Difference between revisions of "Digital Signal Transmission/Carrier Frequency Systems with Coherent Demodulation"

From LNTwww
 
(82 intermediate revisions by 7 users not shown)
Line 1: Line 1:
 
   
 
   
 
{{Header
 
{{Header
|Untermenü=Verallgemeinerte Beschreibung digitaler Modulationsverfahren
+
|Untermenü=Generalized Description of Digital Modulation Methods
 
|Vorherige Seite=Approximation der Fehlerwahrscheinlichkeit
 
|Vorherige Seite=Approximation der Fehlerwahrscheinlichkeit
 
|Nächste Seite=Trägerfrequenzsysteme mit nichtkohärenter Demodulation
 
|Nächste Seite=Trägerfrequenzsysteme mit nichtkohärenter Demodulation
 
}}
 
}}
  
== Signalraumdarstellung der linearen Modulation (1) ==
+
== Signal space representation of linear modulation ==
 
<br>
 
<br>
Im bisherigen Kapitel 4 wurde die Struktur des optimalen Empfängers und die Signaldarstellung mittels Basisfunktionen am Beispiel der Basisbandübertragung behandelt. Mit der gleichen Systematik und der gleichen Einheitlichkeit sollen nun auch Bandpass&ndash;Systeme betrachtet werden, die bereits in früheren Büchern bzw. Kapiteln beschrieben wurden, nämlich
+
In the first three chapters of this&nbsp; [[Digital_Signal_Transmission|fourth main chapter:]] &nbsp; "Generalized Description of Digital Modulation Methods",&nbsp; the structure of the optimal receiver and the signal representation by means of basis functions were treated by the example of baseband transmission.
*im Kapitel 4 des Buches &bdquo;Modulationsverfahren&rdquo;,<br>
 
  
*im Kapitel 1.5 des vorliegenden Buches.<br><br>
+
[[File:EN_Dig_T_4_4_S1_v2.png|right|frame|Equivalent low-pass model of carrier-modulated transmission methods|class=fit]]
  
Dabei beschränken wir uns im Kapitel 4.4 auf
+
With the same systematics and the same uniformity,&nbsp; band&ndash;pass systems will now also be considered which have already been described in earlier books or chapters,&nbsp; namely
*&nbsp;lineare Modulationsverfahren, und<br>
+
*in the main chapter 4:&nbsp; "Digital Modulation Methods"&nbsp; of the book&nbsp; [[Modulationsverfahren|"Modulation Methods"]],<br>
*&nbsp;kohärente Demodulation<br><br>
 
  
Das bedeutet, dass am Empfänger das beim Sender zugesetzte Trägersignal hinsichtlich Frequenz und Phase exakt bekannt sein muss.<br>
+
*in the chapter&nbsp; [[Digital_Signal_Transmission/Lineare_digitale_Modulation_–_Kohärente_Demodulation|"Linear Digital Modulation - Coherent Demodulation"]]&nbsp; of the present book.<br><br>
  
In diesem Fall kann das gesamte Übertragungssystem im [http://en.lntwww.de/Modulationsverfahren/Quadratur%E2%80%93Amplitudenmodulation#Systembeschreibung_durch_das_.C3.A4quivalente_TP.E2.80.93Signal äquivalenten Tiefpassbereich] beschrieben werden und der Zusammenhang zur Basisbandübertragung ist noch offensichtlicher zu erkennen als bei Betrachtung der Bandpass&ndash;Signale. Es ergibt sich somit das folgende Modell, das auf der nächsten Seite im Detail beschrieben wird.<br>
+
In the following,&nbsp; we restrict ourselves to&nbsp; '''linear modulation methods'''&nbsp; and&nbsp; '''coherent demodulation'''.&nbsp; This means that&nbsp; "the receiver must know exactly the frequency and phase of the carrier signal added to the transmitter".&nbsp;  
  
[[File:P ID2051 Dig T 4 4 S1 version2.png|Äquivalentes Tiefpassmodell trägermodulierter Übertragungsverfahren|class=fit]]<br>
+
In the following chapter&nbsp; [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Non-Coherent_Demodulation|"Carrier Frequency Systems with Non-Coherent Demodulation"]]&nbsp; are discussed.
  
