Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Carrier Frequency Systems with Coherent Demodulation

From LNTwww

Signal space representation of linear modulation


In the first three chapters of this  "fourth main chapter"  "Generalized Description of Digital Modulation Methods" the structure of the optimal receiver and the signal representation by means of basis functions were treated by the example of baseband transmission.

With the same systematics and the same uniformity, band–pass systems will now also be considered which have already been described in earlier books or chapters, namely

In the following, we restrict ourselves to linear modulation methods  and coherent demodulation. This means that the receiver must know exactly the frequency and phase of the carrier signal added to the transmitter. In the following chapter,  "Carrier Frequency Systems with Non-Coherent Demodulation"  are discussed.

In the case of coherent demodulation, the entire transmission system can be described in the  "equivalent low-pass domain",  and the relationship to baseband transmission is even more obvious than when band-pass signals are considered.

Equivalent low-pass model of carrier-modulated transmission methods

This results in the sketched model. Complex quantities are marked by a yellow filled double arrow. It should be noted with regard to this graph:

  • From the incoming bit stream  qk{0, L},    b  data bits each are converted serially/parallel. These output bits result in the message  m{m0,...,mM1}, where  M=2b  indicates the level number. For the following, the message  m=mi  is assumed.
  • In the  signal space allocation,  a complex amplitude coefficient  ai=aIi+jaQi  is assigned to each message  mi,  whose real part will form the in-phase component and whose imaginary part will form the quadrature component of the later transmitted signal.
  • At the output of the blue marked block  generation of the TP signal  the (in general) complex-valued  "equivalent low-pass signal"  is present, where  gs(t)  shall be limited for the time being to the range  0tT  just like  sTP(t).  The index  i  again provides an indication of the message  mi sent:
sTP(t)|m=mi=aigs(t)=aIigs(t)+jaQigs(t)
  • By energy normalization one gets from the basic transmission pulse  gs(t)  to the basis function
φ1(t)=gs(t)/EgswithEgs=T0gs(t)2dtsTP(t)|m=mi=sIiφ1(t)+sQijφ1(t).
  • While the coefficients  aIi  and  aQi  are dimensionless, the new coefficients  sIi  and  sQi  have the unit "root of energy"   ⇒   see page  "Nomenclature in the fourth chapter":
sIi=EgsaIi,sQi=EgsaQi.
  • The equations show that the system considered here is completely described in the equivalent TP domain by one real basis function  φ1(t)  and one purely imaginary basis function  ψ1(t)=jφ1(t)  each, or by a single complex basis function  ξ1(t)
  • The gray shaded part of the block diagram shows the model for generating the band-pass signal  sBP(t), first the generation of the  "analytical signal"  s+(t)=sTP(t)ej2πfTT  and then the real part formation.
  • The two basis functions of the band-pass signal  sBP(t)  result here as energy-normalized and time-limited to the range  0tT  cosine and minus-sine oscillations, respectively.


Coherent demodulation and optimal receiver


In the following, we always assume the equivalent low-pass signal unless explicitly stated otherwise. In particular, the signals  s(t)=sTP(t)  and  r(t)=rTP(t)  in the graph are low-pass signals and thus generally complex. The suffix "TP" is omitted in the remainder of this paper.

AWGN channel model for complex signals

To this figure is to be noted:

  • The phase delay of the channel (i.e. a phase function increasing linearly with frequency) is expressed in the low-pass range by the time-independent rotation factor  ejϕ
  • The signal  n(t)  describes a complex white Gaussian random process in the TP domain, as given in the section  "N-dimensional Gaussian noise".  The apostrophe was added in order to be able to work with  n(t)  later in the overall system.
  • The receiver knows the channel phase  ϕ  and corrects it by the conjugate-complex rotation factor  ejϕ. Thus the received signal in the equivalent low-pass range is:
r(t)=s(t)+n(t)ejϕ=s(t)+n(t).
  • The phase rotation does not change the properties of the circular symmetric noise   ⇒   n(t)=n(t)ejϕ has exactly the same statistical properties as n(t).

The left graphic in the figure above illustrates the facts just described.

