Difference between revisions of "Digital Signal Transmission/Structure of the Optimal Receiver"

From LNTwww
m (Text replacement - "”" to """)
 
(24 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
   
 
   
 
{{Header
 
{{Header
|Untermenü=Verallgemeinerte Beschreibung digitaler Modulationsverfahren
+
|Untermenü=Generalized Description of Digital Modulation Methods
 
|Vorherige Seite=Signale, Basisfunktionen und Vektorräume
 
|Vorherige Seite=Signale, Basisfunktionen und Vektorräume
 
|Nächste Seite=Approximation der Fehlerwahrscheinlichkeit
 
|Nächste Seite=Approximation der Fehlerwahrscheinlichkeit
 
}}
 
}}
  
== Blockschaltbild und Voraussetzungen ==
+
== Block diagram and prerequisites ==
 
<br>
 
<br>
In diesem Kapitel wird die Struktur des optimalen Empfängers eines digitalen Übertragungssystems sehr allgemein hergeleitet, wobei
+
In this chapter,&nbsp; the structure of the optimal receiver of a digital transmission system is derived in very general terms,&nbsp; whereby
*das Modulationsverfahren und weitere Systemdetails nicht weiter spezifiziert werden,<br>
+
*the modulation process and further system details are not specified further,<br>
*von den Basisfunktionen und der Signalraumdarstellung gemäß dem Kapitel&nbsp; [[Digitalsignal%C3%BCbertragung/Signale,_Basisfunktionen_und_Vektorr%C3%A4ume#Zur_Nomenklatur_im_vierten_Kapitel_.281.29|Signale, Basisfunktionen und Vektorräume]]&nbsp; ausgegangen wird.
 
  
 +
*the basis functions and the signal space representation according to the chapter&nbsp; [[Digital_Signal_Transmission/Signals,_Basis_Functions_and_Vector_Spaces|"Signals, Basis Functions and Vector Spaces"]]&nbsp; are assumed.
  
[[File:P ID2000 Dig T 4 2 S1 version1.png|center|frame|Allgemeines Blockschaltbild eines Kommunikationssystems|class=fit]]
+
[[File:EN_Dig_T_4_2_S1.png|right|frame|General block diagram of a communication system|class=fit]]
 +
<br>
 +
To the block diagram it is to be noted:
 +
*The symbol set size of the source is&nbsp; $M$&nbsp; and the source symbol set is&nbsp; $\{m_i\}$&nbsp; with&nbsp; $i = 0$, ... , $M-1$.&nbsp;
 +
 
 +
*Let the corresponding source symbol probabilities&nbsp; ${\rm Pr}(m = m_i)$&nbsp; also be known to the receiver.<br>
 +
 
 +
*For the transmission,&nbsp; $M$&nbsp; different signal forms&nbsp; $s_i(t)$&nbsp; are available;&nbsp; for the indexing variable shall be valid: &nbsp; $i = 0$, ... , $M-1$&nbsp;.&nbsp;
  
Zum obigen Blockschaltbild ist anzumerken:
+
*There is a fixed relation between messages&nbsp; $\{m_i\}$&nbsp; and signals&nbsp; $\{s_i(t)\}$.&nbsp; If&nbsp; $m =m_i$,&nbsp; the transmitted signal is&nbsp; $s(t) =s_i(t)$.<br>
*Der Symbolumfang der Quelle beträgt&nbsp; $M$&nbsp; und der Symbolvorrat ist&nbsp; $\{m_i\}$ mit $i = 0$, ... , $M-1$. Die zugehörigen Symbolwahrscheinlichkeiten&nbsp; ${\rm Pr}(m = m_i)$&nbsp; seien auch dem Empfänger bekannt.<br>
 
  
*Zur Nachrichtenübertragung stehen&nbsp; $M$&nbsp; verschiedene Signalformen&nbsp; $s_i(t)$&nbsp; zur Verfügung; für die Laufvariable soll ebenfalls die Indizierung&nbsp; $i = 0$, ... , $M-1$&nbsp; gelten. Es besteht eine feste Beziehung zwischen den Nachrichten&nbsp; $\{m_i\}$&nbsp; und den Signalen&nbsp; $\{s_i(t)\}$. Wird&nbsp; $m =m_i$&nbsp; übertragen, so ist das Sendesignal&nbsp; $s(t) =s_i(t)$.<br>
+
*Linear channel distortions are taken into account in the above graph by the impulse response&nbsp; $h(t)$. &nbsp; In addition,&nbsp; the noise term&nbsp; $n(t)$&nbsp; (of some kind)&nbsp; is effective.&nbsp;  
  
*Lineare Kanalverzerrungen sind in der obigen Grafik durch die Impulsantwort&nbsp; $h(t)$&nbsp; berücksichtigt. Außerdem ist ein (irgendwie geartetes) Rauschen&nbsp; $n(t)$&nbsp; wirksam. Mit diesen beiden die Übertragung störenden Effekten lässt sich das am Empfänger ankommende Signal&nbsp; $r(t)$&nbsp; in folgender Weise angeben:
+
*With these two effects interfering with the transmission, the signal&nbsp; $r(t)$&nbsp; arriving at the receiver can be given in the following way:
 
:$$r(t) = s(t) \star h(t) + n(t) \hspace{0.05cm}.$$
 
:$$r(t) = s(t) \star h(t) + n(t) \hspace{0.05cm}.$$
  
*Aufgabe des (optimalen) Empfängers ist es, anhand seines Eingangssignals&nbsp; $r(t)$&nbsp; herauszufinden, welche der&nbsp; $M$&nbsp; möglichen Nachrichten&nbsp; $m_i$&nbsp; &ndash; bzw. welches der Signale&nbsp; $s_i(t)$&nbsp; &ndash; gesendet wurde. Der vom Empfänger gefundene Schätzwert für&nbsp; $m$&nbsp; wird durch ein Zirkumflex (französisch: ''Circonflexe'') gekennzeichnet &nbsp; &rArr; &nbsp;  $\hat{m}$.  
+
*The task of the&nbsp; $($optimal$)$&nbsp; receiver is to find out on the basis of its input signal&nbsp; $r(t)$,&nbsp; which of the&nbsp; $M$&nbsp; possible messages&nbsp; $m_i$&nbsp; &ndash; or which of the signals&nbsp; $s_i(t)$&nbsp; &ndash; was sent. The estimated value for&nbsp; $m$&nbsp; found by the receiver is characterized by a&nbsp; "circumflex"  &nbsp; &rArr; &nbsp;  $\hat{m}$.  
  
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Definition:}$&nbsp; Man spricht von einem '''optimalen Empfänger''', wenn die Symbolfehlerwahrscheinlichkeit den für die Randbedingungen kleinstmöglichsten Wert annimmt:
+
$\text{Definition:}$&nbsp; One speaks of an&nbsp; '''optimal receiver'''&nbsp; if the symbol error probability assumes the smallest possible value for the boundary conditions:
:$$p_{\rm S} = {\rm Pr}  ({\cal E}) = {\rm Pr} ( \hat{m} \ne m) \hspace{0.15cm} \Rightarrow \hspace{0.15cm}{\rm Minimum}  \hspace{0.05cm}.$$}}
+
:$$p_{\rm S} = {\rm Pr}  ({\cal E}) = {\rm Pr} ( \hat{m} \ne m) \hspace{0.15cm} \Rightarrow \hspace{0.15cm}{\rm minimum}  \hspace{0.05cm}.$$}}
  
  
<i>Hinweise:</i>  
+
<u>Notes:</u>  
#Im Folgenden wird meist der AWGN&ndash;Ansatz &nbsp; &rArr; &nbsp;  $r(t) =  s(t) + n(t)$&nbsp; vorausgesetzt, was bedeutet, dass &nbsp;$h(t) =  \delta(t)$&nbsp; als verzerrungsfrei angenommen wird.  
+
#In the following,&nbsp; we mostly assume the AWGN approach &nbsp; &rArr; &nbsp;  $r(t) =  s(t) + n(t)$,&nbsp; which means that &nbsp;$h(t) =  \delta(t)$&nbsp; is assumed to be distortion-free.  
#Andernfalls können wir die Signale&nbsp; $s_i(t)$&nbsp; als &nbsp;${s_i}'(t) = s_i(t) \star h(t)$&nbsp; neu definieren, also die deterministischen Kanalverzerrungen dem Sendesignal beaufschlagen.<br>
+
#Otherwise,&nbsp; we can redefine the signals&nbsp; $s_i(t)$&nbsp; as &nbsp; ${s_i}'(t) = s_i(t) \star h(t)$,&nbsp; i.e.,&nbsp; impose the deterministic channel distortions on the transmitted signal.<br>
  
== Fundamentaler Ansatz zum optimalen Empfängerentwurf==
+
== Fundamental approach to optimal receiver design==
 
<br>
 
<br>
Gegenüber dem auf der vorherigen Seite gezeigten&nbsp; [[Digitalsignal%C3%BCbertragung/Struktur_des_optimalen_Empf%C3%A4ngers#Blockschaltbild_und_Voraussetzungen| Blockschaltbild]]&nbsp; führen wir nun einige wesentliche Verallgemeinerungen durch:
+
Compared to the&nbsp; [[Digital_Signal_Transmission/Structure_of_the_Optimal_Receiver#Block_diagram_and_prerequisites|"block diagram"]]&nbsp; shown in the previous section, we now perform some essential generalizations:
*Der Übertragungskanal wird durch die&nbsp; [[Theory_of_Stochastic_Signals/Statistische_Abhängigkeit_und_Unabhängigkeit#Bedingte_Wahrscheinlichkeit|bedingte Wahrscheinlichkeitsdichtefunktion]]&nbsp; $p_{\hspace{0.02cm}r(t)\hspace{0.02cm} \vert \hspace{0.02cm}s(t)}$&nbsp; beschrieben, welche die Abhängigkeit des Empfangssignals&nbsp; $r(t)$&nbsp; vom Sendesignal&nbsp; $s(t)$&nbsp; festlegt.<br>
+
[[File:EN_Dig_T_4_2_S2b.png|right|frame|Model for deriving the optimal receiver|class=fit]]
 
 
*Wurde nun ein ganz bestimmtes Signal&nbsp; $r(t) = \rho(t)$&nbsp; empfangen, so hat der Empfänger die Aufgabe, anhand dieser Signalrealisierung&nbsp; $\rho(t)$&nbsp; sowie der&nbsp; $M$&nbsp; bedingten Wahrscheinlichkeitsdichtefunktionen
 
:$$p_{\hspace{0.05cm}r(t) \hspace{0.05cm} \vert \hspace{0.05cm} s(t) } (\rho(t) \hspace{0.05cm} \vert \hspace{0.05cm} s_i(t))\hspace{0.2cm}{\rm mit}\hspace{0.2cm} i = 0, \text{...} \hspace{0.05cm}, M-1$$
 
  
:unter Berücksichtigung aller möglichen Sendesignale&nbsp; $s_i(t)$&nbsp; und deren Auftrittswahrscheinlichkeiten&nbsp; ${\rm Pr}(m = m_i)$&nbsp; herauszufinden, welche der möglichen Nachrichten&nbsp; $m_i$&nbsp; bzw. welches der möglichen Signale&nbsp; $s_i(t)$&nbsp; am wahrscheinlichsten gesendet wurde.<br>
+
*The transmission channel is described by the&nbsp; [[Channel_Coding/Channel_Models_and_Decision_Structures#AWGN_channel_at_Binary_Input|"conditional probability density function"]]&nbsp;  $p_{\hspace{0.02cm}r(t)\hspace{0.02cm} \vert \hspace{0.02cm}s(t)}$&nbsp; which determines the dependence of the received signal&nbsp; $r(t)$&nbsp; on the transmitted signal&nbsp; $s(t)$.&nbsp; <br>
  
*Die Schätzung des optimalen Empfängers ist also ganz allgemein bestimmt durch die Gleichung
+
*If a certain signal&nbsp; $r(t) = \rho(t)$&nbsp; has been received,&nbsp; the receiver has the task to determine the probability density functions based on this&nbsp; "signal realization" &nbsp; $\rho(t)$&nbsp; and the&nbsp; $M$&nbsp; conditional probability density functions
:$$\hat{m} = {\rm arg} \max_i \hspace{0.1cm} p_{\hspace{0.02cm}s(t) \hspace{0.05cm} \vert \hspace{0.05cm} r(t) } ( s_i(t) \hspace{0.05cm} \vert \hspace{0.05cm} \rho(t)) = {\rm arg} \max_i \hspace{0.1cm} p_{m \hspace{0.05cm} \vert \hspace{0.05cm} r(t) } (  \hspace{0.05cm}m_i\hspace{0.05cm} \vert \hspace{0.05cm}\rho(t))\hspace{0.05cm},$$
+
:$$p_{\hspace{0.05cm}r(t) \hspace{0.05cm} \vert \hspace{0.05cm} s(t) } (\rho(t) \hspace{0.05cm} \vert \hspace{0.05cm} s_i(t))\hspace{0.2cm}{\rm with}\hspace{0.2cm} i = 0, \text{...} \hspace{0.05cm}, M-1.$$
  
:wobei  berücksichtigt ist, dass die gesendete Nachricht&nbsp; $m = m_i$&nbsp; und das gesendete Signal&nbsp; $s(t) = s_i(t)$&nbsp; eineindeutig ineinander übergeführt werden können.<br>
+
*It is to be found out which message&nbsp; $\hat{m}$&nbsp; was transmitted most probably,&nbsp; taking into account all possible transmitted signals&nbsp; $s_i(t)$&nbsp; and their occurrence probabilities&nbsp; ${\rm Pr}(m = m_i)$.
  
 +
*Thus,&nbsp; the estimate of the optimal receiver is determined in general by
 +
:$$\hat{m} = {\rm arg} \max_i \hspace{0.1cm} p_{\hspace{0.02cm}s(t) \hspace{0.05cm} \vert \hspace{0.05cm} r(t) } (  s_i(t) \hspace{0.05cm} \vert \hspace{0.05cm} \rho(t)) = {\rm arg} \max_i \hspace{0.1cm} p_{m \hspace{0.05cm} \vert \hspace{0.05cm} r(t) } (  \hspace{0.05cm}m_i\hspace{0.05cm} \vert \hspace{0.05cm}\rho(t))\hspace{0.05cm}.$$
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{In anderen Worten:}$&nbsp; Der optimale Empfänger betrachtet diejenige Nachricht&nbsp; $m_i$&nbsp; als die am wahrscheinlichsten gesendete, deren bedingte Wahrscheinlichkeitsdichtefunktion&nbsp; $p_{\hspace{0.02cm}m \hspace{0.05cm} \vert \hspace{0.05cm} r(t) }$&nbsp; für das anliegende Empfangssignal&nbsp; $\rho(t)$&nbsp; sowie unter der Annahme&nbsp; $m =m_i$&nbsp; den größtmöglichen Wert annimmt.}}<br>
+
$\text{In other words:}$&nbsp; The optimal receiver considers as the most likely transmitted message&nbsp; $\hat{m} \in \{m_i\}$&nbsp; whose conditional probability density function&nbsp; $p_{\hspace{0.02cm}m \hspace{0.05cm} \vert \hspace{0.05cm} r(t) }$&nbsp; takes the largest possible value for the applied received signal&nbsp; $\rho(t)$&nbsp; and under the assumption&nbsp; $m =\hat{m}$.&nbsp; }}<br>
  
Bevor wir die obige Entscheidungsregel näher diskutieren, soll der optimale Empfänger entsprechend der Grafik noch in zwei Funktionsblöcke aufgeteilt werden:
+
Before we discuss the above decision rule in more detail,&nbsp; the optimal receiver should still be divided into two functional blocks according to the diagram:
[[File:P ID2001 Dig T 4 2 S2 version2.png|right|frame|Modell zur Herleitung des optimalen Empfängers|class=fit]]
+
*The &nbsp;'''detector'''&nbsp; takes various measurements on the received signal&nbsp; $r(t)$&nbsp; and summarizes them in the vector &nbsp;$\boldsymbol{r}$.&nbsp; With &nbsp;$K$&nbsp; measurements,&nbsp; $\boldsymbol{r}$&nbsp; corresponds to a point in the &nbsp;$K$&ndash;dimensional vector space.<br>
*Der &nbsp;'''Detektor'''&nbsp; nimmt am Empfangssignal&nbsp; $r(t)$&nbsp; verschiedene Messungen vor und fasst diese im Vektor &nbsp;$\boldsymbol{r}$&nbsp; zusammen. Bei &nbsp;$K$&nbsp; Messungen entspricht&nbsp; $\boldsymbol{r}$&nbsp; einem Punkt im &nbsp;$K$&ndash;dimensionalen Vektorraum.<br>
 
  
*Der &nbsp;'''Entscheider'''&nbsp; bildet abhängig von diesem Vektor den Schätzwert. Bei einem gegebenen Vektor&nbsp; $\boldsymbol{r} = \boldsymbol{\rho}$&nbsp; lautet dabei die Entscheidungsregel:
+
*The &nbsp;'''decision'''&nbsp; forms the estimated value depending on this vector.&nbsp; For a given vector&nbsp; $\boldsymbol{r} = \boldsymbol{\rho}$&nbsp; the decision rule is:
 
:$$\hat{m} = {\rm arg}\hspace{0.05cm} \max_i \hspace{0.1cm} P_{m\hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{ r} } (  m_i\hspace{0.05cm} \vert \hspace{0.05cm}\boldsymbol{\rho}) \hspace{0.05cm}.$$
 
:$$\hat{m} = {\rm arg}\hspace{0.05cm} \max_i \hspace{0.1cm} P_{m\hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{ r} } (  m_i\hspace{0.05cm} \vert \hspace{0.05cm}\boldsymbol{\rho}) \hspace{0.05cm}.$$
<br clear=all>
+
 
Im Gegensatz zur oberen Entscheidungsregel tritt nun eine bedingte Wahrscheinlichkeit&nbsp; $P_{m\hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{ r} }$&nbsp; anstelle der bedingten Wahrscheinlichkeitskeitsdichtefunktion (WDF)&nbsp; $p_{m\hspace{0.05cm} \vert \hspace{0.05cm}r(t)}$&nbsp; auf. Beachten Sie bitte die Groß&ndash; bzw. Kleinschreibung für die unterschiedlichen Bedeutungen.
+
In contrast to the upper decision rule,&nbsp; a conditional probability&nbsp; $P_{m\hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{ r} }$&nbsp; now occurs instead of the conditional probability density function&nbsp; $\rm (PDF)$ &nbsp; $p_{m\hspace{0.05cm} \vert \hspace{0.05cm}r(t)}$.&nbsp; Please note the upper and lower case for the different meanings.
<br clear=all>
+
 