Die Beschreibung der nichtlinearen Modulationsverfahren und der nichtkohärenten Demodulation folgt im Kapitel 4.5.
+
In the case of coherent demodulation,&nbsp; the entire transmission system can be described in the&nbsp; [[Modulation_Methods/Quadrature_Amplitude_Modulation#System_description_using_the_equivalent_low-pass_signal| "equivalent low-pass domain"]],&nbsp; and the relationship to baseband transmission is even more obvious than when band-pass signals are considered.
  
== Signalraumdarstellung der linearen Modulation (2) ==
+
This results in the sketched model.&nbsp; Complex quantities are marked by a yellow filled double arrow.&nbsp; It should be noted with regard to this graph: <br>  
<br>
+
*From the incoming bit stream&nbsp; $\langle q_k \rangle \in \{\rm 0, \ L \}$,&nbsp; &nbsp; $b$&nbsp; data bits each are converted serially/parallel.&nbsp; These output bits result in the message&nbsp; $m \in \{m_0, \hspace{0.05cm}\text{...} \hspace{0.05cm}, m_{M-1} \}$,&nbsp; where&nbsp; $M = 2^b$&nbsp; indicates the level number.&nbsp; For the following,&nbsp; the message&nbsp; $m = m_i$&nbsp; is assumed.<br>
Zum [http://en.lntwww.de/index.php?title=Digitalsignal%C3%BCbertragung/Tr%C3%A4gerfrequenzsysteme_mit_koh%C3%A4renter_Demodulation&action=submit#Signalraumdarstellung_der_linearen_Modulation_.281.29 Übertragungsmodell] der letzten Seite ist Folgendes zu bemerken:
 
*Aus dem ankommenden Bitstrom &#9001;<i>q<sub>k</sub></i>&#9002; &#8712; {0, L} werden je <i>b</i> Datenbits seriell/parallel gewandelt. Diese Ausgangsbits ergeben die Nachricht <i>m</i> &#8712; {<i>m</i><sub>0</sub>, ..., <i>m</i><sub><i>M</i>&ndash;1</sub>}, wobei <i>M</i> = 2<sup><i>b</i></sup> die Stufenzahl angibt. Für das Folgende wird die Nachricht <i>m</i> = <i>m<sub>i</sub></i> vorausgesetzt.<br>
 
  
*In der Signalraumzuordnung wird jeder Nachricht <i>m<sub>i</sub></i> ein komplexer Amplitudenkoeffizient <i>a<sub>i</sub></i> = <i>a</i><sub>I</sub><sub><i>i</i></sub> + <i>j</i> &middot; <i>a</i><sub>Q</sub><sub><i>i</i></sub> zugeordnet, dessen Realteil die Inphasekomponente und dessen Imaginärteil die Quadraturkomponente des späteren Sendesignals formen wird.<br>
+
*In the &nbsp;'''signal space allocation''', &nbsp; a complex amplitude coefficient&nbsp; $a_i = a_{{\rm I}i} + {\rm j} \cdot a_{{\rm Q}i}$&nbsp; is assigned to each message&nbsp; $m_i$,&nbsp; whose real part will form the&nbsp; "in-phase component"&nbsp; and whose imaginary part will form the&nbsp; "quadrature component"&nbsp; of the later transmitted signal.<br>
 
 
*Am Ausgang des blau markierten Blockes Erzeugung des TP&ndash;Signals liegt das (im allgemeinen) komplexwertige Tiefpass&ndash;Signal
 
