(t)$ &nbsp; &rArr; &nbsp;  $ X_{\rm L} = 1/p$&nbsp; at the input causes the output signal &nbsp;$y(t)$&nbsp; to be equal to the &nbsp;[[Linear_and_Time_Invariant_Systems/System_Description_in_Time_Domain#Step_response|&raquo;step response&laquo;]] &nbsp; $σ(t)$ of $H_{\rm L}(p)$&nbsp;.&nbsp; In addition to the singularities of &nbsp;$H_{\rm L}(p)$,&nbsp; the pole&nbsp; $($shown in red in the graph$)$&nbsp; at &nbsp;$p = 0$&nbsp; must now also be taken into account for computation.
 +
 +
*Possible as input &nbsp;$x(t)$&nbsp; are only signals for which &nbsp;$X_{ \rm L}(p)$&nbsp; can be expressed in pole-zero notation&nbsp; (see the &nbsp;[[Linear_and_Time_Invariant_Systems/Laplace_Transform_and_p-Transfer_Function#Some_important_Laplace_correspondences|$\text{table}$]]&nbsp; in the chapter &raquo;Laplace Transform and $p$–Transfer Function&raquo;$)$,&nbsp; for example a cosine or sine signal switched on at time &nbsp;$t = 0$&nbsp;.
 +
 +
*So,&nbsp; a rectangular signal &nbsp;$x(t)\ \  ⇒ \ \ X_{\rm L}(p) = (1 - {\rm e}^{\hspace{0.05cm}p\hspace{0.05cm}\cdot \hspace{0.05cm} T})/p$&nbsp; is not possible in the approach described here.&nbsp; However, the rectangular response &nbsp;$y(t)$&nbsp; can be computed indirectly as the difference of two step responses.
  
==Some results of the theory of functions==
+
==Some results of function theory==
 
<br>
 
<br>
In contrast to the&nbsp; [[Signal_Representation/Fourier_Transform_and_Its_Inverse#The_first_Fourier_integral|Fourier integrals]], which differ only slightly in the two directions of transformation, for "Laplace" the computation of &nbsp;$y(t)$&nbsp; from &nbsp;$Y_{\rm L}(p)$ – that is the inverse transformation – is
+
In contrast to the&nbsp; [[Signal_Representation/Fourier_Transform_and_Its_Inverse#The_first_Fourier_integral|&raquo;Fourier integrals&laquo;]],&nbsp; which differ only slightly in the two directions of transformation,&nbsp; for&nbsp; &raquo;Laplace&laquo;&nbsp; the computation of &nbsp;$y(t)$&nbsp; from &nbsp;$Y_{\rm L}(p)$ – that is the inverse transformation – is
*much more difficult than computing &nbsp;$Y_{\rm L}(p)$&nbsp; from &nbsp;$y(t)$,  
+
*much more difficult than computing &nbsp;$Y_{\rm L}(p)$&nbsp; from &nbsp;$y(t)$,
 +
 
*unresolvable or solvable only very laboriously by elementary means.
 
*unresolvable or solvable only very laboriously by elementary means.
  
Line 36: Line 43:
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
 
$\text{Definition:}$&nbsp;  
 
$\text{Definition:}$&nbsp;  
In general, the following holds for the&nbsp; '''inverse Laplace transformation''':
+
In general, the following holds for the&nbsp; &raquo;'''inverse Laplace transform'''&laquo;:
 
:$$y(t) = {\rm L}^{-1}\{Y_{\rm L}(p)\}= \lim_{\beta \hspace{0.05cm}\rightarrow \hspace{0.05cm}\infty}  \hspace{0.15cm} \frac{1}{ {\rm j} \cdot 2 \pi}\cdot    \int_{ \alpha - {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi \beta } ^{\alpha+{\rm j}  \hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi \beta}  Y_{\rm L}(p) \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm e}^{\hspace{0.05cm}p \hspace{0.05cm}\cdot \hspace{0.05cm} t}\hspace{0.1cm}{\rm
 
:$$y(t) = {\rm L}^{-1}\{Y_{\rm L}(p)\}= \lim_{\beta \hspace{0.05cm}\rightarrow \hspace{0.05cm}\infty}  \hspace{0.15cm} \frac{1}{ {\rm j} \cdot 2 \pi}\cdot    \int_{ \alpha - {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi \beta } ^{\alpha+{\rm j}  \hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi \beta}  Y_{\rm L}(p) \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm e}^{\hspace{0.05cm}p \hspace{0.05cm}\cdot \hspace{0.05cm} t}\hspace{0.1cm}{\rm
 
  d}p \hspace{0.05cm} .$$
 
  d}p \hspace{0.05cm} .$$
*The integration is parallel to the imaginary axis.  
+
#The integration is parallel to the imaginary axis.  
*The real part &nbsp;$α$&nbsp; is to be chosen such that all poles lie to the left of the integration path.}}
+
#The real part &nbsp;$α$&nbsp; is to be chosen such that all poles are located to the left of the integration path.}}
  
  
[[File:EN_LZI_T_3_3_S2.png |center|frame|Line integral together with left and right circular integral]]
+
The left graph illustrates this line integral along the red dotted vertical &nbsp;${\rm Re}\{p\}= α$.&nbsp; This integral is solvable using &nbsp;[https://en.wikipedia.org/wiki/Jordan%27s_lemma &raquo;Jordan's lemma of complex analysis&laquo;].&nbsp; In this tutorial only a very short and simple summary of the approach is depicted:
 
+
[[File:EN_LZI_T_3_3_S2.png |right|frame|Line integral together with left and right circular integral]]
The left graph illustrates this line integral along the red dotted vertical &nbsp;${\rm Re}\{p\}= α$.&nbsp; This integral is solvable using &nbsp;[https://en.wikipedia.org/wiki/Jordan%27s_lemma Jordan's lemma of complex analysis].&nbsp; In this tutorial only a very short and simple summary of the approach is depicted:  
+
*The line integral can be divided into two circular integrals according to the sketch so that all poles are located in the left circular integral while the right circular integral may only contain zeros.  
+
#The line integral can be divided into two circular integrals so that all poles are located in the left circular integral while the right circular integral may only contain zeros.  
*Entsprechend der Funktionstheorie liefert das rechte Kreisintegral die Zeitfunktion &nbsp;$y(t)$&nbsp; für negative Zeiten. Aufgrund der Kausalität muss &nbsp;$y(t < 0)$&nbsp; identisch Null sein, was aber nach dem Hauptsatz der Funktionstheorie nur dann zutrifft, wenn es in der rechten &nbsp;$p$–Halbebene keine Pole gibt.  
+
#According to the theory of functions, the right circular integral yields the time function &nbsp;$y(t)$&nbsp; for negative times.&nbsp;
*Das Integral über den linken Halbkreis liefert dagegen die Zeitfunktion für &nbsp;$t ≥ 0$. Dieses umschließt alle Polstellen und ist mit dem Residuensatz in (relativ) einfacher Weise berechenbar, wie auf den nächsten Seiten gezeigt wird.  
+
#Due to causality, &nbsp;$y(t < 0)$&nbsp; must be identical to zero,&nbsp; but according to the fundamentals of function theorem this is only true if there are no poles in the right &nbsp;$p$–half-plane.  
 
