Difference between revisions of "Linear and Time Invariant Systems"

From LNTwww
(Die Seite wurde neu angelegt: „ {{Header |Untermenü= |Vorherige Seite= |Nächste Seite= }} ==Buchübersicht== Das zweite Buch Lineare zeitinvariante Systeme der Reihe „LNTwww” beschrei…“)
 
 
(113 intermediate revisions by 8 users not shown)
Line 1: Line 1:
   
+
===Brief summary===
{{Header
+
 
|Untermenü=
+
{{BlaueBox|TEXT=Based on the book  [[Signaldarstellung|»Signal Representation«]],  here it is described how to mathematically capture the influence of a filter on deterministic signals.
|Vorherige Seite=
+
# System theory analyses a quadripole  $($»system«$)$  using  »cause«   ⇒   $[$input   $ X(f)\ \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,\ x(t)]$  and  »effect«   ⇒   $[$output  $ Y(f)\ \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,\, y( t )]$. 
|Nächste Seite=
+
# Indicator in frequency domain is the  »frequency response«  $ H(f)=Y(f)/X(f)$,  in time domain the  »impulse response»  $ h(t)$,  where  $ y(t)=x(t)\star h(t)$.
 +
# System distortions   ⇒   $ y(t)\ne K \cdot x(t - \tau)$;  distortion-free system:  output and input differ only by attenuation/gain and/or delay time.
 +
# Linear distortions $($possibly reversible$)$   ⇒   $ Y(f)=X(f)\cdot H(f)$;   non-linear distortions   ⇒   emergence of new frequencies  $($irreversible distortions$)$.
 +
# Peculiarities of causal systems &nbsp; &rArr; &nbsp; $ h(t<0)\equiv 0$;&nbsp; Hilbert transform,&nbsp; Laplace transform; inverse Laplace  transform &nbsp; &rArr; &nbsp; residue theorem.
 +
#Some results of line transmission theory;&nbsp; coaxial cable systems &nbsp; &rArr; &nbsp; "white noise";&nbsp; copper twisted pairs &nbsp; &rArr; &nbsp; dominant is&nbsp; "near-end crosstalk".
 +
 
 +
 
 +
The filter influence on a random signal is only dealt with in the last chapter of the book &nbsp;[[Theory_of_Stochastic_Signals|&raquo;Theory of Stochastic Signals&laquo;]].
 +
 
 +
&rArr; &nbsp; First the&nbsp; &raquo;'''content overview'''&laquo;&nbsp; on the basis of the&nbsp; &raquo;'''four main chapters'''&laquo;&nbsp; with a total of&nbsp; &raquo;'''twelve individual chapters'''&laquo;&nbsp; and&nbsp; &raquo;'''93 sections'''&laquo;.}}
 +
 
 +
 
 +
 
 +
===Contents===
 +
{{Collapsible-Kopf}}
 +
{{Collapse1| header= Basics of System Theory
 +
| submenu=
 +
*[[/System Description in Frequency Domain/]]
 +
*[[/System Description in Time Domain/]]
 +
*[[/Some Low-Pass Functions in Systems Theory/]]
 +
}}
 +
{{Collapse2 | header=Signal Distortion and Equalization
 +
|submenu=
 +
*[[/Classification of the Distortions/]]
 +
*[[/Nonlinear Distortions/]]
 +
*[[/Linear Distortions/]]
 +
}}
 +
{{Collapse3 | header=Description of Causal  Realizable Systems
 +
|submenu=
 +
*[[/Conclusions from the Allocation Theorem/]]
 +
*[[/Laplace Transform and p-Transfer Function/]]
 +
*[[/Inverse Laplace Transform/]]
 +
}}
 +
{{Collapse4 | header=Properties of Electrical Cables
 +
|submenu=
 +
*[[/Some Results from Line Transmission Theory/]]
 +
*[[/Properties of Coaxial Cables/]]
 +
*[[/Properties of Balanced Copper Pairs/]]
 