  • The right graph shows the overall system as used for the rest of the fourth main chapter.
  • The AWGN channel is followed by an optimal receiver according to the section  "N-dimensional Gaussian noise".


Definition:  A  symbol error  occurs whenever  ˆm  does not match the message  m  sent:

m=miˆmmi.

On–off keying (2–ASK)


The simplest digital modulation method is  On–off keying  (OOK), which has already been described in detail in the book  "Modulation Methods"  on the basis of its band-pass signals. There this method was partly also called Amplitude Shift Keying  (2–ASK).

Signal space constellations for on-off keying

This method can be characterized as follows:

  • OOK is a one-dimensional modulation method  (N=1)  with  sIi={0,E1/2}  and  sQi0  or  sIi0  and  sQi={0,E1/2}. As an abbreviation,  E=Egs. The first combination describes a cosinusoidal carrier signal, the second combination a sinusoidal carrier.
  • Each bit is assigned to a binary symbol  (b=1, M=2); thus, no serial/parallel converter is needed. For equally probable symbols, which is always assumed for what follows, both the mean energy per symbol  (ES)  and the mean energy per bit  (EB)  are equal to  E/2.
  • The optimal OOK receiver virtually projects the complex-valued received signal  r(t)  onto the basis function  φ1(t), if one starts from the left sketch (cosine carrier).
pS=Pr(E)=Q(d/2σn)=Q(E2N0)=Q(ES/N0).
  • Since each bit is mapped to exactly one symbol, the average bit error probability  pB  is exactly:
pB=Q(ES/N0)=Q(EB/N0).

Binary phase shift keying (BPSK)


The very often used method Binary Phase Shift Keying  (BPSK), which was already described in detail in the chapter  "Linear Digital Modulation"  of the book "Modulation Methods" using the band–pass signals (typical:   phase jumps), differs from On–off keying  by a constant envelope.

For the signal space points,  \boldsymbol{s}_1 = -\boldsymbol{s}_0 always holds. For example, they are:

  • s_{{\rm I}i} = \{\pm E^{1/2}\} and s_{{\rm Q}i} \equiv 0 with a cosine carrier,
  • s_{{\rm I}i} \equiv 0 and s_{{\rm Q}i} = \{\pm E^{1/2}\} with a sinusoidal carrier.

Signal space constellations of the BPSK

The improvements compared to on–off keying can be seen from the equations given in the graphic (in the field with a green background):

  • For a given normalization energy  E,  the distance between  \boldsymbol{s}_0  and  \boldsymbol{s}_1  is twice as large. This gives the error probability (both related to symbols and bits):
p_{\rm S} = p_{\rm B} = {\rm Pr}({\cal{E}}) = {\rm Q} \left ( \frac{d/2}{\sigma_n}\right ) = {\rm Q} \left ( \sqrt{{2 E}/{N_0}}\right ) = {\rm Q} \left ( \sqrt{{2 E_{\rm S}}/{N_0}}\right ) \hspace{0.05cm}.
  • This equation also takes into account that  E_{\rm S} = E_{\rm B} = E  now applies, which means that the average energies per symbol or per bit are now twice as large as with OOK.
  • Because of the factor  2  under the square root in the argument of the Q function, the BPSK error probability is noticeably lower than with on–off keying if  E_{\rm S}  and  N_0  are not changed.
  • In other words:   With the same  N_0,  BPSK only requires half the symbol energy  E_{\rm S} in order to achieve the same error probability as on–off keying. The logarithmic gain is  3 \ \rm dB.

M–level amplitude shift keying (M–ASK)


In analogy to  "M–level baseband transmission",  we now consider  M–level Amplitude Shift Keying  (M–ASK), whose low-pass signal space constellation for the parameters  b = 3   ⇒   M = 8   ⇒   8–ASK  looks as follows.

Signal room constellation of the 8-ASK

The name  M–ASK is not entirely accurate. Rather, it is a combined ASK/PSK method, since, for example, the two innermost signal space points  (\pm 1)  do not differ in terms of amplitude (envelope), but only in terms of phase  (0^\circ or 180^\circ).