+
#In contrast,&nbsp; the integral over the left semicircle yields the time function for &nbsp;$t ≥ 0$.&nbsp;
 +
#This encloses all poles and can be computed using the&nbsp; &raquo;'''residue theorem'''&laquo;&nbsp; in a&nbsp; $($relatively$)$&nbsp; simple way,&nbsp; as it will be shown in the next sections.  
 +
<br clear=all>
 
==Formulation of the residue theorem==
 
==Formulation of the residue theorem==
 
<br>
 
<br>
Es wird weiter vorausgesetzt, dass die Übertragungsfunktion &nbsp;$Y_{\rm L}(p)$&nbsp; in Pol–Nullstellen–Form durch
+
It is further assumed that the transfer function &nbsp;$Y_{\rm L}(p)$&nbsp; can be expressed in pole-zero notation  by
*den konstanten Faktor&nbsp; $K$,  
+
*the constant factor&nbsp; $K$,  
*die &nbsp;$Z$&nbsp; Nullstellen &nbsp;$p_{{\rm o}i}$&nbsp; $(i = 1$, ... , $Z)$&nbsp; und
+
*the &nbsp;$Z$&nbsp; &raquo;zeros&laquo; &nbsp;$p_{{\rm o}i}$&nbsp; $(i = 1$, ... , $Z)$&nbsp; and
*die &nbsp;$N$&nbsp; Polstellen &nbsp;$p_{{\rm x}i}$&nbsp; $(i = 1$, ... , $N$)  
+
*the &nbsp;$N$&nbsp; &raquo;poles&laquo; &nbsp;$p_{{\rm x}i}$&nbsp; $(i = 1$, ... , $N$).
  
  
dargestellt werden kann. Wir setzen zudem &nbsp;$Z < N$&nbsp; voraus.
+
We also assume &nbsp;$Z < N$.&nbsp; The number of&nbsp; &raquo;distinguishable poles&laquo;&nbsp; is denoted by &nbsp;$I$.&nbsp; Multiple poles are counted only once to determine &nbsp;$I$.&nbsp; Thus,&nbsp; the following holds for the&nbsp; [[Linear_and_Time_Invariant_Systems/Inverse_Laplace_Transform#Some_results_of_function_theory|$\text{sketch}$]]&nbsp; in the last section considering the  double pole: &nbsp;   
 
+
:$$N = 5,\hspace{0.3cm} I = 4.$$
Die Anzahl der unterscheidbaren Pole bezeichnen wir mit &nbsp;$I$.&nbsp; Zur Bestimung von &nbsp;$I$&nbsp; werden mehrfache Pole nur einfach gezählt.&nbsp; So gilt für die&nbsp; [[Linear_and_Time_Invariant_Systems/Laplace–Rücktransformation#Einige_Ergebnisse_der_Funktionentheorie|Skizze]]&nbsp; im letzten Abschnitt unter Berücksichtigung des Poles bei &nbsp;$p=0$&nbsp; aufgrund der doppelten Polstelle: &nbsp;  $N = 5$&nbsp; und &nbsp;$I = 4$.
 
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Residuensatz:}$&nbsp;  
+
$\text{Residue Theorem:}$&nbsp;  
Unter den genannten Voraussetzungen ergibt sich die&nbsp; '''Laplace–Rücktransformierte'''&nbsp; von &nbsp;$Y_{\rm L}(p)$&nbsp; für Zeiten&nbsp; $t ≥ 0$&nbsp; als die Summe von&nbsp; $I$&nbsp; Eigenschwingungen der Pole, die man als die&nbsp; ''Residuen''&nbsp; – abgekürzt mit „Res” – bezeichnet:
+
Considering the above conditions,&nbsp; the&nbsp; &raquo;'''inverse Laplace transform'''&laquo;&nbsp; of &nbsp;$Y_{\rm L}(p)$&nbsp; for times&nbsp; $t ≥ 0$&nbsp; is obtained as the sum of&nbsp; $I$&nbsp; natural oscillations of the poles,&nbsp; which are called the&nbsp; &raquo;residuals&laquo;&nbsp; – abbreviated as&nbsp; $\rm Res$:
 
:$$y(t) = \sum_{i=1}^{I}{\rm Res} \bigg \vert _{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}_i}} \hspace{-0.7cm}\{Y_{\rm L}(p)\cdot  {\rm e}^{p \hspace{0.05cm}t}\} \hspace{0.05cm} .$$
 
:$$y(t) = \sum_{i=1}^{I}{\rm Res} \bigg \vert _{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}_i}} \hspace{-0.7cm}\{Y_{\rm L}(p)\cdot  {\rm e}^{p \hspace{0.05cm}t}\} \hspace{0.05cm} .$$
  
Da&nbsp; $Y_{\rm L}(p)$&nbsp; nur für kausale Signale angebbar ist, gilt für negative Zeiten stets &nbsp;$y(t < 0) = 0$.  
+
Since&nbsp; $Y_{\rm L}(p)$&nbsp; is only specifiable for causal signals, &nbsp;$y(t < 0) = 0$&nbsp; always holds for negative times.  
  
*Für einen Pol der Vielfachheit &nbsp;$l$&nbsp; gilt allgemein:
+
*In general,&nbsp; the following holds for a pole of multiplicity &nbsp;$l$&nbsp;:
 
:$${\rm Res} \bigg \vert _{p \hspace{0.05cm}= \hspace{0.05cm}p_{ {\rm x}_i} } \hspace{-0.7cm}\{Y_{\rm L}(p)\cdot {\rm e}^{p t}\}= \frac{1}{(l-1)!}\cdot \frac{ {\rm d}^{\hspace{0.05cm}l-1} }{ {\rm d}p^{\hspace{0.05cm}l-1} }\hspace{0.15cm} \left \{Y_{\rm L}(p)\cdot (p - p_{ {\rm x}_i})^{\hspace{0.05cm}l}\cdot  {\rm e}^{p \hspace{0.05cm}t}\right\} \bigg \vert_{p \hspace{0.05cm}= \hspace{0.05cm}p_{ {\rm x}_i} } \hspace{0.05cm} .$$
 
:$${\rm Res} \bigg \vert _{p \hspace{0.05cm}= \hspace{0.05cm}p_{ {\rm x}_i} } \hspace{-0.7cm}\{Y_{\rm L}(p)\cdot {\rm e}^{p t}\}= \frac{1}{(l-1)!}\cdot \frac{ {\rm d}^{\hspace{0.05cm}l-1} }{ {\rm d}p^{\hspace{0.05cm}l-1} }\hspace{0.15cm} \left \{Y_{\rm L}(p)\cdot (p - p_{ {\rm x}_i})^{\hspace{0.05cm}l}\cdot  {\rm e}^{p \hspace{0.05cm}t}\right\} \bigg \vert_{p \hspace{0.05cm}= \hspace{0.05cm}p_{ {\rm x}_i} } \hspace{0.05cm} .$$
*Als Sonderfall ergibt sich daraus mit &nbsp;$l = 1$&nbsp; für einen einfachen Pol:
+
*The following is obtained out of it with &nbsp;$l = 1$&nbsp; for a simple pole as a special case:
 
:$${\rm Res} \bigg\vert_{p \hspace{0.05cm}= \hspace{0.05cm}p_{ {\rm x}_i} } \hspace{-0.7cm}\{Y_{\rm L}(p)\cdot {\rm e}^{p t}\}= Y_{\rm L}(p)\cdot (p - p_{ {\rm x}_i} )\cdot  {\rm e}^{p \hspace{0.05cm}t} \bigg \vert _{p \hspace{0.05cm}= \hspace{0.05cm}p_{ {\rm x}_i} } \hspace{0.05cm} .$$}}
 
:$${\rm Res} \bigg\vert_{p \hspace{0.05cm}= \hspace{0.05cm}p_{ {\rm x}_i} } \hspace{-0.7cm}\{Y_{\rm L}(p)\cdot {\rm e}^{p t}\}= Y_{\rm L}(p)\cdot (p - p_{ {\rm x}_i} )\cdot  {\rm e}^{p \hspace{0.05cm}t} \bigg \vert _{p \hspace{0.05cm}= \hspace{0.05cm}p_{ {\rm x}_i} } \hspace{0.05cm} .$$}}
  
  
Auf den nächsten Seiten wird der Residuensatz anhand dreier ausführlicher Beispiele verdeutlicht, die mit den drei Konstellationen im&nbsp; [[Linear_and_Time_Invariant_Systems/Laplace–Transformation_und_p–Übertragungsfunktion#Eigenschaften_der_Pole_und_Nullstellen| $\text{Beispiel 3}$]]&nbsp; im Kapitel "Laplace&ndash;Transformation" korrespondieren:  
+
In the next sections,&nbsp; the&nbsp; &raquo;residue theorem&laquo;&nbsp; is illustrated by three detailed examples corresponding to the three constellations in&nbsp; [[Linear_and_Time_Invariant_Systems/Laplace_Transform_and_p-Transfer_Function#Properties_of_poles_and_zeros|$\text{Example 3}$]]&nbsp; of chapter&nbsp; &raquo;Laplace transform and p-transfer function&laquo;:  
*Wir betrachten also wieder den Vierpol mit einer Induktivität &nbsp;$L = 25 \ \rm &micro;H$&nbsp; im Längszweig  sowie im Querzweig die Serienschaltung aus einem Ohmschen Widerstand&nbsp; $R = 50 \ \rm Ω$&nbsp; und einer Kapazität&nbsp; $C$.  
+
*So,&nbsp; we consider again the two-port network with an inductance &nbsp;$L = 25 \ \rm &micro;H$&nbsp; in the longitudinal branch as well as the the series connection of an ohmic resistance&nbsp; $R = 50 \ \rm Ω$&nbsp; and a capacitance&nbsp; $C$&nbsp; in the transverse branch.  
*Für Letztere betrachten wir wieder drei verschiedene Werte, nämlich &nbsp;$C = 62.5 \ \rm nF$, &nbsp;$C = 8 \ \rm nF$ und &nbsp;$C = 40 \ \rm nF$.  
+
 