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 1:}$&nbsp; Wir betrachten nun die Funktion&nbsp; $y =  {\rm arg}\hspace{0.05cm} \max \ p(x)$, wobei&nbsp; $p(x)$&nbsp; die Wahrscheinlichkeitsdichtefunktion (WDF) einer wertkontinuierlichen oder wertdiskreten Zufallsgröße&nbsp; $x$&nbsp; beschreibt. Im zweiten Fall (rechte Grafik) besteht die WDF aus einer Summe von Diracfunktionen mit den Wahrscheinlichkeiten als Impulsgewichte.<br>
+
$\text{Example 1:}$&nbsp; We now consider the function&nbsp; $y =  {\rm arg}\hspace{0.05cm} \max \ p(x)$,&nbsp; where&nbsp; $p(x)$&nbsp; describes the probability density function&nbsp; $\rm (PDF)$&nbsp; of a continuous-valued or discrete-valued random variable&nbsp; $x$.&nbsp; In the second case&nbsp; (right graph),&nbsp; the PDF consists of a sum of Dirac delta functions with the probabilities as pulse weights.<br>
  
[[File:P ID2002 Dig T 4 2 S2b version1.png|righ|frame|Zur Verdeutlichung der Funktion „arg max”|class=fit]]
+
[[File:EN_Dig_T_4_2_S2c.png|righ|frame|Illustration of the "arg max" function|class=fit]]
  
Die Grafik zeigt beispielhafte Funktionen. In beiden Fällen liegt das WDF&ndash;Maximum&nbsp; $(17)$&nbsp; bei&nbsp; $x = 6$:
+
&rArr; &nbsp; The graphic shows exemplary functions.&nbsp; In both cases the PDF maximum&nbsp; $(17)$&nbsp; is at&nbsp; $x = 6$:
 
:$$\max_i \hspace{0.1cm} p(x) = 17\hspace{0.05cm},$$
 
:$$\max_i \hspace{0.1cm} p(x) = 17\hspace{0.05cm},$$
 
:$$y = {\rm \hspace{0.05cm}arg} \max_i \hspace{0.1cm} p(x) = 6\hspace{0.05cm}.$$
 
:$$y = {\rm \hspace{0.05cm}arg} \max_i \hspace{0.1cm} p(x) = 6\hspace{0.05cm}.$$
  
Die (bedingten) Wahrscheinlichkeiten in der Gleichung
+
&rArr; &nbsp; The (conditional) probabilities in the equation
  
 
:$$\hat{m} = {\rm arg}\hspace{0.05cm} \max_i \hspace{0.1cm} P_{\hspace{0.02cm}m\hspace{0.05cm} \vert \hspace{0.05cm}\boldsymbol{ r} } (  m_i \hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{\rho})$$
 
:$$\hat{m} = {\rm arg}\hspace{0.05cm} \max_i \hspace{0.1cm} P_{\hspace{0.02cm}m\hspace{0.05cm} \vert \hspace{0.05cm}\boldsymbol{ r} } (  m_i \hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{\rho})$$
  
sind  &nbsp;'''a&ndash;Posteriori&ndash;Wahrscheinlichkeiten'''.  
+
are &nbsp;'''a-posteriori probabilities'''. &nbsp; [[Theory_of_Stochastic_Signals/Statistical_Dependence_and_Independence#Inference_probability|"Bayes' theorem"]]&nbsp; can be used to write for this:
 
 
Mit dem&nbsp; [[Theory_of_Stochastic_Signals/Statistische_Abh%C3%A4ngigkeit_und_Unabh%C3%A4ngigkeit#R.C3.BCckschlusswahrscheinlichkeit| Satz von Bayes]]&nbsp; kann hierfür geschrieben werden:
 
 
:$$P_{\hspace{0.02cm}m\hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{ r} } (  m_i \hspace{0.05cm} \vert \hspace{0.05cm}\boldsymbol{\rho}) =
 
:$$P_{\hspace{0.02cm}m\hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{ r} } (  m_i \hspace{0.05cm} \vert \hspace{0.05cm}\boldsymbol{\rho}) =
 
\frac{ {\rm Pr}( m_i) \cdot p_{\boldsymbol{ r}\hspace{0.05cm} \vert \hspace{0.05cm}m } (\boldsymbol{\rho}\hspace{0.05cm} \vert \hspace{0.05cm}m_i )}{p_{\boldsymbol{ r} } (\boldsymbol{\rho})}
 
\frac{ {\rm Pr}( m_i) \cdot p_{\boldsymbol{ r}\hspace{0.05cm} \vert \hspace{0.05cm}m } (\boldsymbol{\rho}\hspace{0.05cm} \vert \hspace{0.05cm}m_i )}{p_{\boldsymbol{ r} } (\boldsymbol{\rho})}
Line 85: Line 87:
  
  
Der Nennerterm ist für alle Alternativen&nbsp; $m_i$&nbsp; gleich und muss für die Entscheidung nicht berücksichtigt werden. Damit erhält man folgende Regeln:
+
The denominator term &nbsp; $p_{\boldsymbol{ r} }(\boldsymbol{\rho})$ &nbsp; is the same for all alternatives&nbsp; $m_i$&nbsp; and need not be considered for the decision.  
 +
 
 +
This gives the following rules:
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Satz:}$&nbsp; Die Entscheidungsregel des optimalen Empfängers, auch bekannt als &nbsp;'''MAP&ndash;Empfänger'''&nbsp; (steht für ''Maximum&ndash;a&ndash;posteriori''), lautet:
+
$\text{Theorem:}$&nbsp; The decision rule of the optimal receiver,&nbsp; also known as &nbsp;'''maximum–a–posteriori  receiver'''&nbsp; $($in short:&nbsp; '''MAP receiver'''$)$&nbsp; is:
  
 
:$$\hat{m}_{\rm MAP} = {\rm \hspace{0.05cm} arg} \max_i \hspace{0.1cm} P_{\hspace{0.02cm}m\hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{ r} } (  m_i \hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{\rho}) = {\rm \hspace{0.05cm}arg} \max_i \hspace{0.1cm} \big [ {\rm Pr}( m_i) \cdot p_{\boldsymbol{ r}\hspace{0.05cm} \vert \hspace{0.05cm} m } (\boldsymbol{\rho}\hspace{0.05cm} \vert \hspace{0.05cm} m_i )\big ]\hspace{0.05cm}.$$
 
:$$\hat{m}_{\rm MAP} = {\rm \hspace{0.05cm} arg} \max_i \hspace{0.1cm} P_{\hspace{0.02cm}m\hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{ r} } (  m_i \hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{\rho}) = {\rm \hspace{0.05cm}arg} \max_i \hspace{0.1cm} \big [ {\rm Pr}( m_i) \cdot p_{\boldsymbol{ r}\hspace{0.05cm} \vert \hspace{0.05cm} m } (\boldsymbol{\rho}\hspace{0.05cm} \vert \hspace{0.05cm} m_i )\big ]\hspace{0.05cm}.$$
  
Der Vorteil dieser Gleichung ist, dass die die Vorwärtsrichtung des Kanals beschreibende bedingte WDF&nbsp; $p_{\boldsymbol{ r}\hspace{0.05cm} \vert \hspace{0.05cm} m }$&nbsp; ("Ausgang unter der Bedingung Eingang") verwendet werden kann. Dagegen verwendet die erste Gleichung die Rückschlusswahrscheinlichkeiten&nbsp; $P_{\hspace{0.05cm}m\hspace{0.05cm} \vert \hspace{0.02cm} \boldsymbol{ r} } $&nbsp;  ("Eingang unter der Bedingung Ausgang").}}
+
*The advantage of this equation is that the conditional PDF&nbsp; $p_{\boldsymbol{ r}\hspace{0.05cm} \vert \hspace{0.05cm} m }$&nbsp; $($"output under the condition input"$)$&nbsp; describing the forward direction of the channel can be used.  
 +
 
 +
*In contrast,&nbsp; the first equation uses the inference probabilities&nbsp; $P_{\hspace{0.05cm}m\hspace{0.05cm} \vert \hspace{0.02cm} \boldsymbol{ r} } $&nbsp;  $($"input under the condition output"$)$.}}
  
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Satz:}$&nbsp; Ein &nbsp;'''Maximum&ndash;Likelihood&ndash;Empfänger'''&nbsp; (kurz ML&ndash;Empfänger) verwendet die Entscheidungsregel
+
$\text{Theorem:}$&nbsp; A &nbsp;'''maximum likelihood receiver'''&nbsp; $($in short:&nbsp; '''ML receiver'''$)$&nbsp; uses the following  decision rule:
  
 
:$$\hat{m}_{\rm ML} = \hspace{-0.1cm} {\rm arg} \max_i \hspace{0.1cm}  p_{\boldsymbol{ r}\hspace{0.05cm} \vert \hspace{0.05cm}m } (\boldsymbol{\rho}\hspace{0.05cm} \vert \hspace{0.05cm}m_i )\hspace{0.05cm}.$$
 
:$$\hat{m}_{\rm ML} = \hspace{-0.1cm} {\rm arg} \max_i \hspace{0.1cm}  p_{\boldsymbol{ r}\hspace{0.05cm} \vert \hspace{0.05cm}m } (\boldsymbol{\rho}\hspace{0.05cm} \vert \hspace{0.05cm}m_i )\hspace{0.05cm}.$$
  
Bei diesem werden die möglicherweise unterschiedlichen Auftrittswahrscheinlichkeiten&nbsp; ${\rm Pr}(m = m_i)$&nbsp; für den Entscheidungsprozess nicht herangezogen, zum Beispiel, weil sie dem Empfänger nicht bekannt sind.}}<br>
+
*In this case,&nbsp; the possibly different occurrence probabilities&nbsp; ${\rm Pr}(m = m_i)$&nbsp; are not used for the decision process.
 +
*For example,&nbsp; because they are not known to the receiver.}}<br>
  
Im früheren Kapitel&nbsp; [[Digital_Signal_Transmission/Optimale_Empfängerstrategien|Optimale Empfängerstrategien]]&nbsp; finden Sie andere Herleitungen für diese Empfängertypen.  
+
See the earlier chapter&nbsp; [[Digital_Signal_Transmission/Optimal_Receiver_Strategies|"Optimal Receiver Strategies"]]&nbsp; for other derivations for these receiver types.
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Fazit:}$&nbsp; Bei gleichwahrscheinlichen Nachrichten&nbsp; $\{m_i\}$  &nbsp; &#8658; &nbsp; ${\rm Pr}(m = m_i) = 1/M$&nbsp; ist der im Allgemeinen etwas schlechtere ML&ndash;Empfänger gleichwertig mit dem MAP&ndash;Empfänger:
+
$\text{Conclusion:}$&nbsp; For equally likely messages&nbsp; $\{m_i\}$  &nbsp; &#8658; &nbsp; ${\rm Pr}(m = m_i) = 1/M$,&nbsp; the generally slightly worse&nbsp; "maximum likelihood  receiver"&nbsp; is equivalent to the&nbsp; "maximum–a–posteriori receiver":
 
:$$\hat{m}_{\rm MAP} = \hat{m}_{\rm ML} =\hspace{-0.1cm} {\rm\hspace{0.05cm} arg} \max_i \hspace{0.1cm}
 
:$$\hat{m}_{\rm MAP} = \hat{m}_{\rm ML} =\hspace{-0.1cm} {\rm\hspace{0.05cm} arg} \max_i \hspace{0.1cm}
 
   p_{\boldsymbol{ r}\hspace{0.05cm} \vert \hspace{0.05cm}m } (\boldsymbol{\rho}\hspace{0.05cm} \vert \hspace{0.05cm}m_i )\hspace{0.05cm}.$$}}
 
   p_{\boldsymbol{ r}\hspace{0.05cm} \vert \hspace{0.05cm}m } (\boldsymbol{\rho}\hspace{0.05cm} \vert \hspace{0.05cm}m_i )\hspace{0.05cm}.$$}}
  
  
== Das Theorem der Irrelevanz==
+
== The irrelevance theorem==
 
<br>
 
<br>
Zu beachten ist, dass der auf der letzten Seite beschriebene Empfänger nur dann optimal ist, wenn auch der Detektor bestmöglich implementiert ist, das heißt, wenn durch den Übergang vom kontinuierlichen Signal&nbsp; $r(t)$&nbsp; zum Vektor&nbsp; $\boldsymbol{r}$&nbsp; keine Information verloren geht.<br>
+
[[File:EN_Dig_T_4_2_S3a.png|right|frame|About the irrelevance theorem|class=fit]]
 +
Note that the receiver described in the last section is optimal only if the detector is implemented in the best possible way,&nbsp; if no information is lost by the transition from the continuous signal&nbsp; $r(t)$&nbsp; to the vector&nbsp; $\boldsymbol{r}$.&nbsp; <br>
  
[[File:P ID2003 Dig T 4 2 S3a version2.png|center|frame|Zum Theorem der Irrelevanz|class=fit]]
+
To clarify the question which and how many measurements have to be performed on the received signal&nbsp; $r(t)$&nbsp; to guarantee optimality,&nbsp; the&nbsp; "irrelevance theorem"&nbsp; is helpful.  
  
Um die Frage zu klären, welche und wieviele Messungen am Empfangssignal&nbsp; $r(t)$&nbsp; durchzuführen sind, um Optimalität zu garantieren, ist das <i>Theorem der Irrelevanz</i>&nbsp; hilfreich. Dazu betrachten wir den skizzierten Empfänger, dessen Detektor aus dem Empfangssignal&nbsp; $r(t)$&nbsp; die zwei Vektoren&nbsp; $\boldsymbol{r}_1$&nbsp; und&nbsp; $\boldsymbol{r}_2$&nbsp; ableitet und dem Entscheider zur Verfügung stellt. Diese Größen stehen mit der Nachricht&nbsp; $ m \in \{m_i\}$&nbsp; über die Verbundwahrscheinlichkeitsdichte&nbsp; $p_{\boldsymbol{ r}_1, \hspace{0.05cm}\boldsymbol{ r}_2\hspace{0.05cm} \vert \hspace{0.05cm}m }$&nbsp; in Zusammenhang.<br>
+
*For this purpose,&nbsp; we consider the sketched receiver whose detector derives the two vectors&nbsp; $\boldsymbol{r}_1$&nbsp; and&nbsp; $\boldsymbol{r}_2$&nbsp; from the received signal&nbsp; $r(t)$&nbsp; and makes them available to the decision.  
  
Die Entscheidungsregel des MAP&ndash;Empfängers lautet mit Anpassung an dieses Beispiel:
+
*These quantities are related to the message&nbsp; $ m \in \{m_i\}$&nbsp; via the composite probability density&nbsp; $p_{\boldsymbol{ r}_1, \hspace{0.05cm}\boldsymbol{ r}_2\hspace{0.05cm} \vert \hspace{0.05cm}m }$.&nbsp; <br>
 +
 
 +
*The decision rule of the MAP receiver with adaptation to this example is:
  
 
:$$\hat{m}_{\rm MAP} \hspace{-0.1cm}  =  \hspace{-0.1cm} {\rm arg} \max_i \hspace{0.1cm} \big [ {\rm Pr}( m_i) \cdot p_{\boldsymbol{ r}_1 , \hspace{0.05cm}\boldsymbol{ r}_2 \hspace{0.05cm} \vert \hspace{0.05cm}m } \hspace{0.05cm} (\boldsymbol{\rho}_1, \hspace{0.05cm}\boldsymbol{\rho}_2\hspace{0.05cm} \vert \hspace{0.05cm} m_i ) \big]=
 
:$$\hat{m}_{\rm MAP} \hspace{-0.1cm}  =  \hspace{-0.1cm} {\rm arg} \max_i \hspace{0.1cm} \big [ {\rm Pr}( m_i) \cdot p_{\boldsymbol{ r}_1 , \hspace{0.05cm}\boldsymbol{ r}_2 \hspace{0.05cm} \vert \hspace{0.05cm}m } \hspace{0.05cm} (\boldsymbol{\rho}_1, \hspace{0.05cm}\boldsymbol{\rho}_2\hspace{0.05cm} \vert \hspace{0.05cm} m_i ) \big]=
Line 126: Line 136:
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
Hierzu ist anzumerken:
+
Here it is to be noted:
*Die Vektoren&nbsp; $\boldsymbol{r}_1$&nbsp; und &nbsp;$\boldsymbol{r}_2$&nbsp; sind Zufallsgrößen. Ihre Realisierungen werden hier und im Folgenden mit&nbsp; $\boldsymbol{\rho}_1$&nbsp; und &nbsp;$\boldsymbol{\rho}_2$&nbsp; bezeichnet. Zur Hervorhebung sind alle Vektoren in der Grafik rot eingetragen.
+
*The vectors&nbsp; $\boldsymbol{r}_1$&nbsp; and &nbsp;$\boldsymbol{r}_2$&nbsp; are random variables.&nbsp; Their realizations are denoted here and in the following by&nbsp; $\boldsymbol{\rho}_1$&nbsp; and &nbsp;$\boldsymbol{\rho}_2$.&nbsp; For emphasis,&nbsp; all vectors are red inscribed in the graph.
  