}}
 
}}
==Buchübersicht==
+
{{Collapsible-Fuß}}
Das zweite Buch Lineare zeitinvariante Systeme der Reihe „LNTwww” beschreibt, wie der Einfluss eines Filters auf ein deterministisches Signal mathematisch erfasst werden kann. Der Filtereinfluss auf ein Zufallssignal wird erst später im Kapitel 5 des Buches „Stochastische Signaltheorie” behandelt. Die Beschreibung baut auf dem Buch „Signaldarstellung” auf; dieses sollte vorher bearbeitet worden sein.
+
 
Der Lehrstoff entspricht einer Vorlesung mit zwei Semesterwochenstunden (SWS) und einer weiteren SWS mit Übungen. Es beinhaltet 95 Theorieseiten mit vielen Gleichungen, Herleitungen und Beispielen, 147 Grafiken, sechs Lernvideos und acht Interaktionsmodule, des Weiteren noch 54 Aufgaben mit insgesamt 250 Teilaufgaben.
+
===Exercises and multimedia===
 +
 
 +
{{BlaueBox|TEXT=
 +
In addition to these theory pages,&nbsp; we also offer exercises and multimedia modules on this topic,&nbsp; which could help to clarify the teaching material:
 +
 
 +
$(1)$&nbsp; &nbsp; [https://en.lntwww.de/Category:Linear_and_Time-Invariant_Systems:_Exercises  $\text{Exercises}$]
 +
 
 +
$(2)$&nbsp; &nbsp; [[LNTwww:Learning_Videos_to_Linear_and_Time_Invariant_Systems|$\text{Learning videos}$]]
 +
 
 +
$(3)$&nbsp; &nbsp; [[LNTwww:LNTwww:Applets_to_"Linear_and_Time_Invariant_Systems"|$\text{Applets}$]]}}
 +
 
  
 +
===Further links===
  
 +
{{BlaueBox|TEXT=
 +
$(4)$&nbsp; &nbsp; [[LNTwww:Bibliography_to_"Linear_and_Time_Invariant_Systems"|$\text{Bibliography}$]]
  
 +
$(5)$&nbsp; &nbsp; [[LNTwww:Imprint_for_the_book_"Linear_and_Time_Invariant_Systems"|$\text{Impressum}$]] }}
 +
<br><br>
  
  
  
 
{{Display}}
 
{{Display}}

Latest revision as of 17:38, 1 November 2023

Brief summary

Based on the book  »Signal Representation«,  here it is described how to mathematically capture the influence of a filter on deterministic signals.

  1. System theory analyses a quadripole  $($»system«$)$  using  »cause«   ⇒   $[$input   $ X(f)\ \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,\ x(t)]$  and  »effect«   ⇒   $[$output  $ Y(f)\ \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\,\, y( t )]$.
  2. Indicator in frequency domain is the  »frequency response«  $ H(f)=Y(f)/X(f)$,  in time domain the  »impulse response»  $ h(t)$,  where  $ y(t)=x(t)\star h(t)$.
  3. System distortions   ⇒   $ y(t)\ne K \cdot x(t - \tau)$;  distortion-free system:  output and input differ only by attenuation/gain and/or delay time.
  4. Linear distortions $($possibly reversible$)$   ⇒   $ Y(f)=X(f)\cdot H(f)$;   non-linear distortions   ⇒   emergence of new frequencies  $($irreversible distortions$)$.
  5. Peculiarities of causal systems   ⇒   $ h(t<0)\equiv 0$;  Hilbert transform,  Laplace transform; inverse Laplace transform   ⇒   residue theorem.
  6. Some results of line transmission theory;  coaxial cable systems   ⇒   "white noise";  copper twisted pairs   ⇒   dominant is  "near-end crosstalk".


The filter influence on a random signal is only dealt with in the last chapter of the book  »Theory of Stochastic Signals«.

⇒   First the  »content overview«  on the basis of the  »four main chapters«  with a total of  »twelve individual chapters«  and  »93 sections«.


Contents

Exercises and multimedia

In addition to these theory pages,  we also offer exercises and multimedia modules on this topic,  which could help to clarify the teaching material:

$(1)$    $\text{Exercises}$

$(2)$    $\text{Learning videos}$

$(3)$    $\text{Applets}$


Further links