It should also be noted:

  • The average energy per symbol  can be calculated as follows for this one-dimensional method using symmetry:
E_{\rm S} = \frac{2}{M} \cdot \sum_{k = 1}^{M/2} (2k -1)^2 \cdot E = \frac{M^2 -1}{3} \cdot E \hspace{0.05cm}.
  • Since each of the  M  symbols represents  b = \log_2 (M)  bits, the average energy per bit is:
E_{\rm B} = \frac{E_{\rm S}}{b} = \frac{E_{\rm S}}{{\rm log_2}\, (M)} =\frac{M^2 -1}{3 \cdot {\rm log_2}\, (M)} \cdot E \hspace{0.3cm}\Rightarrow\hspace{0.3cm}M= 8\hspace{-0.1cm}: E_{\rm S}/E = 21 \hspace{0.05cm}, \hspace{0.1cm}E_{\rm B}/E = 7\hspace{0.05cm}.
  • The probability that one of the two outer symbols is falsified due to AWGN noise is therefore the same
{\rm Pr}({\cal{E}} \hspace{0.05cm}|\hspace{0.05cm} \text{outer symbol)} = {\rm Q} \left ( \sqrt{{2 E}/{N_0}}\right )\hspace{0.05cm}.
  • The falsification probability of the  M-2  inner symbols is twice as large, since other decision regions border on both the right and the left. By averaging one obtains for the (mean) symbol error probability:
p_{\rm S} = {\rm Pr}({\cal{E}}) = \frac{1}{M} \cdot \left [ 2 \cdot 1 \cdot {\rm Q} \left ( \sqrt{{2 E}/{N_0}}\right ) + (M-2) \cdot 2 \cdot {\rm Q} \left ( \sqrt{{2 E}/{N_0}}\right ) \right ]
\Rightarrow \hspace{0.3cm} p_{\rm S} = \frac{2 \cdot (M-1)}{M} \cdot {\rm Q} \left ( \sqrt{{2 E}/{N_0}}\right ) =\frac{2 \cdot (M-1)}{M} \cdot {\rm Q} \left ( \sqrt{\frac{6 \cdot E_{\rm S}}{(M^2-1) \cdot N_0}}\right ) \hspace{0.05cm}.
  • When using the  "Gray code"  (neighboring symbols each differ by one bit), the bit error probability  p_{\rm B} is approximately the factor  b = \log_2 \ (M)  smaller than the symbol error probability  p_{\rm S}:
p_{\rm B} \approx \frac{p_{\rm S}}{b} = \frac{2 \cdot (M-1)}{M \cdot {\rm log_2}\, (M)} \cdot {\rm Q} \left ( \sqrt{{6 \cdot {\rm log_2}\, (M)}/({M^2-1 }) \cdot { E_{\rm B}}/{ N_0}}\right ) \hspace{0.05cm}.

Quadrature amplitude modulation (M-QAM)


Signal space constellation of 16-QAM

The  "quadrature amplitude modulation"  (M–QAM) results from a  M–ASK each for in-phase and quadrature components   ⇒   M^2  signal space points.

Each symbol now represents  b = \log_2 (M)  binary characters (bits). The graphic shows the special case  M = 16   ⇒   b = 4. The bit assignment for  "Gray coding"  is shown in red (neighboring symbols each differ by one bit).

The average energy per symbol  (E_{\rm S}) or the average energy per bit  (E_{\rm B}) can be easily derived from the result for the  M–ASK (note the difference in the equation between an energy  E  and the expected value  \rm E[\text{...}]):

E_{\rm S} = {\rm E} \left [ |s_{i}|^2 \right ] = {\rm E} \left [ |s_{{\rm I}i}|^2 \right ] + {\rm E} \left [ |s_{{\rm Q}i}|^2 \right ] = 2 \cdot {\rm E} \left [ |s_{{\rm I}i}|^2 \right ]
\Rightarrow \hspace{0.3cm} E_{\rm S} = 2 \cdot \frac{M_{\rm I}^2-1}{3} \cdot E = \frac{2}{3} \cdot (M-1) \cdot E\hspace{0.01cm},\hspace{0.3cm}E_{\rm B} =\frac{2 \cdot (M-1)}{3 \cdot {\rm log_2}\, (M)} \cdot E \hspace{0.01cm}.