*Die Voraussetzungen für die Anwendung des "Theorems der Irrelevanz" sind die gleichen wie die an eine&nbsp; [[Theory_of_Stochastic_Signals/Markovketten#Betrachtetes_Szenario| Markovkette]]&nbsp; erster Ordnung. Die Zufallsvariablen&nbsp; $x$,&nbsp; $y$,&nbsp; $z$&nbsp; formen dann eine Markovkette erster Ordnung, falls die Verteilung von&nbsp; $z$&nbsp; bei gegebenem &nbsp;$y$&nbsp; unabhängig von&nbsp; $x$&nbsp; ist:
+
*The requirements for the application of the&nbsp; "irrelevance theorem"&nbsp; are the same as those for a first order&nbsp; [[Theory_of_Stochastic_Signals/Markov_Chains#Considered_scenario|"Markov chain"]].&nbsp; The random variables&nbsp; $x$,&nbsp; $y$,&nbsp; $z$&nbsp; then form a first order Markov chain if the distribution of&nbsp; $z$&nbsp; is independent of &nbsp; $x$&nbsp; for a given&nbsp;$y$.&nbsp; The first order Markov chain is the following:
:$$p(x, y, z) = p(x) \cdot p(y\hspace{0.05cm} \vert \hspace{0.05cm}x) \cdot p(z\hspace{0.05cm} \vert \hspace{0.05cm}y) \hspace{0.25cm} {\rm anstelle \hspace{0.15cm}von} \hspace{0.25cm}p(x, y, z) = p(x) \cdot p(y\hspace{0.05cm} \vert \hspace{0.05cm}x) \cdot p(z\hspace{0.05cm} \vert \hspace{0.05cm}x, y) \hspace{0.05cm}.$$
+
:$$p(x,\ y,\ z) = p(x) \cdot p(y\hspace{0.05cm} \vert \hspace{0.05cm}x) \cdot p(z\hspace{0.05cm} \vert \hspace{0.05cm}y) \hspace{0.75cm} {\rm instead \hspace{0.15cm}of} \hspace{0.75cm}p(x, y, z) = p(x) \cdot p(y\hspace{0.05cm} \vert \hspace{0.05cm}x) \cdot p(z\hspace{0.05cm} \vert \hspace{0.05cm}x, y) \hspace{0.05cm}.$$
  
*Der optimale Empfänger muss im allgemeinen Fall beide Vektoren&nbsp; $\boldsymbol{r}_1$&nbsp; und&nbsp; $\boldsymbol{r}_2$&nbsp; auswerten, da in obiger Entscheidungsregel beide Verbundwahrscheinlichkeitsdichten&nbsp; $p_{\boldsymbol{ r}_1\hspace{0.05cm} \vert \hspace{0.05cm}m }$&nbsp; und&nbsp; $p_{\boldsymbol{ r}_2 \hspace{0.05cm} \vert \hspace{0.05cm}\boldsymbol{ r}_1, \hspace{0.05cm}m }$&nbsp; auftreten.
+
*In the general case,&nbsp; the optimal receiver must evaluate both vectors&nbsp; $\boldsymbol{r}_1$&nbsp; and&nbsp; $\boldsymbol{r}_2$,&nbsp; since both composite probability densities&nbsp; $p_{\boldsymbol{ r}_1\hspace{0.05cm} \vert \hspace{0.05cm}m }$&nbsp; and&nbsp; $p_{\boldsymbol{ r}_2 \hspace{0.05cm} \vert \hspace{0.05cm}\boldsymbol{ r}_1, \hspace{0.05cm}m }$&nbsp; occur in the above decision rule.&nbsp; In contrast,&nbsp; the receiver can neglect the second measurement without loss of information&nbsp; if&nbsp; $\boldsymbol{r}_2$&nbsp; is independent of the message&nbsp; $m$&nbsp; for given&nbsp; $\boldsymbol{r}_1$:&nbsp;  
 
 
*Dagegen kann der Empfänger ohne Informationseinbuße die zweite Messung vernachlässigen, falls&nbsp; $\boldsymbol{r}_2$&nbsp; bei gegebenem&nbsp; $\boldsymbol{r}_1$&nbsp; unabhängig von der Nachricht&nbsp; $m$&nbsp; ist:
 
 
:$$p_{\boldsymbol{ r}_2\hspace{0.05cm} \vert \hspace{0.05cm}\boldsymbol{ r}_1 , \hspace{0.05cm} m } \hspace{0.05cm} (\boldsymbol{\rho}_2\hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{\rho}_1 , \hspace{0.05cm}m_i )=
 
:$$p_{\boldsymbol{ r}_2\hspace{0.05cm} \vert \hspace{0.05cm}\boldsymbol{ r}_1 , \hspace{0.05cm} m } \hspace{0.05cm} (\boldsymbol{\rho}_2\hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{\rho}_1 , \hspace{0.05cm}m_i )=
 
p_{\boldsymbol{ r}_2 \hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{ r}_1  } \hspace{0.05cm} (\boldsymbol{\rho}_2 \hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{\rho}_1  )
 
p_{\boldsymbol{ r}_2 \hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{ r}_1  } \hspace{0.05cm} (\boldsymbol{\rho}_2 \hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{\rho}_1  )
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
*In diesem Fall lässt sich die Entscheidungsregel weiter vereinfachen:
+
*In this case,&nbsp; the decision rule can be further simplified:
 
:$$\hat{m}_{\rm MAP} =
 
:$$\hat{m}_{\rm MAP} =
 
{\rm arg} \max_i \hspace{0.1cm} \big [ {\rm Pr}( m_i) \cdot p_{\boldsymbol{ r}_1  \hspace{0.05cm} \vert \hspace{0.05cm}m } \hspace{0.05cm} (\boldsymbol{\rho}_1
 
{\rm arg} \max_i \hspace{0.1cm} \big [ {\rm Pr}( m_i) \cdot p_{\boldsymbol{ r}_1  \hspace{0.05cm} \vert \hspace{0.05cm}m } \hspace{0.05cm} (\boldsymbol{\rho}_1
Line 153: Line 161:
 
\big]\hspace{0.05cm}.$$
 
\big]\hspace{0.05cm}.$$
  
{{GraueBox|TEXT=
+
{{GraueBox|TEXT=
$\text{Beispiel 2:}$&nbsp; Wir betrachten zur Verdeutlichung des soeben vorgestellten Theorems der Irrelevanz zwei verschiedene Systemkonfigurationen mit jeweils zwei Rauschtermen&nbsp; $\boldsymbol{ n}_1$&nbsp; und&nbsp; $\boldsymbol{ n}_2$. In der Grafik sind alle vektoriellen Größen rot eingezeichnet. Die Größen&nbsp; $\boldsymbol{s}$,&nbsp; $\boldsymbol{ n}_1$&nbsp; und &nbsp;$\boldsymbol{ n}_2$&nbsp; seien zudem jeweils unabhängig voneinander.<br>
+
[[File:EN_Dig_T_4_2_S3b.png|right|frame|Two examples of the irrelevance theorem|class=fit]] 
 +
$\text{Example 2:}$&nbsp; We consider two different system configurations with two noise terms&nbsp; $\boldsymbol{ n}_1$&nbsp; and&nbsp; $\boldsymbol{ n}_2$ each to illustrate the irrelevance theorem just presented.
 +
*In the diagram all vectorial quantities are red inscribed.  
 +
 
 +
*Moreover, red inscribed the quantities&nbsp; $\boldsymbol{s}$,&nbsp; $\boldsymbol{ n}_1$&nbsp; and &nbsp;$\boldsymbol{ n}_2$&nbsp; are independent of each other.<br>
  
[[File:Dig_T_4_2_S3b_version2.png|center|frame|Zwei Beispiele zum Theorem der Irrelevanz|class=fit]]
 
  
Die Analyse dieser beiden Anordnungen liefert folgende Ergebnisse:
+
The analysis of these two arrangements yields the following results:
*Der Entscheider muss in beiden Fällen die Komponente&nbsp; $\boldsymbol{ r}_1= \boldsymbol{ s}_i + \boldsymbol{ n}_1$&nbsp; berücksichtigen, da nur diese die Information über das Nutzsignal&nbsp; $\boldsymbol{ s}_i$&nbsp; und damit über die gesendete Nachricht&nbsp; $m_i$&nbsp; liefert.<br>
+
*In both cases,&nbsp; the decision must consider the component&nbsp; $\boldsymbol{ r}_1= \boldsymbol{ s}_i + \boldsymbol{ n}_1$,&nbsp; since only this component provides the information about the possible transmitted signals&nbsp; $\boldsymbol{ s}_i$&nbsp; and thus about the message&nbsp; $m_i$.&nbsp; <br>
  
*Bei der oberen Konfiguration enthält&nbsp; $\boldsymbol{ r}_2$&nbsp; keine Information über&nbsp; $m_i$, die nicht bereits von &nbsp;$\boldsymbol{ r}_1$&nbsp; geliefert wurde. Vielmehr ist&nbsp; $\boldsymbol{ r}_2= \boldsymbol{ r}_1 + \boldsymbol{ n}_2$&nbsp; nur eine verrauschte Version von&nbsp; $\boldsymbol{ r}_1$&nbsp; und hängt nur vom Rauschen&nbsp; $\boldsymbol{ n}_2$&nbsp; ab, sobald&nbsp; $\boldsymbol{ r}_1$&nbsp; bekannt ist &nbsp; &#8658; &nbsp; $\boldsymbol{ r}_2$&nbsp; ist irrelevant:
+
*In the upper configuration, &nbsp; $\boldsymbol{ r}_2$&nbsp; contains no information about&nbsp; $m_i$ that has not already been provided by &nbsp;$\boldsymbol{ r}_1$.&nbsp; Rather, &nbsp; $\boldsymbol{ r}_2= \boldsymbol{ r}_1 + \boldsymbol{ n}_2$&nbsp; is just a noisy version of&nbsp; $\boldsymbol{ r}_1$&nbsp; and depends only on the noise&nbsp; $\boldsymbol{ n}_2$&nbsp; once&nbsp; $\boldsymbol{ r}_1$&nbsp; is known &nbsp; &#8658; &nbsp; $\boldsymbol{ r}_2$&nbsp; '''is irrelevant''':
 
:$$p_{\boldsymbol{ r}_2 \hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{ r}_1 , \hspace{0.05cm} m } \hspace{0.05cm} (\boldsymbol{\rho}_2\hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{\rho}_1 , \hspace{0.05cm}m_i )=
 
:$$p_{\boldsymbol{ r}_2 \hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{ r}_1 , \hspace{0.05cm} m } \hspace{0.05cm} (\boldsymbol{\rho}_2\hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{\rho}_1 , \hspace{0.05cm}m_i )=
 
p_{\boldsymbol{ r}_2\hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{ r}_1  } \hspace{0.05cm} (\boldsymbol{\rho}_2\hspace{0.05cm} \vert \hspace{0.05cm}\boldsymbol{\rho}_1  )=  
 
p_{\boldsymbol{ r}_2\hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{ r}_1  } \hspace{0.05cm} (\boldsymbol{\rho}_2\hspace{0.05cm} \vert \hspace{0.05cm}\boldsymbol{\rho}_1  )=  
 
p_{\boldsymbol{ n}_2  } \hspace{0.05cm} (\boldsymbol{\rho}_2 - \boldsymbol{\rho}_1  )\hspace{0.05cm}.$$
 
p_{\boldsymbol{ n}_2  } \hspace{0.05cm} (\boldsymbol{\rho}_2 - \boldsymbol{\rho}_1  )\hspace{0.05cm}.$$
  
*Bei der unteren Konfiguration ist dagegen $\boldsymbol{ r}_2= \boldsymbol{ n}_1 + \boldsymbol{ n}_2$ für den Empfänger hilfreich, da ihm so ein Schätzwert für den Rauschterm $\boldsymbol{ n}_1$ geliefert wird &nbsp; &#8658; &nbsp; $\boldsymbol{ r}_2$ sollte deshalb hier nicht verworfen werden. Formal lässt sich dieses Resultat wie folgt ausdrücken:
+
*In the lower configuration,&nbsp; on the other hand,&nbsp; $\boldsymbol{ r}_2= \boldsymbol{ n}_1 + \boldsymbol{ n}_2$&nbsp; is helpful to the receiver,&nbsp; since it provides it with an estimate of the noise term&nbsp; $\boldsymbol{ n}_1$ &nbsp; &#8658; &nbsp; $\boldsymbol{ r}_2$ should therefore not be discarded here.  
 +
 
 +
*Formally, this result can be expressed as follows:
 
:$$p_{\boldsymbol{ r}_2 \hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{ r}_1 , \hspace{0.05cm} m } \hspace{0.05cm} (\boldsymbol{\rho}_2\hspace{0.05cm} \vert \hspace{0.05cm}  \boldsymbol{\rho}_1 , \hspace{0.05cm}m_i ) = p_{\boldsymbol{ r}_2 \hspace{0.05cm} \vert \hspace{0.05cm}  \boldsymbol{ n}_1 , \hspace{0.05cm} m } \hspace{0.05cm} (\boldsymbol{\rho}_2 \hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{\rho}_1  - \boldsymbol{s}_i, \hspace{0.05cm}m_i)= p_{\boldsymbol{ n}_2 \hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{ n}_1 , \hspace{0.05cm} m  } \hspace{0.05cm} (\boldsymbol{\rho}_2- \boldsymbol{\rho}_1  + \boldsymbol{s}_i \hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{\rho}_1  - \boldsymbol{s}_i, \hspace{0.05cm}m_i) = p_{\boldsymbol{ n}_2  } \hspace{0.05cm} (\boldsymbol{\rho}_2- \boldsymbol{\rho}_1  + \boldsymbol{s}_i )  
 
:$$p_{\boldsymbol{ r}_2 \hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{ r}_1 , \hspace{0.05cm} m } \hspace{0.05cm} (\boldsymbol{\rho}_2\hspace{0.05cm} \vert \hspace{0.05cm}  \boldsymbol{\rho}_1 , \hspace{0.05cm}m_i ) = p_{\boldsymbol{ r}_2 \hspace{0.05cm} \vert \hspace{0.05cm}  \boldsymbol{ n}_1 , \hspace{0.05cm} m } \hspace{0.05cm} (\boldsymbol{\rho}_2 \hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{\rho}_1  - \boldsymbol{s}_i, \hspace{0.05cm}m_i)= p_{\boldsymbol{ n}_2 \hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{ n}_1 , \hspace{0.05cm} m  } \hspace{0.05cm} (\boldsymbol{\rho}_2- \boldsymbol{\rho}_1  + \boldsymbol{s}_i \hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{\rho}_1  - \boldsymbol{s}_i, \hspace{0.05cm}m_i) = p_{\boldsymbol{ n}_2  } \hspace{0.05cm} (\boldsymbol{\rho}_2- \boldsymbol{\rho}_1  + \boldsymbol{s}_i )  
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
*Da nun im Argument dieser Funktion die Nachricht $\boldsymbol{ s}_i$ erscheint, ist $\boldsymbol{ r}_2$ "nicht irrelevant", sondern durchaus relevant.}}<br>
+
*Since the possible transmitted signal&nbsp; $\boldsymbol{ s}_i$&nbsp; now appears in the argument of this function,&nbsp; $\boldsymbol{ r}_2$&nbsp; '''is not irrelevant,&nbsp; but quite relevant'''.}}<br>
  
== Einige Eigenschaften des AWGN-Kanals==
+
== Some properties of the AWGN channel==
 
<br>
 
<br>
Um weitere Aussagen über die Art der optimalen Messungen des Vektors&nbsp; $\boldsymbol{ r}$&nbsp; machen zu können, ist es notwendig, die den Kanal charakterisierende (bedingte) Wahrscheinlichkeitsdichtefunktion&nbsp; $p_{\hspace{0.02cm}r(t)\hspace{0.05cm} \vert \hspace{0.05cm}s(t)}$&nbsp; weiter zu spezifizieren. Im Folgenden wird die Kommunikation über den&nbsp; [[Modulationsverfahren/Qualit%C3%A4tskriterien#Einige_Anmerkungen_zum_AWGN.E2.80.93Kanalmodell| AWGN&ndash;Kanal]]&nbsp; betrachtet, dessen wichtigste Eigenschaften hier nochmals kurz zusammengestellt werden:
+
In order to make further statements about the nature of the optimal measurements of the vector&nbsp; $\boldsymbol{ r}$,&nbsp; it is necessary to further specify the&nbsp; (conditional)&nbsp; probability density function&nbsp; $p_{\hspace{0.02cm}r(t)\hspace{0.05cm} \vert \hspace{0.05cm}s(t)}$&nbsp; characterizing the channel.&nbsp; In the following,&nbsp; we will consider communication over the&nbsp; [[Modulation_Methods/Quality_Criteria#Some_remarks_on_the_AWGN_channel_model| "AWGN channel"]],&nbsp; whose most important properties are briefly summarized again here:
*Das Ausgangssignal des AWGN&ndash;Kanals ist&nbsp; $r(t) = s(t)+n(t)$, wobei&nbsp; $s(t)$&nbsp; das Sendesignal angibt und&nbsp; $n(t)$&nbsp; durch einen Gaußschen Rauschprozess dargestellt wird.<br>
+
*The output signal of the AWGN channel is&nbsp; $r(t) = s(t)+n(t)$,&nbsp; where &nbsp; $s(t)$&nbsp; indicates the transmitted signal and&nbsp; $n(t)$&nbsp; is represented by a Gaussian noise process.<br>
  
*Einen Zufallsprozess&nbsp; $\{n(t)\}$&nbsp; bezeichnet man als gaußisch, wenn die Elemente der&nbsp; $k$&ndash;dimensionalen Zufallsvariablen&nbsp; $\{n_1(t)\hspace{0.05cm} \text{...} \hspace{0.05cm}n_k(t)\}$&nbsp; gemeinsam gaußverteilt sind &nbsp; &rArr; &nbsp; <i>"Jointly Gaussian"</i>.<br>
+
*A random process&nbsp; $\{n(t)\}$&nbsp; is said to be Gaussian if the elements of the&nbsp; $k$&ndash;dimensional random variables&nbsp; $\{n_1(t)\hspace{0.05cm} \text{...} \hspace{0.05cm}n_k(t)\}$&nbsp; are&nbsp; "jointly Gaussian".<br>
  
*Der Mittelwert des AWGN&ndash;Rauschens ist&nbsp; ${\rm E}\big[n(t)\big] = 0$. Außerdem ist&nbsp; $n(t)$&nbsp; "weiß", was bedeutet, dass das&nbsp; [[Theory_of_Stochastic_Signals/Leistungsdichtespektrum_(LDS)|Leistungsdichtespektrum]]&nbsp; (LDS) für alle Frequenzen &nbsp;$($von &nbsp;$-\infty$ bis $+\infty)$&nbsp; konstant ist: &nbsp;
+
*The mean value of the AWGN noise is&nbsp; ${\rm E}\big[n(t)\big] = 0$.&nbsp; Moreover,&nbsp; $n(t)$&nbsp; is&nbsp; "white",&nbsp; which means that the&nbsp; [[Theory_of_Stochastic_Signals/Power-Spectral_Density|"power-spectral density"]]&nbsp; $\rm (PSD)$&nbsp; is constant for all frequencies&nbsp; $($from &nbsp;$-\infty$ to $+\infty)$:
 
:$${\it \Phi}_n(f) = {N_0}/{2}
 
:$${\it \Phi}_n(f) = {N_0}/{2}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
*Nach dem&nbsp; [[Theory_of_Stochastic_Signals/Leistungsdichtespektrum_(LDS)#Theorem_von_Wiener-Chintchine |Wiener&ndash;Chintchine&ndash;Theorem]]&nbsp; ergibt sich die Autokorrelationsfunktion (AKF) als die&nbsp; [[Signal_Representation/Fourier_Transform_and_Its_Inverse#Das_zweite_Fourierintegral| Fourierrücktransformierte]]&nbsp; von&nbsp; ${\it \Phi_n(f)}$:  
+
*According to the&nbsp; [[Theory_of_Stochastic_Signals/Power-Spectral_Density#Wiener-Khintchine_Theorem|"Wiener-Khintchine theorem"]],&nbsp; the auto-correlation function&nbsp; $\rm (ACF)$&nbsp; is obtained as the&nbsp; [[Signal_Representation/Fourier_Transform_and_its_Inverse#The_second_Fourier_integral| "Fourier retransform"]]&nbsp; of&nbsp; ${\it \Phi_n(f)}$:  
 