*Vorausgesetzt ist stets &nbsp;$x(t) = δ(t) \; ⇒  \; X_{\rm L}(p) = 1$ &nbsp; &rArr; &nbsp; $Y_{\rm L}(p) = H_{\rm L}(p)$  &nbsp; &rArr; &nbsp; $y(t)$&nbsp; ist gleich der Impulsantwort &nbsp;$h(t)$.
+
*For the latter,&nbsp; we consider three different values,&nbsp; namely &nbsp;$C = 62.5 \ \rm nF$, &nbsp;$C = 8 \ \rm nF$&nbsp; and &nbsp;$C = 40 \ \rm nF$.  
 +
 
 +
*The following is always assumed: &nbsp;$x(t) = δ(t) \; ⇒  \; X_{\rm L}(p) = 1$ &nbsp; &rArr; &nbsp; $Y_{\rm L}(p) = H_{\rm L}(p)$  &nbsp; &rArr; &nbsp; the output signal&nbsp; $y(t)$&nbsp; is equal to the impulse response &nbsp;$h(t)$.
  
 
==Aperiodically decaying impulse response==
 
==Aperiodically decaying impulse response==
 
<br>
 
<br>
Mit der Kapazität &nbsp;$C = 62.5 \ \rm nF$&nbsp; und den weiteren in der unteren Grafik angegebenen Zahlenwerten erhält man für die auf der Seite &nbsp;[[Linear_and_Time_Invariant_Systems/Laplace–Transformation_und_p–Übertragungsfunktion#Pol.E2.80.93Nullstellen.E2.80.93Darstellung_von_Schaltungen|Pol–Nullstellen–Darstellung von Schaltungen]]&nbsp; berechnete&nbsp; $p$&ndash;Übertragungsfunktion:
+
The following is obtained for the&nbsp; $p$&ndash;transfer function computed in the section &nbsp;[[Linear_and_Time_Invariant_Systems/Laplace_Transform_and_p-Transfer_Function#Pole-zero_representation_of_circuits|&raquo;pole-zero representation of circuits&laquo;]]&nbsp; with the capacitance &nbsp;$C = 62.5 \ \rm nF$.&nbsp; The other numerical values are given in the graph below:
 +
[[File: EN_LZI_T_3_3_S3a.png|right|frame|Aperiodically decaying impulse response]]
 +
 
 
:$$H_{\rm L}(p)= K \cdot \frac {p - p_{\rm o }} {(p - p_{\rm x 1})(p - p_{\rm x 2})}= 2 \cdot \frac {p + 0.32 }
 
:$$H_{\rm L}(p)= K \cdot \frac {p - p_{\rm o }} {(p - p_{\rm x 1})(p - p_{\rm x 2})}= 2 \cdot \frac {p + 0.32 }
 
  {(p +0.4)(p +1.6 )} \hspace{0.05cm} .$$
 
  {(p +0.4)(p +1.6 )} \hspace{0.05cm} .$$
  
Beachten Sie bitte die Normierung von &nbsp;$p$, &nbsp;$K$ sowie aller Pole und Nullstellen mit dem Faktor &nbsp;${\rm 10^6} · 1/\rm s$.
+
Note the normalization of &nbsp;$p$, &nbsp;$K$ and also of all poles and zeros by the factor &nbsp;${\rm 10^6} · 1/\rm s$.
 +
 
 +
&rArr; &nbsp; The impulse response is composed of &nbsp;$I = N = 2$&nbsp; natural oscillations. For $t < 0$,&nbsp; these are equal to zero.
 +
*The residual of the pole at &nbsp;$p_{{\rm x}1} =\  –0.4$&nbsp; yields the following time function:
 +
:$$h_1(t)  =  {\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}1}} \hspace{-0.7cm}\{H_{\rm L}(p)\cdot {\rm e}^{p t}\}= H_{\rm L}(p)\cdot (p - p_{{\rm x}1})\cdot {\rm e}^{p \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}1}}$$
 +
: $$\Rightarrow \hspace{0.3cm}h_1(t)  =  2 \cdot \frac {p + 0.32 } {p +0.4}\cdot  {\rm e}^{p \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}-0.4}= - \frac {2 } {15}\cdot  {\rm e}^{-0.4 \hspace{0.05cm} t} \hspace{0.05cm}. $$
 +
*In the same way, the residual of the second pole at &nbsp;$p_{{\rm x}2} = \ –1.6$&nbsp; can be computed:
 +
:$$h_2(t)  =  {\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}2}} \hspace{-0.7cm}\{H_{\rm L}(p)\cdot {\rm e}^{p t}\}= H_{\rm L}(p)\cdot (p - p_{{\rm x}2})\cdot  {\rm e}^{p \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}2}}$$
 +
:$$\Rightarrow \hspace{0.3cm}h_2(t)  =  2 \cdot \frac {p + 0.32 } {p +1.6}\cdot  {\rm e}^{p \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}-1.6}=  \frac {32 } {15}\cdot  {\rm e}^{-1.6 \hspace{0.05cm} t} \hspace{0.05cm}. $$
 +
 
 +
The graph shows &nbsp;$h_1(t)$&nbsp; and &nbsp;$h_2(t)$&nbsp; as well as the sum signal &nbsp;$h(t)$.
 +
#The normalization factor &nbsp;$1/T = 10^6 · \rm 1/s$&nbsp; is taken into account here so that the time is normalized to &nbsp;$T = 1 \ \rm &micro; s$&nbsp;.
 +
#For &nbsp;$t =0$,&nbsp; $T \cdot h(t=0) =  {32 }/ {15} -{2 }/ {15}= 2 \hspace{0.05cm}$&nbsp; is obtained as a result.
 +
#For times &nbsp;$t > 2 \ \rm &micro; s$,&nbsp; the impulse response is negative&nbsp; $($although only slightly and difficult to see in the graph$)$.
  
Die Impulsantwort setzt sich aus &nbsp;$I = N = 2$&nbsp; Eigenschwingungen zusammen. Für $t < 0$&nbsp; sind diese gleich Null.
 
*Das Residium des Pols bei &nbsp;$p_{{\rm x}1} =\  –0.4$&nbsp; liefert die folgende Zeitfunktion:
 
:$$h_1(t)  =  {\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}1}} \hspace{-0.7cm}\{H_{\rm L}(p)\cdot {\rm e}^{p t}\}= H_{\rm L}(p)\cdot (p - p_{{\rm x}1})\cdot  {\rm e}^{p \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}1}}=2 \cdot \frac {p + 0.32 } {p +0.4}\cdot  {\rm e}^{p \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}-0.4}= - \frac {2 } {15}\cdot  {\rm e}^{-0.4 \hspace{0.05cm} t} \hspace{0.05cm}. $$
 
*In gleicher Weise kann das Residium des zweiten Pols bei &nbsp;$p_{{\rm x}2} = \ –1.6$&nbsp; berechnet werden:
 
:$$h_2(t)  =  {\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}2}} \hspace{-0.7cm}\{H_{\rm L}(p)\cdot {\rm e}^{p t}\}= H_{\rm L}(p)\cdot (p - p_{{\rm x}2})\cdot  {\rm e}^{p \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}2}}=2 \cdot \frac {p + 0.32 } {p +1.6}\cdot  {\rm e}^{p \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}-1.6}=  \frac {32 } {15}\cdot  {\rm e}^{-1.6 \hspace{0.05cm} t} \hspace{0.05cm}. $$
 
  
[[File: EN_LZI_T_3_3_S3a.png|right|frame| Abklingende Impulsantwort]]
 
<br><br><br><br>Die Grafik zeigt &nbsp;$h_1(t)$&nbsp; und &nbsp;$h_2(t)$&nbsp; sowie das Summensignal &nbsp;$h(t)$.
 
*Berücksichtigt ist auch hier der Normierungsfaktor &nbsp;$1/T = 10^6 · \rm 1/s$, so dass die Zeit auf &nbsp;$T = 1 \ \rm &micro; s$&nbsp; normiert ist.
 