In addition, the M–level quadrature amplitude modulation shows the following properties:

  • The  "Union Bound"  can be used as an upper bound for the symbol error probability, whereby it should be noted that an inner symbol can be falsified in four directions:
p_{\rm S} = {\rm Pr}({\cal{E}}) \le \left\{ \begin{array}{c} 4 \cdot p \\ 2 \cdot p \end{array} \right.\quad \begin{array}{*{1}c} {\rm for}} \hspace{0.15cm} M \ge 16 \hspace{0.05cm}, \\ {\rm for}} \hspace{0.15cm} M = 4 \hspace{0.05cm},\\ \end{array} \hspace{0.4cm} {\rm mit} \hspace{0.4cm} p = {\rm Q} \left ( \sqrt{{2 E}/{N_0}}\right ) \hspace{0.05cm}.
  • Berücksichtigt man, dass nur die  (b-2)^2  inneren Punkte in vier Richtungen verfälscht werden, die vier Eckpunkte dagegen nur in zwei und die restlichen in drei Richtungen (blaue Pfeile in der Grafik), so erhält man mit  M = b^2  die bessere Näherung
p_{\rm S} \approx {1}/{M} \cdot \big [(b - 2)^2 \cdot 4p + 4 \cdot 2p + 4 \cdot (b - 2) \cdot 3p \big ] = {p}/{M} \cdot \big [ 4 \cdot M - 16 \cdot \sqrt{M} + 16 + 8 + 12 \cdot \sqrt{M} - 24\big ]
\Rightarrow \hspace{0.3cm} p_{\rm S} \approx {4 \cdot p}/{M} \cdot \big [ M - \sqrt{M} \big ] = 4p \cdot \big [ 1 - {1}/{\sqrt{M}} \big ]
\Rightarrow\hspace{0.3cm} M = 16\hspace{-0.1cm}: \hspace{0.1cm} p_{\rm S} \approx 3 \cdot p = 3 \cdot {\rm Q} \big ( \sqrt{{2 E}/{N_0}}\big ) = 3 \cdot {\rm Q} \big ( \sqrt{{1/5 \cdot E_{\rm S}}/{ N_0}}\big ) \hspace{0.05cm}.

\text{Fazit:}  Bei der  M–QAM gilt allgemein  E_{\rm B} = E_{\rm S}/\log_2 \hspace{0.05cm} (M)  und bei Graycodierung zusätzlich  p_{\rm B} = p_{\rm S}/\log_2 \hspace{0.05cm} (M).

Damit erhält man für die mittlere Bitfehlerwahrscheinlichkeit:

p_{\rm B} \approx \frac{4 \cdot (1 - 1/\sqrt{M})}{ {\rm log_2}\hspace{0.05cm} (M)} \cdot {\rm Q} \left ( \sqrt{ \frac{3 \cdot {\rm log_2}\, (M)}{M-1 } \cdot { E_{\rm B} }/{ N_0} }\right ) \hspace{0.05cm}.
  • Die Näherung gilt für  M \le 16  exakt, wenn – wie für die obere Grafik vorausgesetzt – keine "diagonalen Verfälschungen" auftreten.
  • Der Sonderfall "4–QAM" (ohne innere Symbole) wird in der  Aufgabe 4.13  behandelt.

Multi-level phase–shift keying (M–PSK)


Bei mehrstufiger Phasenmodulation, wobei die Stufenzahl  M  in der Praxis meist eine Zweierpotenz ist, liegen alle Signalraumpunkte auf einem Kreis mit Radius  E^{1/2}  gleichmäßig verteilt. Damit gilt für die mittlere Symbolenergie  E_{\rm S} = E  und für die mittlere Energie pro Bit  E_{\rm B} = E_{\rm S}/b = E/\hspace{-0.05cm}\log_2 \hspace{0.05cm} (M).