:$${\varphi_n(\tau)} = {\rm E}\big [n(t) \cdot n(t+\tau)\big  ] = {N_0}/{2} \cdot \delta(t)\hspace{0.3cm}  
 
:$${\varphi_n(\tau)} = {\rm E}\big [n(t) \cdot n(t+\tau)\big  ] = {N_0}/{2} \cdot \delta(t)\hspace{0.3cm}  
 
\Rightarrow \hspace{0.3cm} {\rm E}\big [n(t) \cdot n(t+\tau)\big  ]  =  
 
\Rightarrow \hspace{0.3cm} {\rm E}\big [n(t) \cdot n(t+\tau)\big  ]  =  
 
\left\{ \begin{array}{c} \rightarrow \infty \\
 
\left\{ \begin{array}{c} \rightarrow \infty \\
 
  0  \end{array} \right.\quad
 
  0  \end{array} \right.\quad
  \begin{array}{*{1}c} {\rm f{\rm \ddot{u}r}}  \hspace{0.15cm} \tau = 0 \hspace{0.05cm},
+
  \begin{array}{*{1}c} {\rm f{or}}  \hspace{0.15cm} \tau = 0 \hspace{0.05cm},
\\  {\rm f{\rm \ddot{u}r}}  \hspace{0.15cm} \tau \ne 0 \hspace{0.05cm},\\ \end{array}$$
+
\\  {\rm f{or}}  \hspace{0.15cm} \tau \ne 0 \hspace{0.05cm},\\ \end{array}$$
  
*$N_0$&nbsp; gibt dabei die physikalische (nur für &nbsp;$f \ge 0$&nbsp; definierte) Rauschleistungsdichte an. Der konstante LDS&ndash;Wert&nbsp; $(N_0/2)$&nbsp; und das Gewicht der Diracfunktion in der AKF $($ebenfalls &nbsp;$N_0/2)$&nbsp; ergibt sich allein durch die zweiseitige Betrachtungsweise.<br><br>
+
*Here,&nbsp; $N_0$&nbsp; indicates the physical noise power density&nbsp; $($defined only for &nbsp;$f \ge 0)$.&nbsp; The constant PSD value&nbsp; $(N_0/2)$&nbsp; and the weight of the Dirac delta function in the ACF&nbsp; $($also &nbsp;$N_0/2)$&nbsp; result from the two-sided approach alone.<br><br>
  
Weitere Informationen zu diesem Thema liefert das Lernvideo&nbsp; [[Der_AWGN-Kanal_(Lernvideo)|Der AWGN-Kanal]]&nbsp; im zweiten Teil.<br>
+
&rArr; &nbsp; More information on this topic is provided by the&nbsp; (German language)&nbsp; learning video&nbsp; [[Der_AWGN-Kanal_(Lernvideo)|"The AWGN channel"]]&nbsp; in part two.<br>
  
== Beschreibung des AWGN-Kanals durch orthonormale Basisfunktionen==
+
== Description of the AWGN channel by orthonormal basis functions==
 
<br>
 
<br>
Aus dem vorletzten Statement auf der letzten Seite geht hervor, dass
+
From the penultimate statement in the last section,&nbsp; we see that
*reines AWGN&ndash;Rauschen&nbsp; $n(t)$&nbsp; stets eine unendliche Varianz (Leistung) aufweist: &nbsp; $\sigma_n^2 \to \infty$,<br>
+
*pure AWGN noise&nbsp; $n(t)$&nbsp; always has infinite variance&nbsp; (power): &nbsp; $\sigma_n^2 \to \infty$,<br>
*in der Realität demzufolge nur gefiltertes Rauschen&nbsp; $n\hspace{0.05cm}'(t) = n(t) \star h_n(t)$&nbsp; auftreten kann.<br><br>
+
 
 +
*consequently,&nbsp; in reality only filtered noise&nbsp; $n\hspace{0.05cm}'(t) = n(t) \star h_n(t)$&nbsp; can occur.<br><br>
  
Mit der Impulsantwort&nbsp; $h_n(t)$&nbsp; und dem&nbsp; Frequenzgang $H_n(f) = {\rm F}\big [h_n(t)\big ]$&nbsp; gelten dann folgende Gleichungen:<br>
+
With the impulse response&nbsp; $h_n(t)$&nbsp; and the&nbsp; frequency response $H_n(f) = {\rm F}\big [h_n(t)\big ]$,&nbsp; the following equations hold:<br>
  
 
:$${\rm E}\big[n\hspace{0.05cm}'(t)  \big] \hspace{0.15cm} =  \hspace{0.2cm} {\rm E}\big[n(t)  \big] = 0 \hspace{0.05cm},$$
 
:$${\rm E}\big[n\hspace{0.05cm}'(t)  \big] \hspace{0.15cm} =  \hspace{0.2cm} {\rm E}\big[n(t)  \big] = 0 \hspace{0.05cm},$$
Line 207: Line 221:
 
:$$ {\it \varphi_{n\hspace{0.05cm}'}(\tau)} \hspace{0.1cm}  =  \hspace{0.1cm} {N_0}/{2}\hspace{0.1cm} \cdot \big [h_{n}(\tau) \star h_{n}(-\tau)\big  ]\hspace{0.05cm},$$
 
:$$ {\it \varphi_{n\hspace{0.05cm}'}(\tau)} \hspace{0.1cm}  =  \hspace{0.1cm} {N_0}/{2}\hspace{0.1cm} \cdot \big [h_{n}(\tau) \star h_{n}(-\tau)\big  ]\hspace{0.05cm},$$
 
:$$\sigma_n^2  \hspace{0.1cm}  =  \hspace{0.1cm} {  \varphi_{n\hspace{0.05cm}'}(\tau = 0)} =  {N_0}/{2} \cdot
 
:$$\sigma_n^2  \hspace{0.1cm}  =  \hspace{0.1cm} {  \varphi_{n\hspace{0.05cm}'}(\tau = 0)} =  {N_0}/{2} \cdot
\int_{-\infty}^{+\infty}h_n^2(t)\,{\rm d} t ={N_0}/{2}\hspace{0.1cm} \cdot < \hspace{-0.1cm}h_n(t), \hspace{0.1cm} h_n(t) \hspace{-0.05cm} > \hspace{0.1cm} =  
+
\int_{-\infty}^{+\infty}h_n^2(t)\,{\rm d} t ={N_0}/{2}\hspace{0.1cm} \cdot < \hspace{-0.1cm}h_n(t), \hspace{0.1cm} h_n(t) \hspace{-0.05cm} > \hspace{0.1cm} $$
 +
:$$\Rightarrow \hspace{0.3cm} \sigma_n^2  \hspace{0.1cm} =
 
  \int_{-\infty}^{+\infty}{\it \Phi}_{n\hspace{0.05cm}'}(f)\,{\rm d} f = {N_0}/{2} \cdot \int_{-\infty}^{+\infty}|H_n(f)|^2\,{\rm d} f \hspace{0.05cm}.$$
 
  \int_{-\infty}^{+\infty}{\it \Phi}_{n\hspace{0.05cm}'}(f)\,{\rm d} f = {N_0}/{2} \cdot \int_{-\infty}^{+\infty}|H_n(f)|^2\,{\rm d} f \hspace{0.05cm}.$$
  
Im Folgenden beinhaltet&nbsp; $n(t)$&nbsp; stets implizit eine ''Bandbegrenzung''; auf die Schreibweise&nbsp; $n'(t)$&nbsp; wird also zukünftig verzichtet.<br>
+
In the following,&nbsp; $n(t)$&nbsp; always implicitly includes a&nbsp; "band limitation";&nbsp; thus,&nbsp; the notation&nbsp; $n'(t)$&nbsp; will be omitted in the future.<br>
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Bitte beachten Sie:}$&nbsp; Ähnlich wie das Sendesignal&nbsp; $s(t)$&nbsp; lässt sich auch der Rauschprozess&nbsp; $\{n(t)\}$&nbsp; als gewichtete Summe von orthonormalen Basisfunktionen&nbsp; $\varphi_j(t)$&nbsp; schreiben.
+
$\text{Please note:}$&nbsp; Similar to the transmitted signal&nbsp; $s(t)$,&nbsp; the noise process&nbsp; $\{n(t)\}$&nbsp; can be written as a weighted sum of orthonormal basis functions&nbsp; $\varphi_j(t)$.&nbsp;  
*Im Gegensatz zu&nbsp; $s(t)$&nbsp; ist allerdings nun eine Beschränkung auf eine endliche Anzahl an Basisfunktionen nicht möglich.  
+
*In contrast to&nbsp; $s(t)$,&nbsp; however,&nbsp; a restriction to a finite number of basis functions is not possible.
*Vielmehr gilt bei rein stochastischen Größen für die entsprechende Signaldarstellung stets
+
 
 +
*Rather,&nbsp; for purely stochastic quantities,&nbsp; the following always holds for the corresponding signal representation
  
 
:$$n(t) = \lim_{N \rightarrow \infty} \sum\limits_{j = 1}^{N}n_j \cdot \varphi_j(t) \hspace{0.05cm},$$
 
:$$n(t) = \lim_{N \rightarrow \infty} \sum\limits_{j = 1}^{N}n_j \cdot \varphi_j(t) \hspace{0.05cm},$$
  
:wobei der Koeffizient&nbsp; $n_j$&nbsp; durch die Projektion von&nbsp; $n(t)$&nbsp; auf die Basisfunktion&nbsp; $\varphi_j(t)$&nbsp; bestimmt ist:
+
:where the coefficient&nbsp; $n_j$&nbsp; is determined by the projection of&nbsp; $n(t)$&nbsp; onto the basis function&nbsp; $\varphi_j(t)$:&nbsp;  
  
 
:$$n_j = \hspace{0.1cm} < \hspace{-0.1cm}n(t), \hspace{0.1cm} \varphi_j(t) \hspace{-0.05cm} > \hspace{0.05cm}.$$}}
 
:$$n_j = \hspace{0.1cm} < \hspace{-0.1cm}n(t), \hspace{0.1cm} \varphi_j(t) \hspace{-0.05cm} > \hspace{0.05cm}.$$}}
  
  
<i>Hinweis:</i> &nbsp;   Um eine Verwechslung mit den Basisfunktionen&nbsp; $\varphi_j(t)$&nbsp; zu vermeiden, wird im Folgenden die AKF&nbsp; $\varphi_n(\tau)$&nbsp; des Rauschprozesses stets nur noch als der Erwartungswert&nbsp; ${\rm E}\big [n(t) \cdot n(t + \tau)\big ]$&nbsp; ausgedrückt.<br>
+
<u>Note:</u> &nbsp; To avoid confusion with the basis functions&nbsp; $\varphi_j(t)$,&nbsp;  we will in the following express the auto-correlation function&nbsp; $\rm (ACF)$&nbsp;&nbsp; $\varphi_n(\tau)$&nbsp; of the noise process only as the expected value&nbsp;  
 +
:$${\rm E}\big [n(t) \cdot n(t + \tau)\big ] \equiv \varphi_n(\tau)  .$$ <br>
  
== Optimaler Empfänger für den AWGN-Kanal==
+
== Optimal receiver for the AWGN channel==
 
<br>
 
<br>
[[File:P ID2005 Dig T 4 2 S5b version1.png|right|frame|Optimaler Empfänger beim AWGN-Kanal|class=fit]]
+
[[File:EN_Dig_T_4_2_S5b.png|right|frame|Optimal receiver at the AWGN channel|class=fit]]
Auch das Empfangssignal&nbsp; $r(t) = s(t) + n(t)$&nbsp; lässt sich in bekannter Weise in Basisfunktionen zerlegen:
+
The received signal&nbsp; $r(t) = s(t) + n(t)$&nbsp; can also be decomposed into basis functions in a well-known way:
:$$r(t) =  \sum\limits_{j = 1}^{\infty}r_j \cdot \varphi_j(t) \hspace{0.05cm}.$$
+
$$r(t) =  \sum\limits_{j = 1}^{\infty}r_j \cdot \varphi_j(t) \hspace{0.05cm}.$$
  
Zu berücksichtigen ist:
+
To be considered:
*Die&nbsp; $M$&nbsp; möglichen Sendesignale&nbsp; $\{s_i(t)\}$&nbsp; spannen einen Signalraum mit insgesamt&nbsp;  $N$&nbsp; Basisfunktionen&nbsp; $\varphi_1(t)$, ... , $\varphi_N(t)$&nbsp; auf.<br><br>
+
*The&nbsp; $M$&nbsp; possible transmitted signals&nbsp; $\{s_i(t)\}$&nbsp; span a signal space with a total of&nbsp;  $N$&nbsp; basis functions&nbsp; $\varphi_1(t)$, ... , $\varphi_N(t)$.<br>
  
*Diese&nbsp; $N$&nbsp; Basisfunktionen&nbsp; $\varphi_j(t)$&nbsp; werden gleichzeitig zur Beschreibung des Rauschsignals&nbsp; $n(t)$&nbsp; und des Empfangssignals&nbsp; $r(t)$&nbsp; verwendet.<br><br>
+
*These&nbsp; $N$&nbsp; basis functions&nbsp; $\varphi_j(t)$&nbsp; are used simultaneously to describe the noise signal&nbsp; $n(t)$&nbsp; and the received signal&nbsp; $r(t)$.&nbsp; <br>
  
*Zur vollständigen Charakterisierung von&nbsp; $n(t)$&nbsp; bzw.&nbsp; $r(t)$&nbsp; werden nun aber darüber hinaus noch unendlich viele weitere Basisfunktionen&nbsp; $\varphi_{N+1}(t)$,&nbsp; $\varphi_{N+2}(t)$,&nbsp; ... benötigt.<br><br>
+
*For a complete characterization of&nbsp; $n(t)$&nbsp; or&nbsp; $r(t)$,&nbsp; however,&nbsp; an infinite number of further basis functions&nbsp; $\varphi_{N+1}(t)$,&nbsp; $\varphi_{N+2}(t)$,&nbsp; ... are needed.<br>
  
Damit ergeben sich die Koeffizienten des Empfangssignals&nbsp; $r(t)$&nbsp; gemäß folgender Gleichung, wobei berücksichtigt ist, dass die Signale&nbsp; $s_i(t)$&nbsp; und das Rauschen&nbsp; $n(t)$&nbsp; voneinander unabhängig sind:
+
 
 +
Thus,&nbsp; the coefficients of the received signal&nbsp; $r(t)$&nbsp; are obtained according to the following equation,&nbsp; taking into account that the signals&nbsp; $s_i(t)$&nbsp; and the noise&nbsp; $n(t)$&nbsp; are independent of each other:
  
 
:$$r_j \hspace{0.1cm}  =  \hspace{0.1cm} \hspace{0.1cm} < \hspace{-0.1cm}r(t), \hspace{0.1cm} \varphi_j(t) \hspace{-0.05cm} > \hspace{0.1cm}=\hspace{0.1cm}
 
:$$r_j \hspace{0.1cm}  =  \hspace{0.1cm} \hspace{0.1cm} < \hspace{-0.1cm}r(t), \hspace{0.1cm} \varphi_j(t) \hspace{-0.05cm} > \hspace{0.1cm}=\hspace{0.1cm}
Line 247: Line 265:
 
\\  {j > N}  \hspace{0.05cm}.\\ \end{array}$$
 
\\  {j > N}  \hspace{0.05cm}.\\ \end{array}$$
  
Somit ergibt sich für den optimalen Empfänger die oben skizzierte Struktur.<br>
+
Thus,&nbsp; the structure sketched above results for the optimal receiver.<br>
 
<br>
 
<br>
Betrachten wir  zunächst den &nbsp;'''AWGN&ndash;Kanal'''. Hier kann auf das Vorfilter mit dem Frequenzgang&nbsp; $W(f)$&nbsp; verzichtet werden, das für farbiges Rauschen vorgesehen ist.<br>
+
Let us first consider the &nbsp;'''AWGN channel'''.&nbsp; Here,&nbsp; the prefilter with the frequency response&nbsp; $W(f)$,&nbsp; which is intended for colored noise,&nbsp; can be dispensed with.<br>
  
Der Detektor des optimalen Empfängers bildet die Koeffizienten&nbsp; $r_j \hspace{0.1cm}  =  \hspace{0.1cm} \hspace{0.1cm} < \hspace{-0.1cm}r(t), \hspace{0.1cm} \varphi_j(t)\hspace{-0.05cm} >$&nbsp; und reicht diese an den Entscheider weiter. Basiert die Entscheidung auf sämtlichen &ndash; also unendlich vielen &ndash; Koeffizienten&nbsp; $r_j$, so ist die Wahrscheinlichkeit für eine Fehlentscheidung minimal und der Empfänger optimal.<br>
+
#The detector of the optimal receiver forms the coefficients&nbsp; $r_j \hspace{0.1cm}  =  \hspace{0.1cm} \hspace{0.1cm} < \hspace{-0.1cm}r(t), \hspace{0.1cm} \varphi_j(t)\hspace{-0.05cm} >$&nbsp; and passes them on to the decision.  
 