*Für &nbsp;$t =0$&nbsp; ergibt sich $T \cdot h(t=0) =  {32 }/ {15} -{2 }/ {15}= 2 \hspace{0.05cm}$.&nbsp;
 
*Für Zeiten &nbsp;$t > 2 \ \rm &micro; s$&nbsp; ist die Impulsantwort  negativ <br>(wenn auch nur geringfügig und in der Grafik nur schwer zu erkennen).
 
<br clear=all>
 
 
==Attenuated-oscillatory impulse response==
 
==Attenuated-oscillatory impulse response==
 
<br>
 
<br>
Die Bauelementewerte &nbsp;$R = 50 \ \rm Ω$, &nbsp;$L = 25 \ \rm &micro; H$ und &nbsp;$C = 8 \ \rm nF$ ergeben zwei konjugiert komplexe Pole bei &nbsp;$p_{{\rm x}1} = \ –1 + {\rm j} · 2$&nbsp; und &nbsp;$p_{{\rm x}2} = \ –1 - {\rm j} · 2$.&nbsp; Die Nullstelle liegt bei &nbsp;$p_{\rm o} = \ –2.5$. Es gilt &nbsp;$K = 2$&nbsp; und alle Zahlenwerte sind wieder mit dem Faktor &nbsp;$1/T$&nbsp; zu multiplizieren $(T = 1\ \rm &micro; s$).
+
The component values &nbsp;$R = 50 \ \rm Ω$, &nbsp;$L = 25 \ \rm &micro; H$&nbsp; and &nbsp;$C = 8 \ \rm nF$ result in two conjugate complex poles at &nbsp;$p_{{\rm x}1} = \ –1 + {\rm j} · 2$&nbsp; and &nbsp;$p_{{\rm x}2} = \ –1 - {\rm j} · 2$.&nbsp;
 +
[[File:EN_LZI_T_3_3_S3b.png|right|frame| Attenuated-oscillatory impulse response]]
 +
 +
*The zero is located at &nbsp;$p_{\rm o} = \ –2.5$.
 +
 +
*$K = 2$&nbsp; holds
  
Wendet man den Residuensatz auf diese Konfiguration an, so erhält man:
+
*All numerical values are to be multiplied by factor &nbsp;$1/T$&nbsp; $(T = 1\ \rm &micro; s$).
:$$h_1(t) = \text{ ...}   = K \cdot \frac {p_{\rm x 1} - p_{\rm o }} {p_{\rm x 1} - p_{\rm x 2}}\cdot  {\rm e}^{\hspace{0.05cm}p_{\rm x 1} \cdot \hspace{0.05cm}t}= 2 \cdot \frac {-1 + {\rm j}\cdot 2 +2.5} {(-1 + {\rm j}\cdot 2) - (-1 - {\rm j}\cdot 2)}\cdot  {\rm e}^{\hspace{0.05cm}p_{\rm x 1}
+
 
  \cdot\hspace{0.05cm}t}= 2 \cdot \frac {1.5 + {\rm j}\cdot 2} {{\rm j}\cdot 4}\cdot  {\rm e}^{\hspace{0.05cm}p_{\rm x 1} \cdot\hspace{0.05cm}t}$$
+
 
 +
Applying the residue theorem to this configuration then it is obtained:
 +
 
 +
:$$h_1(t) =  K \cdot \frac {p_{\rm x 1} - p_{\rm o }} {p_{\rm x 1} - p_{\rm x 2}} \cdot  {\rm e}^{\hspace{0.05cm}p_{\rm x 1} \cdot \hspace{0.05cm}t} $$
 +
:$$\Rightarrow \hspace{0.3cm}h_1(t) =   2 \cdot \frac {-1 + {\rm j}\cdot 2 +2.5} {(-1 + {\rm j}\cdot 2) - (-1 - {\rm j}\cdot 2)}\cdot  {\rm e}^{\hspace{0.05cm}p_{\rm x 1}
 +
  \cdot\hspace{0.05cm}t}$$
 
:$$\Rightarrow \hspace{0.3cm}h_1(t) =  2 \cdot \frac {1.5 + {\rm j}\cdot 2} {{\rm j}\cdot 4}\cdot  {\rm e}^{\hspace{0.05cm}p_{\rm x 1} \cdot\hspace{0.05cm}t}= (1 - {\rm j}\cdot 0.75)\cdot {\rm
 
:$$\Rightarrow \hspace{0.3cm}h_1(t) =  2 \cdot \frac {1.5 + {\rm j}\cdot 2} {{\rm j}\cdot 4}\cdot  {\rm e}^{\hspace{0.05cm}p_{\rm x 1} \cdot\hspace{0.05cm}t}= (1 - {\rm j}\cdot 0.75)\cdot {\rm
 
  e}^{-t}\cdot {\rm  e}^{\hspace{0.03cm}{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} 2t} \hspace{0.05cm} ,$$
 
  e}^{-t}\cdot {\rm  e}^{\hspace{0.03cm}{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} 2t} \hspace{0.05cm} ,$$
:$$ h_2(t) =  \text{ ...}  = K \cdot \frac {p_{\rm x 2} - p_{\rm o }} {p_{\rm x 2} - p_{\rm x 1}}\cdot  {\rm e}^{\hspace{0.05cm}p_{\rm x 2} \hspace{0.03cm}\cdot \hspace{0.05cm}t}=  2 \cdot \frac {-1 - {\rm j}\cdot 2 +2.5} {(-1 - {\rm j}\cdot 2) - (-1 + {\rm j}\cdot 2)}\cdot  {\rm e}^{\hspace{0.05cm}p_{\rm x 2} \hspace{0.03cm}\cdot\hspace{0.05cm}t}=2 \cdot \frac {1.5 - {\rm j}\cdot 2} {-{\rm j}\cdot 4}\cdot  {\rm e}^{\hspace{0.05cm}p_{\rm x 2} \hspace{0.03cm}\cdot\hspace{0.05cm}t} $$
 
[[File:EN_LZI_T_3_3_S3b.png|right|frame| Gedämpft oszillierende Impulsantwort]]
 
:$$\Rightarrow \hspace{0.3cm}h_2(t) = (1 + {\rm j}\cdot 0.75)\cdot {\rm e}^{-t}\cdot {\rm  e}^{\hspace{0.03cm}-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} 2t} \hspace{0.05cm} . $$
 
  
Mit dem&nbsp; [[Signal_Representation/Calculating_With_Complex_Numbers#Darstellung_nach_Betrag_und_Phase|Satz von Euler]]&nbsp; ergibt sich somit für das Summensignal:
+
:$$ h_2(t) =  K \cdot \frac {p_{\rm x 2} - p_{\rm o }} {p_{\rm x 2} - p_{\rm x 1}}\cdot  {\rm e}^{\hspace{0.05cm}p_{\rm x 2} \hspace{0.03cm}\cdot \hspace{0.05cm}t} $$
:$$h(t) =  h_1(t) + h_2(t)$$
+
:$$\Rightarrow \hspace{0.3cm} h_2(t) =  2 \cdot \frac {-1 - {\rm j}\cdot 2 +2.5} {(-1 - {\rm j}\cdot 2) - (-1 + {\rm j}\cdot 2)}\cdot  {\rm e}^{\hspace{0.05cm}p_{\rm x 2} \hspace{0.03cm}\cdot\hspace{0.05cm}t} $$
:$$\Rightarrow \hspace{0.3cm}h(t) = {\rm  e}^{-t}\cdot \big [ (1 - {\rm j}\cdot 0.75)\cdot (\cos() + {\rm j}\cdot \sin())+
+
:$$\Rightarrow \hspace{0.3cm}h_2(t) =2 \cdot \frac {1.5 - {\rm j}\cdot 2} {-{\rm j}\cdot 4}\cdot  {\rm e}^{\hspace{0.05cm}p_{\rm x 2} \hspace{0.03cm}\cdot\hspace{0.05cm}t}= (1 + {\rm j}\cdot 0.75)\cdot {\rm e}^{-t}\cdot {\rm  e}^{\hspace{0.03cm}-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} 2t} \hspace{0.05cm} . $$
  $$
+
 