  
 +
*At the output of the blue marked block &nbsp; '''generation of the low-pass signal''' &nbsp; the (in general) complex-valued&nbsp; [[Signal_Representation/Equivalent_Low-Pass_Signal_and_its_Spectral_Function|"equivalent low-pass signal"]]&nbsp; is present,&nbsp; where&nbsp; $g_s(t)$&nbsp; shall be limited for the time being to the range&nbsp; $ 0 \le t \le T$&nbsp; just like&nbsp; $s_{\rm TP}(t)$.&nbsp; The index&nbsp; $i$&nbsp; again provides an indication of the message&nbsp; $m_i$ sent:
 
::<math>s_{\rm TP}(t) \big {|}_{m \hspace{0.05cm}= \hspace{0.05cm} m_i} = a_i \cdot g_s(t) = a_{{\rm I}i} \cdot g_s(t) + {\rm j} \cdot a_{{\rm Q}i} \cdot g_s(t)</math>
 
::<math>s_{\rm TP}(t) \big {|}_{m \hspace{0.05cm}= \hspace{0.05cm} m_i} = a_i \cdot g_s(t) = a_{{\rm I}i} \cdot g_s(t) + {\rm j} \cdot a_{{\rm Q}i} \cdot g_s(t)</math>
 +
*By energy normalization one gets from the basic transmission pulse&nbsp; $g_s(t)$&nbsp; to the basis function
  
:vor, wobei <i>g<sub>s</sub></i>(<i>t</i>) vorerst ebenso wie <i>s</i><sub>TP</sub>(<i>t</i>) auf den Bereich 0 &#8804; <i>t</i> < <i>T</i> beschränkt sein soll und der Index <i>i</i> wiederum einen Hinweis auf die gesendete Nachricht <i>m<sub>i</sub></i> liefert.<br>
+
:$$\varphi_1(t) = { g_s(t)}/{\sqrt{E_{gs}}} \hspace{0.4cm} {\rm with} \hspace{0.4cm} E_{gs} =
 +
\int_{0}^{T} g_s(t)^2 \,{\rm d} t$$
 +
:$$ \hspace{0.3cm}
 +
\Rightarrow \hspace{0.3cm} s_{\rm TP}(t) \big {|}_{m\hspace{0.05cm} =\hspace{0.05cm} m_i} = s_{{\rm I}i} \cdot \varphi_1(t) + s_{{\rm Q}i}  \cdot {\rm j} \cdot \varphi_1(t)
 +
\hspace{0.05cm}.$$
  
*Durch Energienormierung kommt man vom Sendegrundimpuls <i>g<sub>s</sub></i>(<i>t</i>) zur Basisfunktion
+
*While the coefficients &nbsp; $a_{{\rm I}i}$ &nbsp; and &nbsp; $a_{{\rm Q}i}$ &nbsp; are dimensionless,&nbsp; the new coefficients &nbsp; $s_{{\rm I}i}$ &nbsp; and &nbsp; $s_{{\rm Q}i}$ &nbsp; have the unit&nbsp; "root of energy" &nbsp; &rArr; &nbsp; see section&nbsp; [[Digital_Signal_Transmission/Signals,_Basis_Functions_and_Vector_Spaces#Nomenclature_in_the_fourth_chapter|"Nomenclature in the fourth main chapter"]]:
  
::<math>\varphi_1(t) = { g_s(t)}/{\sqrt{E_{gs}}} \hspace{0.4cm} {\rm mit} \hspace{0.4cm} E_{gs} =  
+
:$$s_{{\rm I}i} = {\sqrt{E_{gs}}} \cdot a_{{\rm I}i}\hspace{0.05cm}, $$
\int_{0}^{T} g_s(t)^2 \,{\rm d} t  </math>
+
:$$ s_{{\rm Q}i} = {\sqrt{E_{gs}}} \cdot a_{{\rm Q}i}\hspace{0.05cm}. $$
  