+
#If the decision is based on all&nbsp; $($i.e., infinitely many$)$&nbsp; coefficients&nbsp; $r_j$,&nbsp; the probability of a wrong decision is minimal and the receiver is optimal.<br>
Die reellwertigen Koeffizienten&nbsp; $r_j$&nbsp; wurden oben wie folgt berechnet:
+
#The real-valued coefficients&nbsp; $r_j$&nbsp; were calculated as follows:
:$$r_j =   
+
::$$r_j =   
 
  \left\{ \begin{array}{c}  s_{ij} + n_j\\
 
  \left\{ \begin{array}{c}  s_{ij} + n_j\\
 
   n_j \end{array} \right.\quad
 
   n_j \end{array} \right.\quad
Line 260: Line 278:
 
\\  {j > N}  \hspace{0.05cm}.\\ \end{array}$$
 
\\  {j > N}  \hspace{0.05cm}.\\ \end{array}$$
  
Nach dem&nbsp; [[Digital_Signal_Transmission/Struktur_des_optimalen_Empfängers#Das_Theorem_der_Irrelevanz|Theorem der Irrelevanz]]&nbsp; lässt sich zeigen, dass für additives weißes Gaußsches Rauschen
+
According to the&nbsp; [[Digital_Signal_Transmission/Structure_of_the_Optimal_Receiver#The_irrelevance_theorem|"irrelevance theorem"]]&nbsp; it can be shown that for additive white Gaussian noise
*die Optimalität nicht herabgesetzt wird, wenn man die nicht von der Nachricht&nbsp; $(s_{ij})$&nbsp; abhängigen Koeffizienten &nbsp;$r_{N+1}$,&nbsp; $r_{N+2}$,&nbsp; ... nicht in den Entscheidungsprozess einbindet, und somit<br>
+
*the optimality is not lowered if the coefficients &nbsp;$r_{N+1}$,&nbsp; $r_{N+2}$,&nbsp; ... ,&nbsp; that do not depend on the message&nbsp; $(s_{ij})$,&nbsp; are not included in the decision process,&nbsp; and therefore<br>
  
*der Detektor nur die Projektionen des Empfangssignals&nbsp; $r(t)$&nbsp; auf die&nbsp; $N$&nbsp; durch das Nutzsignal&nbsp; $s(t)$&nbsp; vorgegebenen Basisfunktionen&nbsp; $\varphi_{1}(t)$, ... , $\varphi_{N}(t)$&nbsp; bilden muss.<br>
+
*the detector has to form only the projections of the received signal&nbsp; $r(t)$&nbsp; onto the&nbsp; $N$&nbsp; basis functions&nbsp; $\varphi_{1}(t)$, ... , $\varphi_{N}(t)$&nbsp; given by the useful signal&nbsp; $s(t)$.&nbsp;
  
  
In der Grafik ist diese signifikante Vereinfachung durch die graue Hinterlegung angedeutet.<br>
+
In the graph this significant simplification is indicated by the gray background.<br>
  
Im Fall von &nbsp;'''farbigem Rauschen''' &nbsp;&nbsp;&#8658;&nbsp;&nbsp; Leistungsdichtespektrum&nbsp; ${\it \Phi}_n(f) \ne {\rm const.}$&nbsp; ist lediglich zusätzlich ein Vorfilter mit dem Amplitudengang&nbsp; $|W(f)| = {1}/{\sqrt{\it \Phi}_n(f)}$&nbsp; erforderlich. Man nennt dieses Filter auch "<i>Whitening Filter"</i>, da die Rauschleistungsdichte am Ausgang wieder konstant &ndash; also "weiß" &ndash; ist.  
+
In the case of &nbsp;'''colored noise''' &nbsp; &#8658; &nbsp; power-spectral density&nbsp; ${\it \Phi}_n(f) \ne {\rm const.}$,&nbsp; only an additional prefilter with the amplitude response&nbsp; $|W(f)| = {1}/{\sqrt{\it \Phi}_n(f)}$&nbsp; is required.&nbsp;
 +
#This filter is called&nbsp; "whitening filter",&nbsp; because the noise power-spectral density at the output is constant again &nbsp; &#8658; &nbsp; "white".
 +
#More details can be found in the chapter&nbsp; [[Theory_of_Stochastic_Signals/Matched_Filter#Generalized_matched_filter_for_the_case_of_colored_interference|"Matched filter for colored interference"]]&nbsp; of the book&nbsp; "Stochastic Signal Theory".<br>
  
Genaueres hierzu finden Sie im Kapitel&nbsp; [[Theory_of_Stochastic_Signals/Matched-Filter#Verallgemeinertes_Matched-Filter_f.C3.BCr_den_Fall_farbiger_St.C3.B6rungen|Matched-Filter bei farbigen Störungen]]&nbsp; des Buches "Stochastische Signaltheorie".<br>
+
== Implementation aspects ==
 +
<br>
 +
Essential components of the optimal receiver are the calculations of the inner products according to the equations &nbsp; $r_j \hspace{0.1cm}  =  \hspace{0.1cm} \hspace{0.1cm} < \hspace{-0.1cm}r(t), \hspace{0.1cm} \varphi_j(t) \hspace{-0.05cm} >$.&nbsp;  
  
== Implementierungsaspekte ==
+
{{BlaueBox|TEXT=
<br>
+
$\text{These can be implemented in several ways:}$&nbsp;
Wesentliche Bestandteile des optimalen Empfängers sind die Berechnungen der inneren Produkte gemäß den Gleichungen&nbsp; $r_j \hspace{0.1cm} =  \hspace{0.1cm} \hspace{0.1cm} < \hspace{-0.1cm}r(t), \hspace{0.1cm} \varphi_j(t) \hspace{-0.05cm} >$. Diese können auf verschiedene Art und Weise implementiert werden:
+
*In the &nbsp;'''correlation receiver'''&nbsp; $($see the&nbsp; [[Digital_Signal_Transmission/Optimal_Receiver_Strategies#Correlation_receiver_with_unipolar_signaling|"chapter of the same name"]] for more details on this implementation$)$,&nbsp; the inner products are realized directly according to the definition with analog multipliers and integrators:
*Beim &nbsp;'''Korrelationsempfänger'''&nbsp; (Näheres zu dieser Implementierung finden Sie im&nbsp; [[Digitalsignal%C3%BCbertragung/Optimale Empf%C3%A4ngerstrategien#Korrelationsempf.C3.A4nger|gleichnamigen Kapitel]])&nbsp; werden die inneren Produkte direkt entsprechend der Definition mit analogen Multiplizierern und Integratoren realisiert:
 
 
:$$r_j = \int_{-\infty}^{+\infty}r(t) \cdot \varphi_j(t) \,{\rm d} t \hspace{0.05cm}.$$
 
:$$r_j = \int_{-\infty}^{+\infty}r(t) \cdot \varphi_j(t) \,{\rm d} t \hspace{0.05cm}.$$
  
*Der &nbsp;'''Matched&ndash;Filter&ndash;Empfänger''', der  bereits im Kapitel&nbsp; [[Digitalsignal%C3%BCbertragung/Fehlerwahrscheinlichkeit_bei_Basisband%C3%BCbertragung#Optimaler_Bin.C3.A4rempf.C3.A4nger_-_Realisierung_mit_Matched-Filter|Optimaler Binärempfänger]]&nbsp; zu Beginn dieses Buches hergeleitet wurde, erzielt mit einem linearen Filter mit der Impulsantwort&nbsp;  $h_j(t) = \varphi_j(t) \cdot (T-t)$&nbsp; und anschließender  Abtastung zum Zeitpunkt&nbsp; $t = T$&nbsp; das gleiche Ergebnis:
+
*The &nbsp;'''matched filter receiver''',&nbsp; already derived in the chapter&nbsp; [[Digital_Signal_Transmission/Error_Probability_for_Baseband_Transmission#Optimal_binary_receiver_.E2.80.93_.22Matched_Filter.22_realization|"Optimal Binary Receiver"]]&nbsp; at the beginning of this book,&nbsp; achieves the same result using a linear filter with impulse response&nbsp;  $h_j(t) = \varphi_j(t) \cdot (T-t)$&nbsp; followed by sampling at time&nbsp; $t = T$:&nbsp;
 
:$$r_j = \int_{-\infty}^{+\infty}r(\tau) \cdot h_j(t-\tau) \,{\rm d} \tau  
 
:$$r_j = \int_{-\infty}^{+\infty}r(\tau) \cdot h_j(t-\tau) \,{\rm d} \tau  
 
= \int_{-\infty}^{+\infty}r(\tau) \cdot \varphi_j(T-t+\tau) \,{\rm d} \tau \hspace{0.3cm}  
 
= \int_{-\infty}^{+\infty}r(\tau) \cdot \varphi_j(T-t+\tau) \,{\rm d} \tau \hspace{0.3cm}  
 
\Rightarrow \hspace{0.3cm} r_j (t = \tau) = \int_{-\infty}^{+\infty}r(\tau) \cdot \varphi_j(\tau) \,{\rm d} \tau = r_j  
 
\Rightarrow \hspace{0.3cm} r_j (t = \tau) = \int_{-\infty}^{+\infty}r(\tau) \cdot \varphi_j(\tau) \,{\rm d} \tau = r_j  
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
 +
[[File:EN_Dig_T_4_2_S6.png|left|frame|Three different implementations of the inner product|class=fit]]
 +
<br><br><br>
 +
The figure shows the two possible realizations <br>of the optimal detector.}}
  
Die Abbildung zeigt die beiden möglichen Realisierungsformen des optimalen Detektors.
 
  
[[File:P ID2008 Dig T 4 2 S6 version1.png|center|frame|Drei unterschiedliche Implementierungen des inneren Produktes|class=fit]]
+
== Probability density function of the received values ==
 +
<br>
 +
Before we turn to the optimal design of the decision maker and the calculation and approximation of the error probability in the following chapter, we first perform a statistical analysis of the decision variables&nbsp; $r_j$&nbsp; valid for the AWGN channel.
  
== Wahrscheinlichkeitsdichtefunktion der Empfangswerte ==
+
[[File:P ID2009 Dig T 4 2 S7 version1.png|right|frame|Signal space constellation&nbsp; (left)&nbsp; and PDF of the received signal&nbsp; (right)|class=fit]]
<br>
+
For this purpose,&nbsp; we consider again the optimal binary receiver for bipolar baseband transmission over the AWGN channel,&nbsp; starting from the description form valid for the fourth main chapter.
Bevor wir uns im folgenden Kapitel der optimalen Gestaltung des Entscheiders und der Berechnung und Annäherung der Fehlerwahrscheinlichkeit zuwenden, erfolgt zunächst eine für den AWGN&ndash;Kanal gültige statistische Analyse der Entscheidungsgrößen&nbsp; $r_j$.  
 
  
[[File:P ID2009 Dig T 4 2 S7 version1.png|right|frame|Signalraumkonstellation und WDF des Empfangssignals|class=fit]]
+
With the parameters&nbsp; $N = 1$&nbsp; and&nbsp; $M = 2$,&nbsp; the signal space constellation shown in the left graph is obtained for the transmitted signal
Dazu betrachten wir nochmals den optimalen Binärempfänger für die bipolare Basisbandübertragung über den AWGN&ndash;Kanal, wobei wir von der für das vierte Hauptkapitel gültigen Beschreibungsform ausgehen.
+
*with only one basis function&nbsp; $\varphi_1(t)$,&nbsp; because of&nbsp; $N = 1$,<br>
  
Mit den Parametern&nbsp; $N = 1$&nbsp; und&nbsp; $M = 2$&nbsp; ergibt sich für das Sendesignal die in der linken Grafik dargestellte Signalraumkonstellation
+
*with the two signal space points&nbsp; $s_i \in \{s_0, \hspace{0.05cm}s_1\}$,&nbsp; because of&nbsp; $M = 2$.
*mit nur einer Basisfunktion&nbsp; $\varphi_1(t)$, wegen&nbsp; $N = 1$,<br>
 
*mit den beiden Signalraumpunkten&nbsp; $s_i \in \{s_0, \hspace{0.05cm}s_1\}$, wegen&nbsp; $M = 2$.
 
 
<br clear=all>
 
<br clear=all>
Für das Signal&nbsp; $r(t) = s(t) + n(t)$&nbsp; am Ausgang des AWGN&ndash;Kanals ergibt sich im rauschfreien Fall &nbsp; &#8658; &nbsp;  $r(t) = s(t)$&nbsp; die genau gleiche Konstellation. Die Signalraumpunkte liegen somit bei
+
For the signal&nbsp; $r(t) = s(t) + n(t)$&nbsp; at the AWGN channel output,&nbsp; the noise-free case &nbsp; &#8658; &nbsp;  $r(t) = s(t)$&nbsp; yields exactly the same constellation;&nbsp; The signal space points are at
 
:$$r_0 = s_0 = \sqrt{E}\hspace{0.05cm},\hspace{0.2cm}r_1 = s_1 = -\sqrt{E}\hspace{0.05cm}.$$
 
:$$r_0 = s_0 = \sqrt{E}\hspace{0.05cm},\hspace{0.2cm}r_1 = s_1 = -\sqrt{E}\hspace{0.05cm}.$$
  
Bei Berücksichtigung des (bandbegrenzten) AWGN&ndash;Rauschens&nbsp; $n(t)$&nbsp; überlagern sich den beiden Punkten&nbsp; $r_0$&nbsp; und&nbsp; $r_1$&nbsp; jeweils Gaußkurven mit der Varianz&nbsp; $\sigma_n^2$ &nbsp;&#8658;&nbsp; Streuung&nbsp; $\sigma_n$&nbsp; (siehe rechte Grafik). Die WDF der Rauschkomponente&nbsp; $n(t)$&nbsp; lautet dabei:
+
Considering the (band-limited) AWGN noise&nbsp; $n(t)$,&nbsp;  
 +
*Gaussian curves with variance&nbsp; $\sigma_n^2$ &nbsp;&#8658;&nbsp; standard deviation &nbsp; $\sigma_n$&nbsp; are superimposed on each of the two points &nbsp; $r_0$&nbsp; and&nbsp; $r_1$&nbsp; $($see right sketch$)$.  
 +
 
 +
*The probability density function&nbsp; $\rm (PDF)$&nbsp; of the noise component&nbsp; $n(t)$&nbsp; is thereby:
 
:$$p_n(n) = \frac{1}{\sqrt{2\pi} \cdot \sigma_n}\cdot {\rm e}^{ - {n^2}/(2 \sigma_n^2)}\hspace{0.05cm}.$$
 
:$$p_n(n) = \frac{1}{\sqrt{2\pi} \cdot \sigma_n}\cdot {\rm e}^{ - {n^2}/(2 \sigma_n^2)}\hspace{0.05cm}.$$
  
Für die bedingte Wahrscheinlichkeitsdichte, dass der Empfangswert&nbsp; $\rho$&nbsp; anliegt, wenn&nbsp; $s_i$&nbsp; gesendet wurde, ergibt sich dann folgender Ausdruck:
+
The following expression is then obtained for the conditional probability density that the received value&nbsp; $\rho$&nbsp; is present when&nbsp; $s_i$&nbsp; has been transmitted:
  
 
:$$p_{\hspace{0.02cm}r\hspace{0.05cm}|\hspace{0.05cm}s}(\rho\hspace{0.05cm}|\hspace{0.05cm}s_i) = \frac{1}{\sqrt{2\pi} \cdot \sigma_n}\cdot {\rm e}^{ - {(\rho - s_i)^2}/(2 \sigma_n^2)} \hspace{0.05cm}.$$
 
:$$p_{\hspace{0.02cm}r\hspace{0.05cm}|\hspace{0.05cm}s}(\rho\hspace{0.05cm}|\hspace{0.05cm}s_i) = \frac{1}{\sqrt{2\pi} \cdot \sigma_n}\cdot {\rm e}^{ - {(\rho - s_i)^2}/(2 \sigma_n^2)} \hspace{0.05cm}.$$
  
Zu den Einheiten der hier aufgeführten Größen ist zu bemerken:
+
Regarding the units of the quantities listed here, we note:
*$r_0 = s_0$&nbsp; und&nbsp; $r_1 = s_1$&nbsp; sowie&nbsp; $n$&nbsp; sind jeweils Skalare mit der Einheit "Wurzel aus Energie".<br>
+
*$r_0 = s_0$&nbsp; and&nbsp; $r_1 = s_1$&nbsp; as well as&nbsp; $n$&nbsp; are each scalars with the unit&nbsp; "root of energy".<br>
  
*Damit ist offensichtlich, dass&nbsp; $\sigma_n$&nbsp; ebenfalls die Einheit "Wurzel aus Energie" besitzt und&nbsp; $\sigma_n^2$&nbsp; eine Energie darstellt.<br>
+
*Thus,&nbsp; it is obvious that&nbsp; $\sigma_n$&nbsp; also has the unit&nbsp; "root of energy"&nbsp; and&nbsp; $\sigma_n^2$&nbsp; represents energy.<br>
  
*Beim AWGN&ndash;Kanal ist die Rauschvarianz&nbsp; $\sigma_n^2 = N_0/2$. Diese ist  also ebenfalls eine physikalische Größe mit der Einheit&nbsp; $\rm W/Hz = Ws$.<br><br>
+
*For the AWGN channel,&nbsp; the noise variance is &nbsp; $\sigma_n^2 = N_0/2$, &nbsp; so this is also a physical quantity with unit&nbsp; "$\rm W/Hz \equiv Ws$".<br><br>
  
Die hier angesprochene Thematik wird in der&nbsp; [[Aufgaben:Aufgabe_4.06:_Optimale_Entscheidungsgrenzen|Aufgabe 4.6]]&nbsp; an Beispielen verdeutlicht.<br>
+
The topic addressed here is illustrated by examples in&nbsp; [[Aufgaben:Aufgabe_4.06:_Optimale_Entscheidungsgrenzen|"Exercise 4.6"]].&nbsp; <br>
  
== N–dimensionales Gaußsches Rauschen==
+
== N-dimensional Gaussian noise==
 
<br>
 
<br>
Liegt ein&nbsp; $N$&ndash;dimensionales Modulationsverfahren vor, das heißt, es gilt mit&nbsp; $0 \le i \le M-1$&nbsp; und &nbsp;$1 \le j \le N$:
+
If an&nbsp; $N$&ndash;dimensional modulation process is present,&nbsp; i.e.,&nbsp; with&nbsp; $0 \le i \le M&ndash;1$&nbsp; and &nbsp;$1 \le j \le N$:
 
:$$s_i(t) = \sum\limits_{j = 1}^{N} s_{ij} \cdot \varphi_j(t) = s_{i1} \cdot \varphi_1(t)
 
:$$s_i(t) = \sum\limits_{j = 1}^{N} s_{ij} \cdot \varphi_j(t) = s_{i1} \cdot \varphi_1(t)
 
+ s_{i2} \cdot \varphi_2(t) + \hspace{0.05cm}\text{...}\hspace{0.05cm} + s_{iN} \cdot \varphi_N(t)\hspace{0.05cm}\hspace{0.3cm}  
 
+ s_{i2} \cdot \varphi_2(t) + \hspace{0.05cm}\text{...}\hspace{0.05cm} + s_{iN} \cdot \varphi_N(t)\hspace{0.05cm}\hspace{0.3cm}  
Line 326: Line 351:
 
\hspace{0.05cm},$$
 
\hspace{0.05cm},$$
  
so muss der Rauschvektor&nbsp; $\boldsymbol{ n}$&nbsp; ebenfalls mit der Dimension&nbsp; $N$&nbsp; angesetzt werden. Das gleiche gilt auch für den Empfangsvektor&nbsp;  $\boldsymbol{ r}$:
+
then the noise vector&nbsp; $\boldsymbol{ n}$&nbsp; must also be assumed to have dimension&nbsp; $N$.&nbsp; The same is true for the received vector&nbsp;  $\boldsymbol{ r}$:
 
:$$\boldsymbol{ n} = \left(n_{1}, n_{2}, \hspace{0.05cm}\text{...}\hspace{0.05cm},  n_{N}\right )  
 