Signalraumkonstellation der 8–PSK und 16–PSK

Für die Inphase– und die Quadraturkomponente der Signalraumpunkte  \boldsymbol{s}_i  gilt allgemein  (i = 0, \hspace{0.05cm}\text{...} \hspace{0.05cm}, \hspace{0.05cm}M-1):

s_{{\rm I}i} = \cos \left ( { 2\pi i}/{ M} + \phi_{\rm off} \right ) \hspace{0.05cm},\hspace{0.2cm} s_{{\rm Q}i} = \sin \left ( { 2\pi i}/{ M} + \phi_{\rm off} \right ) \hspace{0.2cm}\Rightarrow \hspace{0.2cm} || \boldsymbol{ s}_i || = \sqrt{ s_{{\rm I}i}^2 + s_{{\rm Q}i}^2} = 1 \hspace{0.05cm}.

Der Phasenoffset ist in obiger Grafik jeweils zu  \phi_{\rm off} = 0  gesetzt. Die 4–PSK mit  \phi_{\rm off} = \pi/4 \ (45^\circ)  ist identisch mit der  4–QAM. Der Abstand zwischen zwei benachbarten Punkten ist in allen Fällen gleich:

d_{\rm min} = d_{\rm 0, \hspace{0.05cm}1} = d_{\rm 1, \hspace{0.05cm}2} = \hspace{0.05cm}\text{...} \hspace{0.05cm} = d_{M-1, \hspace{0.05cm}0} = 2 \cdot \sqrt{E} \cdot \sin (\pi/M)
\Rightarrow\hspace{0.3cm} M = 4\hspace{-0.1cm}:\hspace{0.1cm}d_{\rm min}/E^{1/2} = \sqrt{2} \approx 1.414 \hspace{0.05cm}, \hspace{0.8cm} M = 8\hspace{-0.1cm}:\hspace{0.1cm}d_{\rm min}/E^{1/2} \approx 0.765 \hspace{0.05cm},\hspace{0.8cm} M = 16\hspace{-0.1cm}:\hspace{0.1cm}d_{\rm min}/E^{1/2} \approx 0.390 \hspace{0.05cm}.

Die obere Schranke  p_{\rm UB}  für die AWGN–Symbolfehlerwahrscheinlichkeit nach der  Union Bound  liefert:

p_{\rm S} = {\rm Pr}({\cal{E}}) \le 2 \cdot {\rm Q} \left ( \sin ({ \pi}/{ M}) \cdot \sqrt{ { {2E_{\rm S}}}/{ N_0} }\right ) = p_{\rm UB} \hspace{0.05cm}.

Man erkennt:

  • Für  M = 2  (BPSK) erhält man daraus die Abschätzung  p_{\rm S} \le p_{\rm UB} =2 \cdot {\rm Q} \left ( \sqrt{ 2E_{\rm S}/{ N_0} }\right ). Ein Vergleich mit der auf der  BPSK–Seite  angegebenen Gleichung  p_{\rm S} ={\rm Q} \left ( \sqrt{ 2E_{\rm S}/{ N_0} }\right )  zeigt, dass in diesem Sonderfall die "Union Bound" als obere Schranke den doppelten Wert liefert.
  • Je größer  M  ist, umso genauer nähert  p_{\rm UB}  die exakte Symbolfehlerwahrscheinlichkeit  p_{\rm S}  an. Das interaktive Applet  Mehrstufige PSK & Union Bound  gibt auch die genauere, durch Simulation gewonnene Fehlerwahrscheinlichkeit an.


\text{Fazit:}  Die Schranke für die M–PSK–Bitfehlerwahrscheinlichkeit lautet (Graycode  ⇒  rote Beschriftung vorausgesetzt):

p_{\rm B} \le \frac{2}{ {\rm log_2} \hspace{0.05cm}(M)} \cdot {\rm Q} \left ( \sqrt{ {\rm log_2} \hspace{0.05cm}(M)} \cdot \sin ({ \pi}/{ M}) \cdot \sqrt{ { {2E_{\rm B} } }/{ N_0} }\right ) \hspace{0.05cm}.
  • Diese Schranke muss man allerdings nur für  M > 4  anwenden.
  • Für  M = 2  (BPSK) und  M = 4  (Identität zwischen 4–PSK und 4–QAM) kann man die Bitfehlerwahrscheinlichkeit exakt angeben:
p_{\rm B} = {\rm Q} \left ( \sqrt{ { {2E_{\rm B} } }/{ N_0} }\right ) \hspace{0.05cm}.