::<math>\Rightarrow \hspace{0.3cm} s_{\rm TP}(t) \big {|}_{m\hspace{0.05cm} =\hspace{0.05cm} m_i} = s_{{\rm I}i} \cdot \varphi_1(t) + s_{{\rm Q}i}  \cdot {\rm j} \cdot \varphi_1(t)
+
*The equations show that the system considered here is completely described in the equivalent low-pass&nbsp; $($German:&nbsp; "Tiefpass" &nbsp; &rArr; &nbsp; "TP"$)$&nbsp; domain by one real basis function&nbsp; $\varphi_1(t)$&nbsp; and one purely imaginary basis function&nbsp; $\psi_1(t) = {\rm j} \cdot \varphi_1(t)$&nbsp; each,&nbsp; or by a single complex basis function&nbsp; $\xi_1(t)$.&nbsp;<br>
\hspace{0.05cm}.</math>
 
  
*Während die Koeffizienten <i>a</i><sub>I</sub><sub><i>i</i></sub> und <i>a</i><sub>Q</sub><sub><i>i</i></sub> dimensionslos sind, weisen die neuen Koeffizienten <i>s</i><sub>I</sub><sub><i>i</i></sub> und <i>s</i><sub>Q</sub><sub><i>i</i></sub> die Einheit &bdquo;Wurzel aus Energie&rdquo; auf &ndash; siehe auch Kapitel 4.1:
+
*The gray shaded part shows the model for generating the band-pass signal&nbsp; $s_{\rm BP}(t)$,&nbsp; first the generation of the&nbsp; [[Signal_Representation/Analytical_Signal_and_Its_Spectral_Function|"analytical signal"]]&nbsp; $s_{\rm +}(t) = s_{\rm TP}(t) \cdot {\rm e}^{{\rm j}2\pi \cdot f_{\rm T} \cdot T}$&nbsp; and then the real part formation.<br>
  
::<math>s_{{\rm I}i} = {\sqrt{E_{gs}}} \cdot a_{{\rm I}i}\hspace{0.05cm}, \hspace{0.2cm} s_{{\rm Q}i} = {\sqrt{E_{gs}}} \cdot a_{{\rm Q}i}\hspace{0.05cm}. </math>
+
*The two basis functions of the band-pass signal&nbsp; $s_{\rm BP}(t)$&nbsp; result here as energy-normalized and time-limited to the range &nbsp; $0 \le t \le T$ &nbsp; cosine and minus-sine oscillations, respectively.<br><br>
  
*Die obere Gleichung zeigt weiter, dass das hier betrachtete System im äquivalenten TP&ndash;Bereich durch je eine reelle Basisfunktion <i>&phi;</i><sub>1</sub>(<i>t</i>) und eine rein imaginäre Basisfunktion <i>&psi;</i><sub>1</sub>(<i>t</i>) = j &middot; <i>&phi;</i><sub>1</sub>(<i>t</i>) oder durch eine einzige komplexe Basisfunktion <i>&xi;</i><sub>1</sub>(<i>t</i>) vollständig beschrieben wird.<br>
 
  
*Der grau hinterlegte Teil des Blockschaltbildes zeigt das Modell zur Erzeugung des BP&ndash;Signals <i>s</i><sub>BP</sub>(<i>t</i>), zuerst die Multiplikation des TP&ndash;Signals <i>s</i><sub>TP</sub>(<i>t</i>) mit dem komplexen Drehzeiger exp(j2&pi;<i>f</i><sub>T</sub><i>t</i>) &ndash; auf diese Weise ergibt sich das analytische Signal <i>s</i><sub>+</sub>(<i>t</i>) &ndash; und anschließend die Realteilbildung.<br>
+
== Coherent demodulation and optimal receiver ==
 +
<br>
 +
In the following,&nbsp; we always assume the equivalent low-pass signal unless explicitly stated otherwise.&nbsp; In particular,&nbsp; the signals&nbsp;
 +
[[File:EN_Dig_T_4_4_S2_v2.png|right|frame|AWGN channel model for complex signals|class=fit]]
 +
   