:$$\boldsymbol{ n} = \left(n_{1}, n_{2}, \hspace{0.05cm}\text{...}\hspace{0.05cm},  n_{N}\right )  
\hspace{0.01cm},\hspace{0.2cm}\boldsymbol{ r} = \left(r_{1}, r_{2}, \hspace{0.05cm}\text{...}\hspace{0.05cm},  r_{N}\right )\hspace{0.05cm}.$$
+
\hspace{0.01cm},$$
 +
:$$\boldsymbol{ r} = \left(r_{1}, r_{2}, \hspace{0.05cm}\text{...}\hspace{0.05cm},  r_{N}\right )\hspace{0.05cm}.$$
  
Die Wahrscheinlichkeitsdichtefunktion (WDF) lautet dann für den AWGN&ndash;Kanal mit der Realisierung&nbsp; $\boldsymbol{ \eta}$&nbsp; des Rauschsignals
+
The probability density function&nbsp; $\rm (PDF)$&nbsp; for the AWGN channel is with the realization&nbsp; $\boldsymbol{ \eta}$&nbsp; of the noise signal
 
:$$p_{\boldsymbol{ n}}(\boldsymbol{ \eta}) = \frac{1}{\left( \sqrt{2\pi}  \cdot \sigma_n \right)^N }  \cdot  
 
:$$p_{\boldsymbol{ n}}(\boldsymbol{ \eta}) = \frac{1}{\left( \sqrt{2\pi}  \cdot \sigma_n \right)^N }  \cdot  
 
{\rm exp} \left [ - \frac{|| \boldsymbol{ \eta} ||^2}{2 \sigma_n^2}\right ]\hspace{0.05cm},$$
 
{\rm exp} \left [ - \frac{|| \boldsymbol{ \eta} ||^2}{2 \sigma_n^2}\right ]\hspace{0.05cm},$$
  
und für die bedingte WDF in der Maximum&ndash;Likelihood&ndash;Entscheidungsregel ist anzusetzen:
+
and for the conditional PDF in the maximum likelihood decision rule:
  
 
:$$p_{\hspace{0.02cm}\boldsymbol{ r}\hspace{0.05cm} | \hspace{0.05cm} \boldsymbol{ s}}(\boldsymbol{ \rho} \hspace{0.05cm}|\hspace{0.05cm} \boldsymbol{ s}_i) \hspace{-0.1cm}  =  \hspace{0.1cm}  
 
:$$p_{\hspace{0.02cm}\boldsymbol{ r}\hspace{0.05cm} | \hspace{0.05cm} \boldsymbol{ s}}(\boldsymbol{ \rho} \hspace{0.05cm}|\hspace{0.05cm} \boldsymbol{ s}_i) \hspace{-0.1cm}  =  \hspace{0.1cm}  
Line 340: Line 366:
 
{\rm exp} \left [ - \frac{|| \boldsymbol{ \rho} - \boldsymbol{ s}_i  ||^2}{2 \sigma_n^2}\right ]\hspace{0.05cm}.$$
 
{\rm exp} \left [ - \frac{|| \boldsymbol{ \rho} - \boldsymbol{ s}_i  ||^2}{2 \sigma_n^2}\right ]\hspace{0.05cm}.$$
  
Die Gleichung ergibt sich aus der allgemeinen Darstellung der $N$&ndash;dimensionalen Gaußschen WDF im Abschnitt&nbsp; [[Theory_of_Stochastic_Signals/Verallgemeinerung_auf_N-dimensionale_Zufallsgr%C3%B6%C3%9Fen#Korrelationsmatrix|Korrelationsmatrix]]&nbsp; des Buches "Stochastische Signaltheorie" unter der Voraussetzung, dass die Komponenten unkorreliert (und somit  statistisch unabhängig) sind. $||\boldsymbol{ \eta}||$&nbsp; bezeichnet man als die ''Norm'' (Länge) des Vektors &nbsp;$\boldsymbol{ \eta}$.<br>
+
The equation follows
 +
*from the general representation of the&nbsp;  $N$&ndash;dimensional Gaussian PDF in the section&nbsp; [[Theory_of_Stochastic_Signals/Generalization_to_N-Dimensional_Random_Variables#Correlation_matrix|"correlation matrix"]]&nbsp; of the book&nbsp; "Theory of Stochastic Signals"
 +
 +
*under the assumption that the components are uncorrelated&nbsp; (and thus statistically independent).  
 +
 
 +
*$||\boldsymbol{ \eta}||$&nbsp; is called the&nbsp; "norm"&nbsp; (length)&nbsp; of the vector &nbsp;$\boldsymbol{ \eta}$.<br>
 +
 
  
[[File:P ID2012 Dig T 4 2 S8 version1.png|right|frame|Zweidimensionale Gauß–WDF]]
 
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 3:}$&nbsp;  
+
$\text{Example 3:}$&nbsp;  
Rechts dargestellt ist die zweidimensionale Gauß&ndash;WDF&nbsp; $p_{\boldsymbol{ n} } (\boldsymbol{ \eta})$&nbsp; der 2D&ndash;Zufallsgröße&nbsp; $\boldsymbol{ n} = (n_1,\hspace{0.05cm}n_2)$.  Beliebige Realisierungen der Zufallsgröße&nbsp; $\boldsymbol{ n}$&nbsp; werden mit&nbsp; $\boldsymbol{ \eta} = (\eta_1,\hspace{0.05cm}\eta_2)$&nbsp; bezeichnet.
+
Shown on the right is the two-dimensional Gaussian probability density function&nbsp; $p_{\boldsymbol{ n} } (\boldsymbol{ \eta})$&nbsp; of the two-dimensional random variable&nbsp; $\boldsymbol{ n} = (n_1,\hspace{0.05cm}n_2)$.&nbsp; Arbitrary realizations of the random variable&nbsp; $\boldsymbol{ n}$&nbsp; are denoted by&nbsp; $\boldsymbol{ \eta} = (\eta_1,\hspace{0.05cm}\eta_2)$.&nbsp; The equation of the represented two-dimensional&nbsp; "Gaussian bell curve"&nbsp; is:
*Die Gleichung der dargestellten Glockenkurve lautet:
+
[[File:EN_Dig_T_4_2_S8.png|right|frame|Two-dimensional Gaussian PDF]]
 
:$$p_{n_1, n_2}(\eta_1, \eta_2) = \frac{1}{\left( \sqrt{2\pi}  \cdot \sigma_n \right)^2 }  \cdot  
 
:$$p_{n_1, n_2}(\eta_1, \eta_2) = \frac{1}{\left( \sqrt{2\pi}  \cdot \sigma_n \right)^2 }  \cdot  
 
{\rm exp} \left [ - \frac{ \eta_1^2 + \eta_2^2}{2 \sigma_n^2}\right ]\hspace{0.05cm}. $$
 
{\rm exp} \left [ - \frac{ \eta_1^2 + \eta_2^2}{2 \sigma_n^2}\right ]\hspace{0.05cm}. $$
*Das Maximum dieser Funktion liegt bei&nbsp; $\eta_1 = \eta_2 = 0$&nbsp; und hat den Wert &nbsp;$2\pi \cdot \sigma_n^2$.  
+
*The maximum of this function is at&nbsp; $\eta_1 = \eta_2 = 0$&nbsp; and has the value &nbsp;$2\pi \cdot \sigma_n^2$.&nbsp; With&nbsp; $\sigma_n^2 = N_0/2$,&nbsp; the two-dimensional PDF in vector form can also be written as follows:
*Mit&nbsp; $\sigma_n^2 = N_0/2$&nbsp; lässt sich die 2D&ndash;WDF in Vektorform auch wie folgt schreiben:
 
 
:$$p_{\boldsymbol{ n} }(\boldsymbol{ \eta}) = \frac{1}{\pi \cdot N_0 }  \cdot  
 
:$$p_{\boldsymbol{ n} }(\boldsymbol{ \eta}) = \frac{1}{\pi \cdot N_0 }  \cdot  
 
{\rm exp} \left [ - \frac{\vert \vert \boldsymbol{ \eta} \vert \vert ^2}{N_0}\right ]\hspace{0.05cm}.$$
 
{\rm exp} \left [ - \frac{\vert \vert \boldsymbol{ \eta} \vert \vert ^2}{N_0}\right ]\hspace{0.05cm}.$$
 +
*This rotationally symmetric PDF is suitable e.g. for describing/investigating a&nbsp; "two-dimensional modulation process"&nbsp; such as&nbsp; [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation#Quadrature_amplitude_modulation_.28M-QAM.29|"M&ndash;QAM"]],&nbsp; [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation#Multi-level_phase.E2.80.93shift_keying_.28M.E2.80.93PSK.29|"M&ndash;PSK"]]&nbsp; or&nbsp; [[Modulation_Methods/Non-Linear_Digital_Modulation#FSK_.E2.80.93_Frequency_Shift_Keying|"2&ndash;FSK"]].<br>
  
*Diese rotationssymmetrische WDF eignet sich zum Beispiel für die Beschreibung/Untersuchung eines '' zweidimensionalen Modulationsverfahrens'' wie&nbsp; [[Digital_Signal_Transmission/Trägerfrequenzsysteme_mit_kohärenter_Demodulation#Quadraturamplitudenmodulation_.28M.E2.80.93QAM.29|<i>M</i>&ndash;QAM]],&nbsp; [[Digital_Signal_Transmission/Trägerfrequenzsysteme_mit_kohärenter_Demodulation#Mehrstufiges_Phase.E2.80.93Shift_Keying_.28M.E2.80.93PSK.29|<i>M</i>&ndash;PSK]]&nbsp; oder&nbsp; [[Digital_Signal_Transmission/Trägerfrequenzsysteme_mit_kohärenter_Demodulation#Binary_Frequency_Shift_Keying_.282.E2.80.93FSK.29|2&ndash;FSK]].<br>
+
*However,&nbsp; two-dimensional real random variables are often represented in a one-dimensional complex way,&nbsp; usually in the form&nbsp; $n(t) = n_{\rm I}(t) + {\rm j} \cdot n_{\rm Q}(t)$.&nbsp; The two components are then called the&nbsp; "in-phase component"&nbsp; $n_{\rm I}(t)$&nbsp; and the&nbsp; "quadrature component"&nbsp; $n_{\rm Q}(t)$&nbsp; of the noise.<br>
 
 
*Oft werden zweidimensionale reelle Zufallsgrößen aber auch eindimensional&ndash;komplex dargestellt, meist in der Form&nbsp; $n(t) = n_{\rm I}(t) + {\rm j} \cdot n_{\rm Q}(t)$. Die beiden Komponenten bezeichnet man dann als <i>Inphaseanteil</i>&nbsp; $n_{\rm I}(t)$&nbsp; und <i>Quadraturanteil</i>&nbsp; $n_{\rm Q}(t)$&nbsp; des Rauschens.<br>
 
  
*Die Wahrscheinlichkeitsdichtefunktion hängt nur vom Betrag&nbsp; $\vert n(t) \vert$&nbsp; der Rauschvariablen ab und nicht von Winkel&nbsp; ${\rm arc} \ n(t)$. Das heißt: &nbsp; Komplexes Rauschen ist zirkulär symmetrisch (siehe Grafik).<br>
+
*The probability density function depends only on the magnitude&nbsp; $\vert n(t) \vert$&nbsp; of the noise variable and not on angle&nbsp; ${\rm arc} \ n(t)$.&nbsp; This means: &nbsp; complex noise is circularly symmetric&nbsp; $($see graph$)$.<br>
  
*Zirkulär symmetrisch bedeutet auch, dass die Inphasekomponente&nbsp; $n_{\rm I}(t)$&nbsp; und die Quadraturkomponente&nbsp; $n_{\rm Q}(t)$&nbsp; die gleiche Verteilung aufweisen und damit auch gleiche Varianz (Streuung) besitzen:
+
*Circularly symmetric also means that the in-phase component&nbsp; $n_{\rm I}(t)$&nbsp; and the quadrature component&nbsp; $n_{\rm Q}(t)$&nbsp; have the same distribution and thus also the same variance&nbsp; $($and standard deviation$)$:
  
 
:$$ {\rm E} \big [ n_{\rm I}^2(t)\big  ]  = {\rm E}\big [ n_{\rm Q}^2(t) \big ] = \sigma_n^2 \hspace{0.05cm},\hspace{1cm}{\rm E}\big  [ n(t) \cdot n^*(t) \big  ]\hspace{0.1cm}  =  \hspace{0.1cm}  {\rm E}\big [ n_{\rm I}^2(t) \big ] + {\rm E}\big [ n_{\rm Q}^2(t)\big  ] = 2\sigma_n^2 \hspace{0.05cm}.$$}}
 
:$$ {\rm E} \big [ n_{\rm I}^2(t)\big  ]  = {\rm E}\big [ n_{\rm Q}^2(t) \big ] = \sigma_n^2 \hspace{0.05cm},\hspace{1cm}{\rm E}\big  [ n(t) \cdot n^*(t) \big  ]\hspace{0.1cm}  =  \hspace{0.1cm}  {\rm E}\big [ n_{\rm I}^2(t) \big ] + {\rm E}\big [ n_{\rm Q}^2(t)\big  ] = 2\sigma_n^2 \hspace{0.05cm}.$$}}
  
  
Abschließend noch einige ''Bezeichnungsvarianten'' für Gaußsche Zufallsgrößen:
+
Finally, some&nbsp; '''denotation variants'''&nbsp; for Gaussian random variables:
  
:$$x ={\cal N}(\mu, \sigma^2) \hspace{-0.1cm}: \hspace{0.3cm}\text{reelle gaußverteilte Zufallsgröße, mit Mittelwert}\hspace{0.1cm}\mu \text                                          { und Varianz}\hspace{0.15cm}\sigma^2 \hspace{0.05cm},$$
+
:$$x ={\cal N}(\mu, \sigma^2) \hspace{-0.1cm}: \hspace{0.3cm}\text{real Gaussian distributed random variable, with mean}\hspace{0.1cm}\mu \text                                          { and variance}\hspace{0.15cm}\sigma^2 \hspace{0.05cm},$$
:$$y={\cal CN}(\mu, \sigma^2)\hspace{-0.1cm}: \hspace{0.12cm}\text{komplexe gaußverteilte Zufallsgröße} \hspace{0.05cm}.$$
+
:$$y={\cal CN}(\mu, \sigma^2)\hspace{-0.1cm}: \hspace{0.12cm}\text{complex Gaussian distributed random variable} \hspace{0.05cm}.$$
  
==  Aufgaben zum Kapitel==
+
==  Exercises for the chapter==
 
<br>
 
<br>
[[Aufgaben:4.4_Maximum–a–posteriori_und_Maximum–Likelihood|Aufgabe 4.4: Maximum–a–posteriori und Maximum–Likelihood]]
+
[[Aufgaben:Exercise_4.4:_Maximum–a–posteriori_and_Maximum–Likelihood|Exercise 4.4: Maximum–a–posteriori and Maximum–Likelihood]]
  
[[Aufgaben:4.5 Theorem der Irrelevanz|Aufgabe 4.5: Theorem der Irrelevanz]]
+
[[Aufgaben:Exercise_4.5:_Irrelevance_Theorem|Exercise 4.5: Irrelevance Theorem]]
  
 
{{Display}}
 
{{Display}}

Latest revision as of 16:18, 23 January 2023

Block diagram and prerequisites


In this chapter,  the structure of the optimal receiver of a digital transmission system is derived in very general terms,  whereby

  • the modulation process and further system details are not specified further,
General block diagram of a communication system


To the block diagram it is to be noted:

  • The symbol set size of the source is  $M$  and the source symbol set is  $\{m_i\}$  with  $i = 0$, ... , $M-1$. 
  • Let the corresponding source symbol probabilities  ${\rm Pr}(m = m_i)$  also be known to the receiver.
  • For the transmission,  $M$  different signal forms  $s_i(t)$  are available;  for the indexing variable shall be valid:   $i = 0$, ... , $M-1$ . 
  • There is a fixed relation between messages  $\{m_i\}$  and signals  $\{s_i(t)\}$.  If  $m =m_i$,  the transmitted signal is  $s(t) =s_i(t)$.
  • Linear channel distortions are taken into account in the above graph by the impulse response  $h(t)$.   In addition,  the noise term  $n(t)$  (of some kind)  is effective. 
  • With these two effects interfering with the transmission, the signal  $r(t)$  arriving at the receiver can be given in the following way:
$$r(t) = s(t) \star h(t) + n(t) \hspace{0.05cm}.$$
  • The task of the  $($optimal$)$  receiver is to find out on the basis of its input signal  $r(t)$,  which of the  $M$  possible messages  $m_i$  – or which of the signals  $s_i(t)$  – was sent. The estimated value for  $m$  found by the receiver is characterized by a  "circumflex"   ⇒   $\hat{m}$.


$\text{Definition:}$  One speaks of an  optimal receiver  if the symbol error probability assumes the smallest possible value for the boundary conditions:

$$p_{\rm S} = {\rm Pr} ({\cal E}) = {\rm Pr} ( \hat{m} \ne m) \hspace{0.15cm} \Rightarrow \hspace{0.15cm}{\rm minimum} \hspace{0.05cm}.$$


Notes:

  1. In the following,  we mostly assume the AWGN approach   ⇒   $r(t) = s(t) + n(t)$,  which means that  $h(t) = \delta(t)$  is assumed to be distortion-free.
  2. Otherwise,  we can redefine the signals  $s_i(t)$  as   ${s_i}'(t) = s_i(t) \star h(t)$,  i.e.,  impose the deterministic channel distortions on the transmitted signal.

Fundamental approach to optimal receiver design


Compared to the  "block diagram"  shown in the previous section, we now perform some essential generalizations:

Model for deriving the optimal receiver
  • The transmission channel is described by the  "conditional probability density function"  $p_{\hspace{0.02cm}r(t)\hspace{0.02cm} \vert \hspace{0.02cm}s(t)}$  which determines the dependence of the received signal  $r(t)$  on the transmitted signal  $s(t)$. 
  • If a certain signal  $r(t) = \rho(t)$  has been received,  the receiver has the task to determine the probability density functions based on this  "signal realization"   $\rho(t)$  and the  $M$  conditional probability density functions
$$p_{\hspace{0.05cm}r(t) \hspace{0.05cm} \vert \hspace{0.05cm} s(t) } (\rho(t) \hspace{0.05cm} \vert \hspace{0.05cm} s_i(t))\hspace{0.2cm}{\rm with}\hspace{0.2cm} i = 0, \text{...} \hspace{0.05cm}, M-1.$$
  • It is to be found out which message  $\hat{m}$  was transmitted most probably,  taking into account all possible transmitted signals  $s_i(t)$  and their occurrence probabilities  ${\rm Pr}(m = m_i)$.
  • Thus,  the estimate of the optimal receiver is determined in general by
$$\hat{m} = {\rm arg} \max_i \hspace{0.1cm} p_{\hspace{0.02cm}s(t) \hspace{0.05cm} \vert \hspace{0.05cm} r(t) } ( s_i(t) \hspace{0.05cm} \vert \hspace{0.05cm} \rho(t)) = {\rm arg} \max_i \hspace{0.1cm} p_{m \hspace{0.05cm} \vert \hspace{0.05cm} r(t) } ( \hspace{0.05cm}m_i\hspace{0.05cm} \vert \hspace{0.05cm}\rho(t))\hspace{0.05cm}.$$

$\text{In other words:}$  The optimal receiver considers as the most likely transmitted message  $\hat{m} \in \{m_i\}$  whose conditional probability density function  $p_{\hspace{0.02cm}m \hspace{0.05cm} \vert \hspace{0.05cm} r(t) }$  takes the largest possible value for the applied received signal  $\rho(t)$  and under the assumption  $m =\hat{m}$. 