Binary frequency shift keying (2–FSK)


Auch diese Modulationsart mit Parameter  b = 1   ⇒   M = 2  wurde bereits im Abschnitt  FSK – Frequency Shift Keying  des Buches "Modulationsverfahren" anhand der Bandpass–Signale ausführlich beschrieben.

Die beiden möglichen Signalformen werden im Bereich  0 \le t \le T  durch zwei unterschiedliche Frequenzen dargestellt:

s_{\rm BP0}(t) \hspace{-0.1cm} = \hspace{-0.1cm} A \cdot \cos( 2\pi \cdot( f_{\rm T} + \Delta f_{\rm A})\cdot t)\hspace{0.05cm},
s_{\rm BP1}(t) \hspace{-0.1cm} = \hspace{-0.1cm} A \cdot \cos( 2\pi \cdot( f_{\rm T} - \Delta f_{\rm A})\cdot t)\hspace{0.05cm}.

f_{\rm T}  bezeichnet die Trägerfrequenz und  \Delta f_{\rm A}  den (einseitigen) Frequenzhub. Die mittlere Energie pro Symbol bzw. pro Bit ist jeweils gleich:

E_{\rm S} = E_{\rm B} = E = \frac{A^2 \cdot T}{2} \hspace{0.05cm}.

Hier soll nun die FSK im äquivalenten Tiefpass–Signalraum betrachtet werden. Dann gilt:

s_{\rm TP0}(t) \hspace{-0.1cm} = \hspace{-0.1cm} \sqrt{E/T} \cdot {\rm e}^{\hspace{0.05cm}+{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm} 2\pi \hspace{0.03cm}\cdot \hspace{0.03cm} \Delta f_{\rm A} \hspace{0.03cm}\cdot t}\hspace{0.05cm},\hspace{0.2cm} 0 \le t \le T\hspace{0.05cm},
s_{\rm TP1}(t) \hspace{-0.1cm} = \hspace{-0.1cm} \sqrt{E/T} \cdot {\rm e}^{\hspace{0.05cm}-{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm} 2\pi \hspace{0.03cm}\cdot \hspace{0.03cm} \Delta f_{\rm A} \hspace{0.03cm}\cdot t}\hspace{0.05cm},\hspace{0.2cm} 0 \le t \le T\hspace{0.05cm},

und für das innere Produkt erhält man

< \hspace{0.02cm} s_{\rm TP0}(t) \cdot s_{\rm TP1}(t) \hspace{0.02cm}> \hspace{0.1cm} = \hspace{-0.1cm} \int_{0}^{T} s_{\rm TP0}(t) \cdot s_{\rm TP1}^{\star}(t) \,{\rm d} t = A^2 \cdot \int_{0}^{T} {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm} 4\pi \hspace{0.03cm}\cdot \hspace{0.03cm} \Delta f_{\rm A} \hspace{0.03cm}\cdot t} \,{\rm d} t = \frac{A^2}{{\rm j} \cdot 4\pi \cdot \Delta f_{\rm A}} \cdot \big [ {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm} 4\pi \hspace{0.03cm}\cdot \hspace{0.03cm} \Delta f_{\rm A} \hspace{0.03cm}\cdot T} - 1 \big ] \hspace{0.05cm}.

\text{Definition:}  Der  Modulationsindex  h = 2 \cdot \Delta f_{\rm A}\hspace{0.03cm}\cdot T  ist das Verhältnis zwischen dem gesamten (beideseitigen) Frequenzhub  (2 \cdot \Delta f_{\rm A})  und der Symbolrate  (1/T).