:$$\hspace{3.1cm}+
+
Using&nbsp; [[Signal_Representation/Calculating_With_Complex_Numbers#Representation_by_magnitude_and_phase|&raquo;Euler's theorem&laquo;]]&nbsp; the following is obtained for the sum signal:
(1 + {\rm j}\cdot 0.75)\cdot (\cos() - {\rm j}\cdot \sin())\big ]$$
+
:$$h(t) =  h_1(t) + h_2(t)\hspace{0.3cm}
 +
\Rightarrow \hspace{0.3cm}h(t) = {\rm  e}^{-t}\cdot \big [ (1 - {\rm j}\cdot 0.75)\cdot (\cos() + {\rm j}\cdot \sin())+
 +
  + (1 + {\rm j}\cdot 0.75)\cdot (\cos() - {\rm j}\cdot \sin())\big ]$$
 
:$$\Rightarrow \hspace{0.3cm}h(t) ={\rm  e}^{-t}\cdot \big [ 2\cdot \cos(2t) + 1.5 \cdot \sin(2t)\big ]\hspace{0.05cm} . $$
 
:$$\Rightarrow \hspace{0.3cm}h(t) ={\rm  e}^{-t}\cdot \big [ 2\cdot \cos(2t) + 1.5 \cdot \sin(2t)\big ]\hspace{0.05cm} . $$
  
Die Grafik zeigt die nun mit &nbsp;${\rm e}^{–t}$&nbsp; gedämpft oszillierende Impulsantwort &nbsp;$h(t)$&nbsp; für diese Pol–Nullstellen–Konfiguration.
+
The graph shows the attenuated-oscillatory impulse response &nbsp;$h(t)$&nbsp; attenuated by &nbsp;${\rm e}^{–t}$&nbsp; for this pole–zero configuration.
<br clear=all>
+
 
==Critically-damped case==
+
 
 +
==Critically attenuated case==
 
<br>
 
<br>
Mit &nbsp;$R = 50 \ \rm Ω$, &nbsp;$L = 25 \ \rm &micro; H$ und &nbsp;$C = 40 \ \rm nF$ ergibt sich der so genannte aperiodische Grenzfall:
+
With &nbsp;$R = 50 \ \rm Ω$, &nbsp;$L = 25 \ \rm &micro; H$&nbsp; and&nbsp; &nbsp;$C = 40 \ \rm nF$&nbsp; we get the so-called&nbsp; &raquo;critically attenuated case&laquo;:
 
:$$H_{\rm L}(p)= K \cdot \frac {p - p_{\rm o }} {(p - p_{\rm x })^2}= 2 \cdot \frac {p + 0.5 } {(p +1)^2}  \hspace{0.05cm} .$$
 
:$$H_{\rm L}(p)= K \cdot \frac {p - p_{\rm o }} {(p - p_{\rm x })^2}= 2 \cdot \frac {p + 0.5 } {(p +1)^2}  \hspace{0.05cm} .$$
  
Der Kapazitätswert &nbsp;$C = 40 \ \rm nF$&nbsp; ist der kleinstmögliche Wert, für den sich gerade noch reelle Polstellen ergeben.&nbsp; Diese fallen zusammen, das heißt &nbsp;$p_{\rm x} = \ –1$&nbsp; ist eine doppelte Polstelle.&nbsp; Die Zeitfunktion lautet somit entsprechend dem Residuensatz mit &nbsp;$l = 2$:
+
The capacitance &nbsp;$C = 40 \ \rm nF$&nbsp; is the smallest possible value for which there are just real pole places.&nbsp; These coincide,&nbsp; that &nbsp;$p_{\rm x} = \ -1$&nbsp; is a double pole place.&nbsp; The time function is thus according to the residue theorem with &nbsp;$l = 2$:
:$$h(t) = {\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{ {\rm x} } } \hspace{-0.7cm}\{H_{\rm L}(p)\cdot {\rm e}^{p t}\}= \frac{ {\rm d} }{ {\rm d}p}\hspace{0.15cm}
+
:$$h(t) = {\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{ {\rm x} } } \hspace{-0.7cm}\{H_{\rm L}(p)\cdot {\rm e}^{p t}\}= \frac{ {\rm d} }{ {\rm d}p}\hspace{0.15cm}
  \left \{H_{\rm L}(p)\cdot (p - p_{ {\rm x} })^2\cdot {\rm e}^{p \hspace{0.05cm}t}\right\} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{ {\rm x} } } = K \cdot \frac{ {\rm d} }{ {\rm d}p}\hspace{0.15cm}\left \{ (p - p_{ {\rm o} })\cdot {\rm e}^{p \hspace{0.05cm}t}\right\}  \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{ {\rm x} } } \hspace{0.05cm} .$$
+
  \left \{H_{\rm L}(p)\cdot (p - p_{ {\rm x} })^2\cdot {\rm e}^{p \hspace{0.05cm}t}\right\} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{ {\rm x} } } = K \cdot \frac{ {\rm d} }{ {\rm d}p}\hspace{0.15cm}\left \{ (p - p_{ {\rm o} })\cdot {\rm e}^{p \hspace{0.05cm}t}\right\}  \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{ {\rm x} } } \hspace{0.05cm} .$$
  
Mit der ''Produktregel''&nbsp; der Differentialrechnung ergibt sich daraus:
+
[[File:EN_LZI_T_3_3_S3c.png |right|frame| Impulse response and step response of the critically attenuated case]]
[[File:EN_LZI_T_3_3_S3c.png |right|frame| Impulsantwort und Sprungantwort des aperiodischen Grenzfalls]]
+
Using the&nbsp; &raquo;product rule&laquo;&nbsp; of differential calculus,&nbsp; this gives:
 
:$$h(t) = K \cdot \left [ {\rm e}^{p \hspace{0.05cm}t} + (p - p_{ {\rm o} })\cdot t \cdot {\rm e}^{p \hspace{0.05cm}t} \right ] \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}-1} = {\rm  e}^{-t}\cdot \left ( 2 - t \right)
 
:$$h(t) = K \cdot \left [ {\rm e}^{p \hspace{0.05cm}t} + (p - p_{ {\rm o} })\cdot t \cdot {\rm e}^{p \hspace{0.05cm}t} \right ] \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}-1} = {\rm  e}^{-t}\cdot \left ( 2 - t \right)
 
  \hspace{0.05cm} .$$
 
  \hspace{0.05cm} .$$
  
Die Grafik zeigt diese Impulsantwort (grüne Kurve) in normierter Darstellung.&nbsp; Sie unterscheidet sich von derjenigen mit den beiden unterschiedlichen Polen bei&nbsp; $-0.4$&nbsp; und&nbsp; $-1.6$&nbsp; nur geringfügig.  
+
The graph shows this impulse response&nbsp; $($green curve$)$&nbsp; in normalized representation.&nbsp; It differs only slightly from the one with two different poles at&nbsp; $-0.4$&nbsp; and&nbsp; $-1.6$&nbsp;.
 +
 
 +
The signal drawn in red &nbsp; &rArr; &nbsp; $y(t) = 1 - {\rm e}^{-t} + t \cdot {\rm e}^{-t}$&nbsp; results when a step function&nbsp; $\gamma(t)$&nbsp; is considered at the input &nbsp; &rArr; &nbsp; &raquo;step response&laquo;.
 +
 
 +
To calculate the step response &nbsp;$\sigma(t) = y(t)$&nbsp; one can alternatively
 +
*consider the additional red pole at &nbsp;$p = 0$ &nbsp; in the residual calculation,&nbsp;
 +
 
 +
*or form the integral over the impulse response &nbsp;$h(t)$.
  
Das rot gezeichnete Signal &nbsp;$y(t) =  1 - {\rm  e}^{-t} + t \cdot {\rm  e}^{-t}$&nbsp; ergibt sich, wenn man  am Eingang  zusätzlich eine Sprungfunktion berücksichtigt &nbsp; &rArr; &nbsp; Sprungantwort.
 
  
Zur Berechnung der Sprungantwort &nbsp;$\sigma(t) = y(t)$&nbsp; kann man alternativ
 
*bei der Residuenberechnung einen zusätzlichen Pol bei &nbsp;$p = 0$ &nbsp; (rot markiert) berücksichtigen, 
 
*oder das Integral über die Impulsantwort &nbsp;$h(t)$&nbsp; bilden.
 
<br clear=all>
 
 
==Partial fraction decomposition==
 
==Partial fraction decomposition==
 
<br>
 
<br>
Voraussetzung für die Anwendung des Residuensatzes ist, dass es weniger Nullstellen als Pole gibt &nbsp; &rArr; &nbsp; $Z$&nbsp; muss stets  kleiner als &nbsp;$N$&nbsp; sein.
+
Prerequisite for the application of the residue theorem is that there are less zeros than poles &nbsp; &rArr; &nbsp; $Z$&nbsp; must always be smaller than &nbsp;$N$&nbsp;.
  