Before we discuss the above decision rule in more detail,  the optimal receiver should still be divided into two functional blocks according to the diagram:

  • The  detector  takes various measurements on the received signal  $r(t)$  and summarizes them in the vector  $\boldsymbol{r}$.  With  $K$  measurements,  $\boldsymbol{r}$  corresponds to a point in the  $K$–dimensional vector space.
  • The  decision  forms the estimated value depending on this vector.  For a given vector  $\boldsymbol{r} = \boldsymbol{\rho}$  the decision rule is:
$$\hat{m} = {\rm arg}\hspace{0.05cm} \max_i \hspace{0.1cm} P_{m\hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{ r} } ( m_i\hspace{0.05cm} \vert \hspace{0.05cm}\boldsymbol{\rho}) \hspace{0.05cm}.$$

In contrast to the upper decision rule,  a conditional probability  $P_{m\hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{ r} }$  now occurs instead of the conditional probability density function  $\rm (PDF)$   $p_{m\hspace{0.05cm} \vert \hspace{0.05cm}r(t)}$.  Please note the upper and lower case for the different meanings.


$\text{Example 1:}$  We now consider the function  $y = {\rm arg}\hspace{0.05cm} \max \ p(x)$,  where  $p(x)$  describes the probability density function  $\rm (PDF)$  of a continuous-valued or discrete-valued random variable  $x$.  In the second case  (right graph),  the PDF consists of a sum of Dirac delta functions with the probabilities as pulse weights.

Illustration of the "arg max" function

⇒   The graphic shows exemplary functions.  In both cases the PDF maximum  $(17)$  is at  $x = 6$:

$$\max_i \hspace{0.1cm} p(x) = 17\hspace{0.05cm},$$
$$y = {\rm \hspace{0.05cm}arg} \max_i \hspace{0.1cm} p(x) = 6\hspace{0.05cm}.$$

⇒   The (conditional) probabilities in the equation

$$\hat{m} = {\rm arg}\hspace{0.05cm} \max_i \hspace{0.1cm} P_{\hspace{0.02cm}m\hspace{0.05cm} \vert \hspace{0.05cm}\boldsymbol{ r} } ( m_i \hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{\rho})$$

are  a-posteriori probabilities.   "Bayes' theorem"  can be used to write for this:

$$P_{\hspace{0.02cm}m\hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{ r} } ( m_i \hspace{0.05cm} \vert \hspace{0.05cm}\boldsymbol{\rho}) = \frac{ {\rm Pr}( m_i) \cdot p_{\boldsymbol{ r}\hspace{0.05cm} \vert \hspace{0.05cm}m } (\boldsymbol{\rho}\hspace{0.05cm} \vert \hspace{0.05cm}m_i )}{p_{\boldsymbol{ r} } (\boldsymbol{\rho})} \hspace{0.05cm}.$$


The denominator term   $p_{\boldsymbol{ r} }(\boldsymbol{\rho})$   is the same for all alternatives  $m_i$  and need not be considered for the decision.

This gives the following rules:

$\text{Theorem:}$  The decision rule of the optimal receiver,  also known as  maximum–a–posteriori receiver  $($in short:  MAP receiver$)$  is:

$$\hat{m}_{\rm MAP} = {\rm \hspace{0.05cm} arg} \max_i \hspace{0.1cm} P_{\hspace{0.02cm}m\hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{ r} } ( m_i \hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{\rho}) = {\rm \hspace{0.05cm}arg} \max_i \hspace{0.1cm} \big [ {\rm Pr}( m_i) \cdot p_{\boldsymbol{ r}\hspace{0.05cm} \vert \hspace{0.05cm} m } (\boldsymbol{\rho}\hspace{0.05cm} \vert \hspace{0.05cm} m_i )\big ]\hspace{0.05cm}.$$
  • The advantage of this equation is that the conditional PDF  $p_{\boldsymbol{ r}\hspace{0.05cm} \vert \hspace{0.05cm} m }$  $($"output under the condition input"$)$  describing the forward direction of the channel can be used.
  • In contrast,  the first equation uses the inference probabilities  $P_{\hspace{0.05cm}m\hspace{0.05cm} \vert \hspace{0.02cm} \boldsymbol{ r} } $  $($"input under the condition output"$)$.


$\text{Theorem:}$  A  maximum likelihood receiver  $($in short:  ML receiver$)$  uses the following decision rule:

$$\hat{m}_{\rm ML} = \hspace{-0.1cm} {\rm arg} \max_i \hspace{0.1cm} p_{\boldsymbol{ r}\hspace{0.05cm} \vert \hspace{0.05cm}m } (\boldsymbol{\rho}\hspace{0.05cm} \vert \hspace{0.05cm}m_i )\hspace{0.05cm}.$$
  • In this case,  the possibly different occurrence probabilities  ${\rm Pr}(m = m_i)$  are not used for the decision process.
  • For example,  because they are not known to the receiver.


See the earlier chapter  "Optimal Receiver Strategies"  for other derivations for these receiver types.

$\text{Conclusion:}$  For equally likely messages  $\{m_i\}$   ⇒   ${\rm Pr}(m = m_i) = 1/M$,  the generally slightly worse  "maximum likelihood receiver"  is equivalent to the  "maximum–a–posteriori receiver":

$$\hat{m}_{\rm MAP} = \hat{m}_{\rm ML} =\hspace{-0.1cm} {\rm\hspace{0.05cm} arg} \max_i \hspace{0.1cm} p_{\boldsymbol{ r}\hspace{0.05cm} \vert \hspace{0.05cm}m } (\boldsymbol{\rho}\hspace{0.05cm} \vert \hspace{0.05cm}m_i )\hspace{0.05cm}.$$


The irrelevance theorem


About the irrelevance theorem

Note that the receiver described in the last section is optimal only if the detector is implemented in the best possible way,  if no information is lost by the transition from the continuous signal  $r(t)$  to the vector  $\boldsymbol{r}$. 

To clarify the question which and how many measurements have to be performed on the received signal  $r(t)$  to guarantee optimality,  the  "irrelevance theorem"  is helpful.

  • For this purpose,  we consider the sketched receiver whose detector derives the two vectors  $\boldsymbol{r}_1$  and  $\boldsymbol{r}_2$  from the received signal  $r(t)$  and makes them available to the decision.
  • These quantities are related to the message  $ m \in \{m_i\}$  via the composite probability density  $p_{\boldsymbol{ r}_1, \hspace{0.05cm}\boldsymbol{ r}_2\hspace{0.05cm} \vert \hspace{0.05cm}m }$. 
  • The decision rule of the MAP receiver with adaptation to this example is:
$$\hat{m}_{\rm MAP} \hspace{-0.1cm} = \hspace{-0.1cm} {\rm arg} \max_i \hspace{0.1cm} \big [ {\rm Pr}( m_i) \cdot p_{\boldsymbol{ r}_1 , \hspace{0.05cm}\boldsymbol{ r}_2 \hspace{0.05cm} \vert \hspace{0.05cm}m } \hspace{0.05cm} (\boldsymbol{\rho}_1, \hspace{0.05cm}\boldsymbol{\rho}_2\hspace{0.05cm} \vert \hspace{0.05cm} m_i ) \big]= {\rm arg} \max_i \hspace{0.1cm}\big [ {\rm Pr}( m_i) \cdot p_{\boldsymbol{ r}_1 \hspace{0.05cm} \vert \hspace{0.05cm}m } \hspace{0.05cm} (\boldsymbol{\rho}_1 \hspace{0.05cm} \vert \hspace{0.05cm}m_i ) \cdot p_{\boldsymbol{ r}_2 \hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{ r}_1 , \hspace{0.05cm} m } \hspace{0.05cm} (\boldsymbol{\rho}_2\hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{\rho}_1 , \hspace{0.05cm}m_i )\big] \hspace{0.05cm}.$$

Here it is to be noted:

  • The vectors  $\boldsymbol{r}_1$  and  $\boldsymbol{r}_2$  are random variables.  Their realizations are denoted here and in the following by  $\boldsymbol{\rho}_1$  and  $\boldsymbol{\rho}_2$.  For emphasis,  all vectors are red inscribed in the graph.
  • The requirements for the application of the  "irrelevance theorem"  are the same as those for a first order  "Markov chain".  The random variables  $x$,  $y$,  $z$  then form a first order Markov chain if the distribution of  $z$  is independent of   $x$  for a given $y$.  The first order Markov chain is the following:
$$p(x,\ y,\ z) = p(x) \cdot p(y\hspace{0.05cm} \vert \hspace{0.05cm}x) \cdot p(z\hspace{0.05cm} \vert \hspace{0.05cm}y) \hspace{0.75cm} {\rm instead \hspace{0.15cm}of} \hspace{0.75cm}p(x, y, z) = p(x) \cdot p(y\hspace{0.05cm} \vert \hspace{0.05cm}x) \cdot p(z\hspace{0.05cm} \vert \hspace{0.05cm}x, y) \hspace{0.05cm}.$$
  • In the general case,  the optimal receiver must evaluate both vectors  $\boldsymbol{r}_1$  and  $\boldsymbol{r}_2$,  since both composite probability densities  $p_{\boldsymbol{ r}_1\hspace{0.05cm} \vert \hspace{0.05cm}m }$  and  $p_{\boldsymbol{ r}_2 \hspace{0.05cm} \vert \hspace{0.05cm}\boldsymbol{ r}_1, \hspace{0.05cm}m }$  occur in the above decision rule.  In contrast,  the receiver can neglect the second measurement without loss of information  if  $\boldsymbol{r}_2$  is independent of the message  $m$  for given  $\boldsymbol{r}_1$: 
$$p_{\boldsymbol{ r}_2\hspace{0.05cm} \vert \hspace{0.05cm}\boldsymbol{ r}_1 , \hspace{0.05cm} m } \hspace{0.05cm} (\boldsymbol{\rho}_2\hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{\rho}_1 , \hspace{0.05cm}m_i )= p_{\boldsymbol{ r}_2 \hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{ r}_1 } \hspace{0.05cm} (\boldsymbol{\rho}_2 \hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{\rho}_1 ) \hspace{0.05cm}.$$
  • In this case,  the decision rule can be further simplified:
$$\hat{m}_{\rm MAP} = {\rm arg} \max_i \hspace{0.1cm} \big [ {\rm Pr}( m_i) \cdot p_{\boldsymbol{ r}_1 \hspace{0.05cm} \vert \hspace{0.05cm}m } \hspace{0.05cm} (\boldsymbol{\rho}_1 \hspace{0.05cm} \vert \hspace{0.05cm}m_i ) \cdot p_{\boldsymbol{ r}_2 \hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{ r}_1 , \hspace{0.05cm} m } \hspace{0.05cm} (\boldsymbol{\rho}_2\hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{\rho}_1 , \hspace{0.05cm}m_i ) \big]$$
$$\Rightarrow \hspace{0.3cm}\hat{m}_{\rm MAP} = {\rm arg} \max_i \hspace{0.1cm} \big [ {\rm Pr}( m_i) \cdot p_{\boldsymbol{ r}_1 \hspace{0.05cm} \vert \hspace{0.05cm}m } \hspace{0.05cm} (\boldsymbol{\rho}_1 \hspace{0.05cm} \vert \hspace{0.05cm}m_i ) \cdot p_{\boldsymbol{ r}_2 \hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{ r}_1 } \hspace{0.05cm} (\boldsymbol{\rho}_2\hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{\rho}_1 )\big]$$
$$\Rightarrow \hspace{0.3cm}\hat{m}_{\rm MAP} = {\rm arg} \max_i \hspace{0.1cm} \big [ {\rm Pr}( m_i) \cdot p_{\boldsymbol{ r}_1 \hspace{0.05cm} \vert \hspace{0.05cm}m } \hspace{0.05cm} (\boldsymbol{\rho}_1 \hspace{0.05cm} \vert \hspace{0.05cm}m_i ) \big]\hspace{0.05cm}.$$
Two examples of the irrelevance theorem

$\text{Example 2:}$  We consider two different system configurations with two noise terms  $\boldsymbol{ n}_1$  and  $\boldsymbol{ n}_2$ each to illustrate the irrelevance theorem just presented.

  • In the diagram all vectorial quantities are red inscribed.
  • Moreover, red inscribed the quantities  $\boldsymbol{s}$,  $\boldsymbol{ n}_1$  and  $\boldsymbol{ n}_2$  are independent of each other.


The analysis of these two arrangements yields the following results:

  • In both cases,  the decision must consider the component  $\boldsymbol{ r}_1= \boldsymbol{ s}_i + \boldsymbol{ n}_1$,  since only this component provides the information about the possible transmitted signals  $\boldsymbol{ s}_i$  and thus about the message  $m_i$. 
  • In the upper configuration,   $\boldsymbol{ r}_2$  contains no information about  $m_i$ that has not already been provided by  $\boldsymbol{ r}_1$.  Rather,   $\boldsymbol{ r}_2= \boldsymbol{ r}_1 + \boldsymbol{ n}_2$  is just a noisy version of  $\boldsymbol{ r}_1$  and depends only on the noise  $\boldsymbol{ n}_2$  once  $\boldsymbol{ r}_1$  is known   ⇒   $\boldsymbol{ r}_2$  is irrelevant:
$$p_{\boldsymbol{ r}_2 \hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{ r}_1 , \hspace{0.05cm} m } \hspace{0.05cm} (\boldsymbol{\rho}_2\hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{\rho}_1 , \hspace{0.05cm}m_i )= p_{\boldsymbol{ r}_2\hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{ r}_1 } \hspace{0.05cm} (\boldsymbol{\rho}_2\hspace{0.05cm} \vert \hspace{0.05cm}\boldsymbol{\rho}_1 )= p_{\boldsymbol{ n}_2 } \hspace{0.05cm} (\boldsymbol{\rho}_2 - \boldsymbol{\rho}_1 )\hspace{0.05cm}.$$
  • In the lower configuration,  on the other hand,  $\boldsymbol{ r}_2= \boldsymbol{ n}_1 + \boldsymbol{ n}_2$  is helpful to the receiver,  since it provides it with an estimate of the noise term  $\boldsymbol{ n}_1$   ⇒   $\boldsymbol{ r}_2$ should therefore not be discarded here.
  • Formally, this result can be expressed as follows:
$$p_{\boldsymbol{ r}_2 \hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{ r}_1 , \hspace{0.05cm} m } \hspace{0.05cm} (\boldsymbol{\rho}_2\hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{\rho}_1 , \hspace{0.05cm}m_i ) = p_{\boldsymbol{ r}_2 \hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{ n}_1 , \hspace{0.05cm} m } \hspace{0.05cm} (\boldsymbol{\rho}_2 \hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{\rho}_1 - \boldsymbol{s}_i, \hspace{0.05cm}m_i)= p_{\boldsymbol{ n}_2 \hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{ n}_1 , \hspace{0.05cm} m } \hspace{0.05cm} (\boldsymbol{\rho}_2- \boldsymbol{\rho}_1 + \boldsymbol{s}_i \hspace{0.05cm} \vert \hspace{0.05cm} \boldsymbol{\rho}_1 - \boldsymbol{s}_i, \hspace{0.05cm}m_i) = p_{\boldsymbol{ n}_2 } \hspace{0.05cm} (\boldsymbol{\rho}_2- \boldsymbol{\rho}_1 + \boldsymbol{s}_i ) \hspace{0.05cm}.$$
  • Since the possible transmitted signal  $\boldsymbol{ s}_i$  now appears in the argument of this function,  $\boldsymbol{ r}_2$  is not irrelevant,  but quite relevant.


Some properties of the AWGN channel


In order to make further statements about the nature of the optimal measurements of the vector  $\boldsymbol{ r}$,  it is necessary to further specify the  (conditional)  probability density function  $p_{\hspace{0.02cm}r(t)\hspace{0.05cm} \vert \hspace{0.05cm}s(t)}$  characterizing the channel.  In the following,  we will consider communication over the  "AWGN channel",  whose most important properties are briefly summarized again here:

  • The output signal of the AWGN channel is  $r(t) = s(t)+n(t)$,  where   $s(t)$  indicates the transmitted signal and  $n(t)$  is represented by a Gaussian noise process.
  • A random process  $\{n(t)\}$  is said to be Gaussian if the elements of the  $k$–dimensional random variables  $\{n_1(t)\hspace{0.05cm} \text{...} \hspace{0.05cm}n_k(t)\}$  are  "jointly Gaussian".
  • The mean value of the AWGN noise is  ${\rm E}\big[n(t)\big] = 0$.  Moreover,  $n(t)$  is  "white",  which means that the  "power-spectral density"  $\rm (PSD)$  is constant for all frequencies  $($from  $-\infty$ to $+\infty)$:
$${\it \Phi}_n(f) = {N_0}/{2} \hspace{0.05cm}.$$
$${\varphi_n(\tau)} = {\rm E}\big [n(t) \cdot n(t+\tau)\big ] = {N_0}/{2} \cdot \delta(t)\hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm E}\big [n(t) \cdot n(t+\tau)\big ] = \left\{ \begin{array}{c} \rightarrow \infty \\ 0 \end{array} \right.\quad \begin{array}{*{1}c} {\rm f{or}} \hspace{0.15cm} \tau = 0 \hspace{0.05cm}, \\ {\rm f{or}} \hspace{0.15cm} \tau \ne 0 \hspace{0.05cm},\\ \end{array}$$
  • Here,  $N_0$  indicates the physical noise power density  $($defined only for  $f \ge 0)$.  The constant PSD value  $(N_0/2)$  and the weight of the Dirac delta function in the ACF  $($also  $N_0/2)$  result from the two-sided approach alone.

⇒   More information on this topic is provided by the  (German language)  learning video  "The AWGN channel"  in part two.