Die beiden Signale sind dann orthogonal, wenn dieses innere Produkt gleich Null ist:

< \hspace{0.02cm} s_{\rm TP0}(t) \cdot s_{\rm TP1}(t) \hspace{0.02cm}> \hspace{0.1cm} = \frac{A^2\cdot T}{{\rm j} \cdot 2\pi \cdot h} \cdot \left [ {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm} 2h} - 1 \right ] = 0 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} h = 2 \cdot \Delta f_{\rm A} \cdot T = 1,\hspace{0.1cm} 2, \hspace{0.1cm}3,\ \text{ ... }\hspace{0.05cm}.
Signalraumkonstellation der FSK, falls  h  ganzzahlig

Setzt man den Modulationsindex  h  als ganzzahlig voraus, so lassen sich die Tiefpass–Signale in der Form

s_{\rm TP0}(t) = \sqrt{E} \cdot \xi_1(t) \hspace{0.05cm},
s_{\rm TP1}(t) = \sqrt{E} \cdot \xi_2(t)

mit komplexen Basisfunktionen darstellen:

\xi_1(t) = \sqrt{1/T} \cdot {\rm e}^{\hspace{0.05cm}+{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm} \pi \hspace{0.03cm}\cdot \hspace{0.03cm} h \hspace{0.03cm}\cdot \hspace{0.03cm}t/T}\hspace{0.05cm},\hspace{0.2cm} 0 \le t \le T\hspace{0.05cm},
\xi_2(t)= \sqrt{1/T} \cdot {\rm e}^{\hspace{0.05cm}-{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm} \pi \hspace{0.03cm}\cdot \hspace{0.03cm} h \hspace{0.03cm}\cdot \hspace{0.03cm}t/T}\hspace{0.05cm},\hspace{0.2cm} 0 \le t \le T \hspace{0.05cm}.

Es ergibt sich die hier skizzierte Signalraumdarstellung der binären FSK.

\text{Fazit:} 

  • Bei ganzzahligem Modulationsindex  h  sind die Tiefpass-Signale  s_{\rm TP0}(t)  und  s_{\rm TP1}(t)  der binären FSK zueinander orthogonal.
  • Damit ergibt sich für die Symbolfehlerwahrscheinlichkeit (Herleitung in der Grafik):
p_{\rm S} = {\rm Pr}({\cal{E} }) = {\rm Q} \left ( \sqrt{ { {E_{\rm S} } }/{ N_0} }\right ) \hspace{0.05cm}.
  • Die Bitfehlerwahrscheinlichkeit hat den gleichen Wert:   p_{\rm B} = p_{\rm S}.


Hinweis: Im Gegensatz zur Darstellung in [KöZ08][1] ist hier der Frequenzhub  \Delta f_{\rm A}  einseitig definiert. Deshalb unterscheiden sich die Gleichungen teilweise um den Faktor  2. Arbeitet man jedoch mit dem Modulationsindex  h, so gibt es keine Unterschiede.

Minimum Shift Keying (MSK)


Unter  Minimum Shift Keying  (MSK) versteht man ein binäres FSK–System mit dem Modulationsindex  h = 0.5   ⇒   Frequenzhub \Delta f_{\rm A} = 1/(2T). Die Grafik zeigt ein MSK–Signal für die Trägerfrequenz  f_{\rm T} = 4/T:

  • Die beiden Frequenzen innerhalb des Sendsignals sind  f_{\rm 0} = f_{\rm T} + 1/(4T)  zur Darstellung der Nachricht  m_0  (gelbe Hinterlegung) sowie  f_{\rm 1} = f_{\rm T} -1/(4T)   ⇒   Nachricht  m_1  (grüne Hinterlegung).
  • In der Grafik ist auch eine kontinuierliche Phasenanpassung bei den Übergängen berücksichtigt, um die Signalbandbreite weiter zu verringern. Man spricht dann von  Continuous Phase Modulation  (CPM).


Quellensignal und Bandpass–MSK–Signal

Ohne diese Phasenanpassung lauten die beiden Bandpass–Signalformen:

s_{\rm BP0}(t) = \sqrt{2E/T} \cdot \cos( 2\pi f_0 t)\hspace{0.05cm},\hspace{0.2cm} 0 \le t \le T\hspace{0.05cm},
s_{\rm BP1}(t) = \sqrt{2E/T} \cdot \cos( 2\pi f_1 t)\hspace{0.05cm},\hspace{0.2cm} 0 \le t \le T\hspace{0.05cm}.