Gilt dagegen wie bei einem Hochpass &nbsp;$Z = N$, so
+
*If,&nbsp; on the other hand,&nbsp; as in the case of a high-pass filter &nbsp;$Z = N$,&nbsp; then the limit of the p&ndash;transfer function&nbsp; $H_{\rm L}(p)$&nbsp; for large &nbsp;$p$&nbsp; is not equal to zero,
*ist der Grenzwert der Spektralfunktion für großes &nbsp;$p$&nbsp; ungleich Null,
 
*beinhaltet das zugehörige Zeitsignal &nbsp;$y(t)$&nbsp; auch einen &nbsp;[[Signal_Representation/Special_Cases_of_Impulse_Signals#Diracimpuls|Diracimpuls]], 
 
*versagt der Residuensatz und es ist eine ''Partialbruchzerlegung''&nbsp; vorzunehmen.
 
  
 +
*If the associated time signal &nbsp;$y(t)$&nbsp; also contains &nbsp;[[Signal_Representation/Direct_Current_Signal_-_Limit_Case_of_a_Periodic_Signal#Dirac_.28delta.29_function_in_frequency_domain|&raquo;Dirac delta functions&laquo;]],&nbsp;  the residue theorem fails and a&nbsp; [https://en.wikipedia.org/wiki/Partial_fraction_decomposition&nbsp; &raquo;'''partial fraction decomposition'''&laquo;]&nbsp; must be performed.
  
Die Vorgehensweise soll beispielhaft für einen Hochpass erster Ordnung verdeutlicht werden.
 
  
[[File:EN_LZI_T_3_3_S5_neu.png|right|frame| Impulsantwort von Tiefpass (blau) und Hochpass (rot)]]
+
The procedure is to be clarified exemplarily for a high-pass of first order.
 +
 
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Example 1:}$&nbsp;  
+
$\text{Example 1:}$&nbsp;
Die&nbsp; $p$–Übertragungsfunktion eines&nbsp; $RC$–Hochpasses erster Ordnung kann durch Abspaltung einer Konstanten wie folgt umgewandelt werden:
+
The&nbsp; $p$-transfer function of a&nbsp; &raquo;first-order RC high-pass filter&laquo;&nbsp; can be transformed by splitting off a constant as follows:
 +
[[File:EN_LZI_T_3_3_S5_v2.png |right|frame| Impulse response of low-pass&nbsp; $($blue$)$&nbsp; and high-pass&nbsp; $($red$)$]]
 
:$$\frac{p}{p + RC} = 1- \frac{RC}{p + RC}\hspace{0.05cm} .$$
 
:$$\frac{p}{p + RC} = 1- \frac{RC}{p + RC}\hspace{0.05cm} .$$
Damit lautet die Hochpass&ndash;Impulsantwort:
+
Thus,&nbsp; the high-pass impulse response is:
 
:$$h_{\rm HP}(t) = \delta(t) - h_{\rm TP}(t) \hspace{0.05cm} .$$
 
:$$h_{\rm HP}(t) = \delta(t) - h_{\rm TP}(t) \hspace{0.05cm} .$$
 +
 +
The graph shows
 +
*as blue curve the impulse response &nbsp;$h_{\rm TP}(t)$&nbsp; of the equivalent low-pass,
 +
 +
*as red curve the high&ndash;pass impulse response &nbsp;$h_{\rm HP}(t)$.
  
  
Die Grafik zeigt
+
&rArr; &nbsp; The Dirac delta function is the Laplace transform of the constant value&nbsp; $1$,&nbsp; <br>while the second function to be subtracted gives the impulse response of the equivalent low-pass filter,&nbsp; which is given by  the residue theorem with &nbsp;
*als rote Kurve die Hochpass&ndash;Impulsantwort &nbsp;$h_{\rm HP}(t)$,
+
:$$Z = 0,\hspace{0.2cm} N =1,\hspace{0.2cm} K = RC.$$ }}
* als blaue Kurve die Impulsantwort &nbsp;$h_{\rm TP}(t)$&nbsp; des äquivalenten Tiefpasses.
 
  
  
Die Diracfunktion ist die Laplace–Transformierte des konstanten Wertes $1$, während die zweite Funktion die Impulsantwort des äquivalenten Tiefpasses angibt, die mit &nbsp;$Z = 0$, &nbsp;$N =1$ und &nbsp;$K = RC$&nbsp; durch den Residuensatz angebbar ist. }}
 
  
 
==Exercises for the chapter==
 
==Exercises for the chapter==
Line 179: Line 207:
 
[[Aufgaben:Exercise_3.5Z:_Application_of_the_Residue_Theorem|Exercise 3.5Z: Application of the Residue Theorem]]
 
[[Aufgaben:Exercise_3.5Z:_Application_of_the_Residue_Theorem|Exercise 3.5Z: Application of the Residue Theorem]]
  
[[Aufgaben:Exercise_3.6:_Transient_Behaviour|Exercise 3.6: Transient Behaviour]]
+
[[Aufgaben:Exercise_3.6:_Transient_Behavior|Exercise 3.6: Transient Behavior]]
  
 
[[Aufgaben:Exercise_3.6Z:_Two_Imaginary_Poles|Exercise 3.6Z: Two Imaginary Poles]]
 
[[Aufgaben:Exercise_3.6Z:_Two_Imaginary_Poles|Exercise 3.6Z: Two Imaginary Poles]]

Latest revision as of 16:03, 21 November 2023

Problem formulation and prerequisites


$\text{Task:}$  This chapter deals with the following problem:

  • The  $p$–spectral function  $Y_{\rm L}(p)$  is given in  »pole-zero notation«.
  • The  »inverse Laplace transform«, i.e. the associated time function  $y(t)$  is searched-for,  where the following notation should hold:
$$y(t) = {\rm L}^{-1}\{Y_{\rm L}(p)\}\hspace{0.05cm} , \hspace{0.3cm}{\rm briefly}\hspace{0.3cm} y(t) \quad \circ\!\!-\!\!\!-^{\hspace{-0.25cm}\rm L}\!\!\!-\!\!\bullet\quad Y_{\rm L}(p)\hspace{0.05cm} .$$
Prerequisites for the chapter "Inverse Laplace Transform"


The graph summarizes the prerequisites for this task.

  • $H_{\rm L}(p)$  describes the transfer function of the causal system and  $Y_{\rm L}(p)$  specifies the Laplace transform of the output signal  $y(t)$  considering the input signal  $x(t)$ .  $Y_{\rm L}(p)$  is characterized by  $N$  poles,  by  $Z ≤ N$  zeros and by the constant  $K.$
  • Poles and zeros exhibit the properties mentioned in the  »last chapter«:  Poles are only allowed in the left  $p$–half plane or on the imaginary axis;  zeros are also allowed in the right  $p$–half plane.
  • All  »singularities«  – this is the generic term for poles and zeros – are either real or exist as pairs of conjugate-complex singularities.  Multiple poles and zeros are also allowed.
  • With the input  $x(t) = δ(t)$   ⇒   $X_{\rm L}(p) = 1$   ⇒   $Y_{\rm L}(p) = H_{\rm L}(p)$, the output signal  $y(t)$  then describes the »impulse response«  $h(t)$  of the transmission system.  For this purpose,  only the singularities drawn in green in the graph may be used for computation.
  • A unit jump function  $x(t) = γ(t)$   ⇒   $ X_{\rm L} = 1/p$  at the input causes the output signal  $y(t)$  to be equal to the  »step response«   $σ(t)$ of $H_{\rm L}(p)$ .  In addition to the singularities of  $H_{\rm L}(p)$,  the pole  $($shown in red in the graph$)$  at  $p = 0$  must now also be taken into account for computation.
  • Possible as input  $x(t)$  are only signals for which  $X_{ \rm L}(p)$  can be expressed in pole-zero notation  (see the  $\text{table}$  in the chapter »Laplace Transform and $p$–Transfer Function»$)$,  for example a cosine or sine signal switched on at time  $t = 0$ .
  • So,  a rectangular signal  $x(t)\ \ ⇒ \ \ X_{\rm L}(p) = (1 - {\rm e}^{\hspace{0.05cm}p\hspace{0.05cm}\cdot \hspace{0.05cm} T})/p$  is not possible in the approach described here.  However, the rectangular response  $y(t)$  can be computed indirectly as the difference of two step responses.