Description of the AWGN channel by orthonormal basis functions


From the penultimate statement in the last section,  we see that

  • pure AWGN noise  $n(t)$  always has infinite variance  (power):   $\sigma_n^2 \to \infty$,
  • consequently,  in reality only filtered noise  $n\hspace{0.05cm}'(t) = n(t) \star h_n(t)$  can occur.

With the impulse response  $h_n(t)$  and the  frequency response $H_n(f) = {\rm F}\big [h_n(t)\big ]$,  the following equations hold:

$${\rm E}\big[n\hspace{0.05cm}'(t) \big] \hspace{0.15cm} = \hspace{0.2cm} {\rm E}\big[n(t) \big] = 0 \hspace{0.05cm},$$
$${\it \Phi_{n\hspace{0.05cm}'}(f)} \hspace{0.1cm} = \hspace{0.1cm} {N_0}/{2} \cdot |H_{n}(f)|^2 \hspace{0.05cm},$$
$$ {\it \varphi_{n\hspace{0.05cm}'}(\tau)} \hspace{0.1cm} = \hspace{0.1cm} {N_0}/{2}\hspace{0.1cm} \cdot \big [h_{n}(\tau) \star h_{n}(-\tau)\big ]\hspace{0.05cm},$$
$$\sigma_n^2 \hspace{0.1cm} = \hspace{0.1cm} { \varphi_{n\hspace{0.05cm}'}(\tau = 0)} = {N_0}/{2} \cdot \int_{-\infty}^{+\infty}h_n^2(t)\,{\rm d} t ={N_0}/{2}\hspace{0.1cm} \cdot < \hspace{-0.1cm}h_n(t), \hspace{0.1cm} h_n(t) \hspace{-0.05cm} > \hspace{0.1cm} $$
$$\Rightarrow \hspace{0.3cm} \sigma_n^2 \hspace{0.1cm} = \int_{-\infty}^{+\infty}{\it \Phi}_{n\hspace{0.05cm}'}(f)\,{\rm d} f = {N_0}/{2} \cdot \int_{-\infty}^{+\infty}|H_n(f)|^2\,{\rm d} f \hspace{0.05cm}.$$

In the following,  $n(t)$  always implicitly includes a  "band limitation";  thus,  the notation  $n'(t)$  will be omitted in the future.

$\text{Please note:}$  Similar to the transmitted signal  $s(t)$,  the noise process  $\{n(t)\}$  can be written as a weighted sum of orthonormal basis functions  $\varphi_j(t)$. 

  • In contrast to  $s(t)$,  however,  a restriction to a finite number of basis functions is not possible.
  • Rather,  for purely stochastic quantities,  the following always holds for the corresponding signal representation
$$n(t) = \lim_{N \rightarrow \infty} \sum\limits_{j = 1}^{N}n_j \cdot \varphi_j(t) \hspace{0.05cm},$$
where the coefficient  $n_j$  is determined by the projection of  $n(t)$  onto the basis function  $\varphi_j(t)$: 
$$n_j = \hspace{0.1cm} < \hspace{-0.1cm}n(t), \hspace{0.1cm} \varphi_j(t) \hspace{-0.05cm} > \hspace{0.05cm}.$$


Note:   To avoid confusion with the basis functions  $\varphi_j(t)$,  we will in the following express the auto-correlation function  $\rm (ACF)$   $\varphi_n(\tau)$  of the noise process only as the expected value 

$${\rm E}\big [n(t) \cdot n(t + \tau)\big ] \equiv \varphi_n(\tau) .$$

Optimal receiver for the AWGN channel


Optimal receiver at the AWGN channel

The received signal  $r(t) = s(t) + n(t)$  can also be decomposed into basis functions in a well-known way: $$r(t) = \sum\limits_{j = 1}^{\infty}r_j \cdot \varphi_j(t) \hspace{0.05cm}.$$

To be considered:

  • The  $M$  possible transmitted signals  $\{s_i(t)\}$  span a signal space with a total of  $N$  basis functions  $\varphi_1(t)$, ... , $\varphi_N(t)$.
  • These  $N$  basis functions  $\varphi_j(t)$  are used simultaneously to describe the noise signal  $n(t)$  and the received signal  $r(t)$. 
  • For a complete characterization of  $n(t)$  or  $r(t)$,  however,  an infinite number of further basis functions  $\varphi_{N+1}(t)$,  $\varphi_{N+2}(t)$,  ... are needed.


Thus,  the coefficients of the received signal  $r(t)$  are obtained according to the following equation,  taking into account that the signals  $s_i(t)$  and the noise  $n(t)$  are independent of each other:

$$r_j \hspace{0.1cm} = \hspace{0.1cm} \hspace{0.1cm} < \hspace{-0.1cm}r(t), \hspace{0.1cm} \varphi_j(t) \hspace{-0.05cm} > \hspace{0.1cm}=\hspace{0.1cm} \left\{ \begin{array}{c} < \hspace{-0.1cm}s_i(t), \hspace{0.1cm} \varphi_j(t) \hspace{-0.05cm} > + < \hspace{-0.1cm}n(t), \hspace{0.1cm} \varphi_j(t) \hspace{-0.05cm} > \hspace{0.1cm}= s_{ij}+ n_j\\ < \hspace{-0.1cm}n(t), \hspace{0.1cm} \varphi_j(t) \hspace{-0.05cm} > \hspace{0.1cm} = n_j \end{array} \right.\quad \begin{array}{*{1}c} {j = 1, 2, \hspace{0.05cm}\text{...}\hspace{0.05cm} \hspace{0.05cm}, N} \hspace{0.05cm}, \\ {j > N} \hspace{0.05cm}.\\ \end{array}$$

Thus,  the structure sketched above results for the optimal receiver.

Let us first consider the  AWGN channel.  Here,  the prefilter with the frequency response  $W(f)$,  which is intended for colored noise,  can be dispensed with.

  1. The detector of the optimal receiver forms the coefficients  $r_j \hspace{0.1cm} = \hspace{0.1cm} \hspace{0.1cm} < \hspace{-0.1cm}r(t), \hspace{0.1cm} \varphi_j(t)\hspace{-0.05cm} >$  and passes them on to the decision.
  2. If the decision is based on all  $($i.e., infinitely many$)$  coefficients  $r_j$,  the probability of a wrong decision is minimal and the receiver is optimal.
  3. The real-valued coefficients  $r_j$  were calculated as follows:
$$r_j = \left\{ \begin{array}{c} s_{ij} + n_j\\ n_j \end{array} \right.\quad \begin{array}{*{1}c} {j = 1, 2, \hspace{0.05cm}\text{...}\hspace{0.05cm}, N} \hspace{0.05cm}, \\ {j > N} \hspace{0.05cm}.\\ \end{array}$$

According to the  "irrelevance theorem"  it can be shown that for additive white Gaussian noise

  • the optimality is not lowered if the coefficients  $r_{N+1}$,  $r_{N+2}$,  ... ,  that do not depend on the message  $(s_{ij})$,  are not included in the decision process,  and therefore
  • the detector has to form only the projections of the received signal  $r(t)$  onto the  $N$  basis functions  $\varphi_{1}(t)$, ... , $\varphi_{N}(t)$  given by the useful signal  $s(t)$. 


In the graph this significant simplification is indicated by the gray background.

In the case of  colored noise   ⇒   power-spectral density  ${\it \Phi}_n(f) \ne {\rm const.}$,  only an additional prefilter with the amplitude response  $|W(f)| = {1}/{\sqrt{\it \Phi}_n(f)}$  is required. 

  1. This filter is called  "whitening filter",  because the noise power-spectral density at the output is constant again   ⇒   "white".
  2. More details can be found in the chapter  "Matched filter for colored interference"  of the book  "Stochastic Signal Theory".

Implementation aspects


Essential components of the optimal receiver are the calculations of the inner products according to the equations   $r_j \hspace{0.1cm} = \hspace{0.1cm} \hspace{0.1cm} < \hspace{-0.1cm}r(t), \hspace{0.1cm} \varphi_j(t) \hspace{-0.05cm} >$. 

$\text{These can be implemented in several ways:}$ 

  • In the  correlation receiver  $($see the  "chapter of the same name" for more details on this implementation$)$,  the inner products are realized directly according to the definition with analog multipliers and integrators:
$$r_j = \int_{-\infty}^{+\infty}r(t) \cdot \varphi_j(t) \,{\rm d} t \hspace{0.05cm}.$$
  • The  matched filter receiver,  already derived in the chapter  "Optimal Binary Receiver"  at the beginning of this book,  achieves the same result using a linear filter with impulse response  $h_j(t) = \varphi_j(t) \cdot (T-t)$  followed by sampling at time  $t = T$: 
$$r_j = \int_{-\infty}^{+\infty}r(\tau) \cdot h_j(t-\tau) \,{\rm d} \tau = \int_{-\infty}^{+\infty}r(\tau) \cdot \varphi_j(T-t+\tau) \,{\rm d} \tau \hspace{0.3cm} \Rightarrow \hspace{0.3cm} r_j (t = \tau) = \int_{-\infty}^{+\infty}r(\tau) \cdot \varphi_j(\tau) \,{\rm d} \tau = r_j \hspace{0.05cm}.$$
Three different implementations of the inner product




The figure shows the two possible realizations
of the optimal detector.


Probability density function of the received values


Before we turn to the optimal design of the decision maker and the calculation and approximation of the error probability in the following chapter, we first perform a statistical analysis of the decision variables  $r_j$  valid for the AWGN channel.

Signal space constellation  (left)  and PDF of the received signal  (right)

For this purpose,  we consider again the optimal binary receiver for bipolar baseband transmission over the AWGN channel,  starting from the description form valid for the fourth main chapter.

With the parameters  $N = 1$  and  $M = 2$,  the signal space constellation shown in the left graph is obtained for the transmitted signal

  • with only one basis function  $\varphi_1(t)$,  because of  $N = 1$,
  • with the two signal space points  $s_i \in \{s_0, \hspace{0.05cm}s_1\}$,  because of  $M = 2$.


For the signal  $r(t) = s(t) + n(t)$  at the AWGN channel output,  the noise-free case   ⇒   $r(t) = s(t)$  yields exactly the same constellation;  The signal space points are at

$$r_0 = s_0 = \sqrt{E}\hspace{0.05cm},\hspace{0.2cm}r_1 = s_1 = -\sqrt{E}\hspace{0.05cm}.$$

Considering the (band-limited) AWGN noise  $n(t)$, 

  • Gaussian curves with variance  $\sigma_n^2$  ⇒  standard deviation   $\sigma_n$  are superimposed on each of the two points   $r_0$  and  $r_1$  $($see right sketch$)$.
  • The probability density function  $\rm (PDF)$  of the noise component  $n(t)$  is thereby:
$$p_n(n) = \frac{1}{\sqrt{2\pi} \cdot \sigma_n}\cdot {\rm e}^{ - {n^2}/(2 \sigma_n^2)}\hspace{0.05cm}.$$

The following expression is then obtained for the conditional probability density that the received value  $\rho$  is present when  $s_i$  has been transmitted:

$$p_{\hspace{0.02cm}r\hspace{0.05cm}|\hspace{0.05cm}s}(\rho\hspace{0.05cm}|\hspace{0.05cm}s_i) = \frac{1}{\sqrt{2\pi} \cdot \sigma_n}\cdot {\rm e}^{ - {(\rho - s_i)^2}/(2 \sigma_n^2)} \hspace{0.05cm}.$$

Regarding the units of the quantities listed here, we note:

  • $r_0 = s_0$  and  $r_1 = s_1$  as well as  $n$  are each scalars with the unit  "root of energy".
  • Thus,  it is obvious that  $\sigma_n$  also has the unit  "root of energy"  and  $\sigma_n^2$  represents energy.
  • For the AWGN channel,  the noise variance is   $\sigma_n^2 = N_0/2$,   so this is also a physical quantity with unit  "$\rm W/Hz \equiv Ws$".

The topic addressed here is illustrated by examples in  "Exercise 4.6"

N-dimensional Gaussian noise


If an  $N$–dimensional modulation process is present,  i.e.,  with  $0 \le i \le M–1$  and  $1 \le j \le N$:

$$s_i(t) = \sum\limits_{j = 1}^{N} s_{ij} \cdot \varphi_j(t) = s_{i1} \cdot \varphi_1(t) + s_{i2} \cdot \varphi_2(t) + \hspace{0.05cm}\text{...}\hspace{0.05cm} + s_{iN} \cdot \varphi_N(t)\hspace{0.05cm}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \boldsymbol{ s}_i = \left(s_{i1}, s_{i2}, \hspace{0.05cm}\text{...}\hspace{0.05cm}, s_{iN}\right ) \hspace{0.05cm},$$

then the noise vector  $\boldsymbol{ n}$  must also be assumed to have dimension  $N$.  The same is true for the received vector  $\boldsymbol{ r}$:

$$\boldsymbol{ n} = \left(n_{1}, n_{2}, \hspace{0.05cm}\text{...}\hspace{0.05cm}, n_{N}\right ) \hspace{0.01cm},$$
$$\boldsymbol{ r} = \left(r_{1}, r_{2}, \hspace{0.05cm}\text{...}\hspace{0.05cm}, r_{N}\right )\hspace{0.05cm}.$$

The probability density function  $\rm (PDF)$  for the AWGN channel is with the realization  $\boldsymbol{ \eta}$  of the noise signal

$$p_{\boldsymbol{ n}}(\boldsymbol{ \eta}) = \frac{1}{\left( \sqrt{2\pi} \cdot \sigma_n \right)^N } \cdot {\rm exp} \left [ - \frac{|| \boldsymbol{ \eta} ||^2}{2 \sigma_n^2}\right ]\hspace{0.05cm},$$

and for the conditional PDF in the maximum likelihood decision rule:

$$p_{\hspace{0.02cm}\boldsymbol{ r}\hspace{0.05cm} | \hspace{0.05cm} \boldsymbol{ s}}(\boldsymbol{ \rho} \hspace{0.05cm}|\hspace{0.05cm} \boldsymbol{ s}_i) \hspace{-0.1cm} = \hspace{0.1cm} p_{\hspace{0.02cm} \boldsymbol{ n}\hspace{0.05cm} | \hspace{0.05cm} \boldsymbol{ s}}(\boldsymbol{ \rho} - \boldsymbol{ s}_i \hspace{0.05cm} | \hspace{0.05cm} \boldsymbol{ s}_i) = \frac{1}{\left( \sqrt{2\pi} \cdot \sigma_n \right)^2 } \cdot {\rm exp} \left [ - \frac{|| \boldsymbol{ \rho} - \boldsymbol{ s}_i ||^2}{2 \sigma_n^2}\right ]\hspace{0.05cm}.$$

The equation follows

  • from the general representation of the  $N$–dimensional Gaussian PDF in the section  "correlation matrix"  of the book  "Theory of Stochastic Signals"
  • under the assumption that the components are uncorrelated  (and thus statistically independent).
  • $||\boldsymbol{ \eta}||$  is called the  "norm"  (length)  of the vector  $\boldsymbol{ \eta}$.


$\text{Example 3:}$  Shown on the right is the two-dimensional Gaussian probability density function  $p_{\boldsymbol{ n} } (\boldsymbol{ \eta})$  of the two-dimensional random variable  $\boldsymbol{ n} = (n_1,\hspace{0.05cm}n_2)$.  Arbitrary realizations of the random variable  $\boldsymbol{ n}$  are denoted by  $\boldsymbol{ \eta} = (\eta_1,\hspace{0.05cm}\eta_2)$.  The equation of the represented two-dimensional  "Gaussian bell curve"  is:

Two-dimensional Gaussian PDF
$$p_{n_1, n_2}(\eta_1, \eta_2) = \frac{1}{\left( \sqrt{2\pi} \cdot \sigma_n \right)^2 } \cdot {\rm exp} \left [ - \frac{ \eta_1^2 + \eta_2^2}{2 \sigma_n^2}\right ]\hspace{0.05cm}. $$
  • The maximum of this function is at  $\eta_1 = \eta_2 = 0$  and has the value  $2\pi \cdot \sigma_n^2$.  With  $\sigma_n^2 = N_0/2$,  the two-dimensional PDF in vector form can also be written as follows:
$$p_{\boldsymbol{ n} }(\boldsymbol{ \eta}) = \frac{1}{\pi \cdot N_0 } \cdot {\rm exp} \left [ - \frac{\vert \vert \boldsymbol{ \eta} \vert \vert ^2}{N_0}\right ]\hspace{0.05cm}.$$
  • This rotationally symmetric PDF is suitable e.g. for describing/investigating a  "two-dimensional modulation process"  such as  "M–QAM""M–PSK"  or  "2–FSK".
  • However,  two-dimensional real random variables are often represented in a one-dimensional complex way,  usually in the form  $n(t) = n_{\rm I}(t) + {\rm j} \cdot n_{\rm Q}(t)$.  The two components are then called the  "in-phase component"  $n_{\rm I}(t)$  and the  "quadrature component"  $n_{\rm Q}(t)$  of the noise.
  • The probability density function depends only on the magnitude  $\vert n(t) \vert$  of the noise variable and not on angle  ${\rm arc} \ n(t)$.  This means:   complex noise is circularly symmetric  $($see graph$)$.
  • Circularly symmetric also means that the in-phase component  $n_{\rm I}(t)$  and the quadrature component  $n_{\rm Q}(t)$  have the same distribution and thus also the same variance  $($and standard deviation$)$:
$$ {\rm E} \big [ n_{\rm I}^2(t)\big ] = {\rm E}\big [ n_{\rm Q}^2(t) \big ] = \sigma_n^2 \hspace{0.05cm},\hspace{1cm}{\rm E}\big [ n(t) \cdot n^*(t) \big ]\hspace{0.1cm} = \hspace{0.1cm} {\rm E}\big [ n_{\rm I}^2(t) \big ] + {\rm E}\big [ n_{\rm Q}^2(t)\big ] = 2\sigma_n^2 \hspace{0.05cm}.$$


Finally, some  denotation variants  for Gaussian random variables:

$$x ={\cal N}(\mu, \sigma^2) \hspace{-0.1cm}: \hspace{0.3cm}\text{real Gaussian distributed random variable, with mean}\hspace{0.1cm}\mu \text { and variance}\hspace{0.15cm}\sigma^2 \hspace{0.05cm},$$
$$y={\cal CN}(\mu, \sigma^2)\hspace{-0.1cm}: \hspace{0.12cm}\text{complex Gaussian distributed random variable} \hspace{0.05cm}.$$

Exercises for the chapter


Exercise 4.4: Maximum–a–posteriori and Maximum–Likelihood

Exercise 4.5: Irrelevance Theorem