Bildet man das innere Produkt der Bandpass–Signale, so erhält man mit  f_{\rm \Delta} = f_0 - f_1  und  f_{\rm \Sigma} = f_0 + f_1:

< \hspace{0.02cm} s_{\rm BP0}(t) \hspace{0.2cm} \cdot \hspace{0.2cm} s_{\rm BP1}(t) \hspace{0.02cm}> \hspace{0.2cm} = {2E}/{T} \cdot \int_{0}^{T} \cos( 2\pi f_0 t) \cdot \cos( 2\pi f_1 t)\,{\rm d} t = {E}/{T} \cdot \int_{0}^{T} \cos( 2\pi f_{\rm \Delta} t) \,{\rm d} t + {E}/{T} \cdot \int_{0}^{T} \cos( 2\pi f_{\rm \Sigma} t) \,{\rm d} t
\Rightarrow \hspace{0.3cm}< \hspace{0.02cm} s_{\rm BP0}(t) \hspace{0.2cm} \cdot \hspace{0.2cm} s_{\rm BP1}(t) \hspace{0.02cm}> \hspace{0.2cm} = {E}/{T} \cdot \int_{0}^{T} \hspace{-0.1cm} \cos( \pi \cdot {t}/{T}) \,{\rm d} t + {E}/{T} \cdot \int_{0}^{T} \hspace{-0.1cm}\cos( 2\pi \cdot 2 f_{\rm T} \cdot t) \,{\rm d} t \hspace{0.05cm}.

Das erste Integral ist Null (Integral über "Cosinus" von  0  bis  \pi). Für  f_{\rm T} \gg 1/T, was man in der Praxis voraussetzen kann, verschwindet auch das zweite Integral. Damit erhält man für das innere Produkt:  

< \hspace{0.02cm} s_{\rm BP0}(t) \cdot s_{\rm BP1}(t) \hspace{0.02cm}> \hspace{0.2cm}= 0 \hspace{0.05cm}.

\text{Fazit:} 

  • Damit ist gezeigt, dass für den Modulationsindex  h = 0.5  (also  MSK) und allen Vielfachen hiervon die beiden Bandpass–Signale orthogonal sind.
  • Mit den neuen reellen Basisfunktionen
\varphi_1(t) = \sqrt{2/T} \cdot \cos( 2\pi f_0 t)\hspace{0.05cm},\hspace{0.2cm} 0 \le t \le T\hspace{0.05cm},
\varphi_2(t) = \sqrt{2/T} \cdot \cos( 2\pi f_1 t)\hspace{0.05cm},\hspace{0.2cm} 0 \le t \le T
erhält man die genau gleiche Signalraumkonstellation wie für geradzahliges  h = 1, 2, 3, \ \text{ ...}.
  • Es ergibt sich somit auch die gleiche Fehlerwahrscheinlichkeit:
p_{\rm S} = {\rm Pr}({\cal{E} }) = {\rm Q} \left ( \sqrt{ { {E_{\rm S} } }/{ N_0} }\right ) = p_{\rm B} \hspace{0.05cm}.

Aufgaben zum Kapitel


Aufgabe 4.11: On-Off-Keying und Binary Phase Shift Keying

Aufgabe 4.11Z: Nochmals OOK und BPSK

Aufgabe 4.12: Berechnungen zur 16-QAM

Aufgabe 4.13: Vierstufige QAM

Aufgabe 4.14: 8-PSK und 16-PSK

Aufgabe 4.14Z: 4-QAM und 4-PSK

Aufgabe 4.15: Optimale Signalraumbelegung

Aufgabe 4.16: Binary Frequency Shift Keying

Quellenverzeichnis

  1. Kötter, R., Zeitler, G.: Nachrichtentechnik 2. Vorlesungsmanuskript, Lehrstuhl für Nachrichtentechnik, Technische Universität München, 2008.