Some results of function theory


In contrast to the  »Fourier integrals«,  which differ only slightly in the two directions of transformation,  for  »Laplace«  the computation of  $y(t)$  from  $Y_{\rm L}(p)$ – that is the inverse transformation – is

  • much more difficult than computing  $Y_{\rm L}(p)$  from  $y(t)$,
  • unresolvable or solvable only very laboriously by elementary means.


$\text{Definition:}$  In general, the following holds for the  »inverse Laplace transform«:

$$y(t) = {\rm L}^{-1}\{Y_{\rm L}(p)\}= \lim_{\beta \hspace{0.05cm}\rightarrow \hspace{0.05cm}\infty} \hspace{0.15cm} \frac{1}{ {\rm j} \cdot 2 \pi}\cdot \int_{ \alpha - {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi \beta } ^{\alpha+{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi \beta} Y_{\rm L}(p) \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm e}^{\hspace{0.05cm}p \hspace{0.05cm}\cdot \hspace{0.05cm} t}\hspace{0.1cm}{\rm d}p \hspace{0.05cm} .$$
  1. The integration is parallel to the imaginary axis.
  2. The real part  $α$  is to be chosen such that all poles are located to the left of the integration path.


The left graph illustrates this line integral along the red dotted vertical  ${\rm Re}\{p\}= α$.  This integral is solvable using  »Jordan's lemma of complex analysis«.  In this tutorial only a very short and simple summary of the approach is depicted:

Line integral together with left and right circular integral
  1. The line integral can be divided into two circular integrals so that all poles are located in the left circular integral while the right circular integral may only contain zeros.
  2. According to the theory of functions, the right circular integral yields the time function  $y(t)$  for negative times. 
  3. Due to causality,  $y(t < 0)$  must be identical to zero,  but according to the fundamentals of function theorem this is only true if there are no poles in the right  $p$–half-plane.
  4. In contrast,  the integral over the left semicircle yields the time function for  $t ≥ 0$. 
  5. This encloses all poles and can be computed using the  »residue theorem«  in a  $($relatively$)$  simple way,  as it will be shown in the next sections.


Formulation of the residue theorem


It is further assumed that the transfer function  $Y_{\rm L}(p)$  can be expressed in pole-zero notation by

  • the constant factor  $K$,
  • the  $Z$  »zeros«  $p_{{\rm o}i}$  $(i = 1$, ... , $Z)$  and
  • the  $N$  »poles«  $p_{{\rm x}i}$  $(i = 1$, ... , $N$).


We also assume  $Z < N$.  The number of  »distinguishable poles«  is denoted by  $I$.  Multiple poles are counted only once to determine  $I$.  Thus,  the following holds for the  $\text{sketch}$  in the last section considering the double pole:  

$$N = 5,\hspace{0.3cm} I = 4.$$

$\text{Residue Theorem:}$  Considering the above conditions,  the  »inverse Laplace transform«  of  $Y_{\rm L}(p)$  for times  $t ≥ 0$  is obtained as the sum of  $I$  natural oscillations of the poles,  which are called the  »residuals«  – abbreviated as  $\rm Res$:

$$y(t) = \sum_{i=1}^{I}{\rm Res} \bigg \vert _{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}_i}} \hspace{-0.7cm}\{Y_{\rm L}(p)\cdot {\rm e}^{p \hspace{0.05cm}t}\} \hspace{0.05cm} .$$

Since  $Y_{\rm L}(p)$  is only specifiable for causal signals,  $y(t < 0) = 0$  always holds for negative times.

  • In general,  the following holds for a pole of multiplicity  $l$ :
$${\rm Res} \bigg \vert _{p \hspace{0.05cm}= \hspace{0.05cm}p_{ {\rm x}_i} } \hspace{-0.7cm}\{Y_{\rm L}(p)\cdot {\rm e}^{p t}\}= \frac{1}{(l-1)!}\cdot \frac{ {\rm d}^{\hspace{0.05cm}l-1} }{ {\rm d}p^{\hspace{0.05cm}l-1} }\hspace{0.15cm} \left \{Y_{\rm L}(p)\cdot (p - p_{ {\rm x}_i})^{\hspace{0.05cm}l}\cdot {\rm e}^{p \hspace{0.05cm}t}\right\} \bigg \vert_{p \hspace{0.05cm}= \hspace{0.05cm}p_{ {\rm x}_i} } \hspace{0.05cm} .$$
  • The following is obtained out of it with  $l = 1$  for a simple pole as a special case:
$${\rm Res} \bigg\vert_{p \hspace{0.05cm}= \hspace{0.05cm}p_{ {\rm x}_i} } \hspace{-0.7cm}\{Y_{\rm L}(p)\cdot {\rm e}^{p t}\}= Y_{\rm L}(p)\cdot (p - p_{ {\rm x}_i} )\cdot {\rm e}^{p \hspace{0.05cm}t} \bigg \vert _{p \hspace{0.05cm}= \hspace{0.05cm}p_{ {\rm x}_i} } \hspace{0.05cm} .$$


In the next sections,  the  »residue theorem«  is illustrated by three detailed examples corresponding to the three constellations in  $\text{Example 3}$  of chapter  »Laplace transform and p-transfer function«:

  • So,  we consider again the two-port network with an inductance  $L = 25 \ \rm µH$  in the longitudinal branch as well as the the series connection of an ohmic resistance  $R = 50 \ \rm Ω$  and a capacitance  $C$  in the transverse branch.
  • For the latter,  we consider three different values,  namely  $C = 62.5 \ \rm nF$,  $C = 8 \ \rm nF$  and  $C = 40 \ \rm nF$.
  • The following is always assumed:  $x(t) = δ(t) \; ⇒ \; X_{\rm L}(p) = 1$   ⇒   $Y_{\rm L}(p) = H_{\rm L}(p)$   ⇒   the output signal  $y(t)$  is equal to the impulse response  $h(t)$.

Aperiodically decaying impulse response


The following is obtained for the  $p$–transfer function computed in the section  »pole-zero representation of circuits«  with the capacitance  $C = 62.5 \ \rm nF$.  The other numerical values are given in the graph below:

Aperiodically decaying impulse response
$$H_{\rm L}(p)= K \cdot \frac {p - p_{\rm o }} {(p - p_{\rm x 1})(p - p_{\rm x 2})}= 2 \cdot \frac {p + 0.32 } {(p +0.4)(p +1.6 )} \hspace{0.05cm} .$$

Note the normalization of  $p$,  $K$ and also of all poles and zeros by the factor  ${\rm 10^6} · 1/\rm s$.

⇒   The impulse response is composed of  $I = N = 2$  natural oscillations. For $t < 0$,  these are equal to zero.

  • The residual of the pole at  $p_{{\rm x}1} =\ –0.4$  yields the following time function:
$$h_1(t) = {\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}1}} \hspace{-0.7cm}\{H_{\rm L}(p)\cdot {\rm e}^{p t}\}= H_{\rm L}(p)\cdot (p - p_{{\rm x}1})\cdot {\rm e}^{p \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}1}}$$
$$\Rightarrow \hspace{0.3cm}h_1(t) = 2 \cdot \frac {p + 0.32 } {p +0.4}\cdot {\rm e}^{p \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}-0.4}= - \frac {2 } {15}\cdot {\rm e}^{-0.4 \hspace{0.05cm} t} \hspace{0.05cm}. $$
  • In the same way, the residual of the second pole at  $p_{{\rm x}2} = \ –1.6$  can be computed:
$$h_2(t) = {\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}2}} \hspace{-0.7cm}\{H_{\rm L}(p)\cdot {\rm e}^{p t}\}= H_{\rm L}(p)\cdot (p - p_{{\rm x}2})\cdot {\rm e}^{p \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}2}}$$
$$\Rightarrow \hspace{0.3cm}h_2(t) = 2 \cdot \frac {p + 0.32 } {p +1.6}\cdot {\rm e}^{p \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}-1.6}= \frac {32 } {15}\cdot {\rm e}^{-1.6 \hspace{0.05cm} t} \hspace{0.05cm}. $$

The graph shows  $h_1(t)$  and  $h_2(t)$  as well as the sum signal  $h(t)$.

  1. The normalization factor  $1/T = 10^6 · \rm 1/s$  is taken into account here so that the time is normalized to  $T = 1 \ \rm µ s$ .
  2. For  $t =0$,  $T \cdot h(t=0) = {32 }/ {15} -{2 }/ {15}= 2 \hspace{0.05cm}$  is obtained as a result.
  3. For times  $t > 2 \ \rm µ s$,  the impulse response is negative  $($although only slightly and difficult to see in the graph$)$.


Attenuated-oscillatory impulse response


The component values  $R = 50 \ \rm Ω$,  $L = 25 \ \rm µ H$  and  $C = 8 \ \rm nF$ result in two conjugate complex poles at  $p_{{\rm x}1} = \ –1 + {\rm j} · 2$  and  $p_{{\rm x}2} = \ –1 - {\rm j} · 2$. 

Attenuated-oscillatory impulse response
  • The zero is located at  $p_{\rm o} = \ –2.5$.
  • $K = 2$  holds
  • All numerical values are to be multiplied by factor  $1/T$  $(T = 1\ \rm µ s$).


Applying the residue theorem to this configuration then it is obtained:

$$h_1(t) = K \cdot \frac {p_{\rm x 1} - p_{\rm o }} {p_{\rm x 1} - p_{\rm x 2}} \cdot {\rm e}^{\hspace{0.05cm}p_{\rm x 1} \cdot \hspace{0.05cm}t} $$
$$\Rightarrow \hspace{0.3cm}h_1(t) = 2 \cdot \frac {-1 + {\rm j}\cdot 2 +2.5} {(-1 + {\rm j}\cdot 2) - (-1 - {\rm j}\cdot 2)}\cdot {\rm e}^{\hspace{0.05cm}p_{\rm x 1} \cdot\hspace{0.05cm}t}$$
$$\Rightarrow \hspace{0.3cm}h_1(t) = 2 \cdot \frac {1.5 + {\rm j}\cdot 2} {{\rm j}\cdot 4}\cdot {\rm e}^{\hspace{0.05cm}p_{\rm x 1} \cdot\hspace{0.05cm}t}= (1 - {\rm j}\cdot 0.75)\cdot {\rm e}^{-t}\cdot {\rm e}^{\hspace{0.03cm}{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} 2t} \hspace{0.05cm} ,$$
$$ h_2(t) = K \cdot \frac {p_{\rm x 2} - p_{\rm o }} {p_{\rm x 2} - p_{\rm x 1}}\cdot {\rm e}^{\hspace{0.05cm}p_{\rm x 2} \hspace{0.03cm}\cdot \hspace{0.05cm}t} $$
$$\Rightarrow \hspace{0.3cm} h_2(t) = 2 \cdot \frac {-1 - {\rm j}\cdot 2 +2.5} {(-1 - {\rm j}\cdot 2) - (-1 + {\rm j}\cdot 2)}\cdot {\rm e}^{\hspace{0.05cm}p_{\rm x 2} \hspace{0.03cm}\cdot\hspace{0.05cm}t} $$
$$\Rightarrow \hspace{0.3cm}h_2(t) =2 \cdot \frac {1.5 - {\rm j}\cdot 2} {-{\rm j}\cdot 4}\cdot {\rm e}^{\hspace{0.05cm}p_{\rm x 2} \hspace{0.03cm}\cdot\hspace{0.05cm}t}= (1 + {\rm j}\cdot 0.75)\cdot {\rm e}^{-t}\cdot {\rm e}^{\hspace{0.03cm}-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} 2t} \hspace{0.05cm} . $$

Using  »Euler's theorem«  the following is obtained for the sum signal:

$$h(t) = h_1(t) + h_2(t)\hspace{0.3cm} \Rightarrow \hspace{0.3cm}h(t) = {\rm e}^{-t}\cdot \big [ (1 - {\rm j}\cdot 0.75)\cdot (\cos() + {\rm j}\cdot \sin())+ + (1 + {\rm j}\cdot 0.75)\cdot (\cos() - {\rm j}\cdot \sin())\big ]$$
$$\Rightarrow \hspace{0.3cm}h(t) ={\rm e}^{-t}\cdot \big [ 2\cdot \cos(2t) + 1.5 \cdot \sin(2t)\big ]\hspace{0.05cm} . $$

The graph shows the attenuated-oscillatory impulse response  $h(t)$  attenuated by  ${\rm e}^{–t}$  for this pole–zero configuration.


Critically attenuated case


With  $R = 50 \ \rm Ω$,  $L = 25 \ \rm µ H$  and   $C = 40 \ \rm nF$  we get the so-called  »critically attenuated case«:

$$H_{\rm L}(p)= K \cdot \frac {p - p_{\rm o }} {(p - p_{\rm x })^2}= 2 \cdot \frac {p + 0.5 } {(p +1)^2} \hspace{0.05cm} .$$

The capacitance  $C = 40 \ \rm nF$  is the smallest possible value for which there are just real pole places.  These coincide,  that  $p_{\rm x} = \ -1$  is a double pole place.  The time function is thus according to the residue theorem with  $l = 2$:

$$h(t) = {\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{ {\rm x} } } \hspace{-0.7cm}\{H_{\rm L}(p)\cdot {\rm e}^{p t}\}= \frac{ {\rm d} }{ {\rm d}p}\hspace{0.15cm} \left \{H_{\rm L}(p)\cdot (p - p_{ {\rm x} })^2\cdot {\rm e}^{p \hspace{0.05cm}t}\right\} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{ {\rm x} } } = K \cdot \frac{ {\rm d} }{ {\rm d}p}\hspace{0.15cm}\left \{ (p - p_{ {\rm o} })\cdot {\rm e}^{p \hspace{0.05cm}t}\right\} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{ {\rm x} } } \hspace{0.05cm} .$$
Impulse response and step response of the critically attenuated case

Using the  »product rule«  of differential calculus,  this gives:

$$h(t) = K \cdot \left [ {\rm e}^{p \hspace{0.05cm}t} + (p - p_{ {\rm o} })\cdot t \cdot {\rm e}^{p \hspace{0.05cm}t} \right ] \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}-1} = {\rm e}^{-t}\cdot \left ( 2 - t \right) \hspace{0.05cm} .$$

The graph shows this impulse response  $($green curve$)$  in normalized representation.  It differs only slightly from the one with two different poles at  $-0.4$  and  $-1.6$ .

The signal drawn in red   ⇒   $y(t) = 1 - {\rm e}^{-t} + t \cdot {\rm e}^{-t}$  results when a step function  $\gamma(t)$  is considered at the input   ⇒   »step response«.

To calculate the step response  $\sigma(t) = y(t)$  one can alternatively

  • consider the additional red pole at  $p = 0$   in the residual calculation, 
  • or form the integral over the impulse response  $h(t)$.


Partial fraction decomposition


Prerequisite for the application of the residue theorem is that there are less zeros than poles   ⇒   $Z$  must always be smaller than  $N$ .

  • If,  on the other hand,  as in the case of a high-pass filter  $Z = N$,  then the limit of the p–transfer function  $H_{\rm L}(p)$  for large  $p$  is not equal to zero,


The procedure is to be clarified exemplarily for a high-pass of first order.

$\text{Example 1:}$  The  $p$-transfer function of a  »first-order RC high-pass filter«  can be transformed by splitting off a constant as follows:

Impulse response of low-pass  $($blue$)$  and high-pass  $($red$)$
$$\frac{p}{p + RC} = 1- \frac{RC}{p + RC}\hspace{0.05cm} .$$

Thus,  the high-pass impulse response is:

$$h_{\rm HP}(t) = \delta(t) - h_{\rm TP}(t) \hspace{0.05cm} .$$

The graph shows

  • as blue curve the impulse response  $h_{\rm TP}(t)$  of the equivalent low-pass,
  • as red curve the high–pass impulse response  $h_{\rm HP}(t)$.


⇒   The Dirac delta function is the Laplace transform of the constant value  $1$, 
while the second function to be subtracted gives the impulse response of the equivalent low-pass filter,  which is given by the residue theorem with  

$$Z = 0,\hspace{0.2cm} N =1,\hspace{0.2cm} K = RC.$$


Exercises for the chapter

Exercise 3.5: Circuit with R, L and C

Exercise 3.5Z: Application of the Residue Theorem

Exercise 3.6: Transient Behavior

Exercise 3.6Z: Two Imaginary Poles

Exercise 3.7: Impulse Response of a High-Pass Filter

Exercise 3.7Z: Partial Fraction Decomposition