 +
*$s(t) = s_{\rm TP}(t)$&nbsp; and&nbsp;
 +
 +
*$r(t) = r_{\rm TP}(t)$&nbsp;  
  
*Die beiden Basisfunktionen des Bandpass&ndash;Signals <i>s</i><sub>BP</sub>(<i>t</i>) ergeben sich hier als energienormierte und auf den Bereich 0 &#8804; <i>t</i> &#8804; <i>T</i> zeitbegrenzte Cosinus&ndash; bzw. Minus&ndash;Sinus&ndash;Schwingungen.<br><br>
 
  
Im Folgenden beschränken wir uns aber auf die Darstellung des äquivalenten Tiefpass&ndash;Signals <i>s</i><sub>TP</sub>(<i>t</i>).<br><br>
+
in the graph are&nbsp; "low-pass signals"&nbsp; and thus generally complex.&nbsp; The suffix&nbsp; "TP"&nbsp; is omitted in the remainder of this paper .<br>
<b>Hinweis:</b> Im skizzierten Modell sind komplexe Größen durch einen gelb gefüllten Doppelpfeil markiert. Diese Vereinbarung soll auch für alle nachfolgenden Grafiken gelten.<br>
 
  
== Kohärente Demodulation und optimaler Empfänger ==
+
To this figure is to be noted:
<br>
+
*The phase delay of the channel&nbsp; $($i.e. a phase function increasing linearly with frequency$)$&nbsp; is expressed in the low-pass range by the time-independent rotation factor &nbsp; ${\rm e}^{{\rm j}\hspace{0.05cm} \phi}$.&nbsp; <br>
Im Folgenden gehen wir stets vom äquivalenten Tiefpass&ndash;Signalen aus, wenn nicht ausdrücklich etwas anderes angegeben ist. Insbesondere stellen die Signale <i>s</i>(<i>t</i>) und <i>r</i>(<i>t</i>) in der Grafik Tiefpass&ndash;Signale und sind somit im Allgemeinen komplex. Auf den Zusatz &bdquo;TP&rdquo; wird im Weiteren verzichtet.<br>
 
  
[[File:P ID2053 Dig T 4 4 S2 version1.png|AWGN–Kanalmodell für komplexe Signale|class=fit]]<br>
+
*The signal&nbsp; $n\hspace{0.05cm}'(t)$&nbsp; describes a complex white Gaussian random process in the low-pass domain,&nbsp; as given in the section&nbsp; [[Digital_Signal_Transmission/Structure_of_the_Optimal_Receiver#N-dimensional_Gaussian_noise|"N-dimensional Gaussian noise"]].&nbsp; The apostrophe was added in order to be able to work with&nbsp; $n(t)$&nbsp; later in the overall system.<br>
  
Zu dieser Abbildung ist zu bemerken:
+
*The receiver knows the channel phase &nbsp;  $\phi$ &nbsp; and corrects it by the conjugate-complex rotation factor&nbsp; ${\rm e}^{-{\rm j}\hspace{0.05cm}\phi}$.&nbsp; Thus,&nbsp; the received signal in the equivalent low-pass range is:
*Die Phasenlaufzeit des Kanals (also eine mit der Frequenz linear ansteigende Phasenfunktion) wird im Tiefpassbereich durch den zeitunabhängigen Drehfaktor exp(j<i>&#981;</i>) ausgedrückt.<br>
 
  
*Das Signal <i>n</i>'(<i>t</i>) beschreibt einen komplexen weißen Gaußschen Zufallsprozess im TP&ndash;Bereich, wie im [http://en.lntwww.de/Digitalsignal%C3%BCbertragung/Struktur_des_optimalen_Empf%C3%A4ngers#N.E2.80.93dimensionales_Gau.C3.9Fsches_Rauschen_.281.29 Kapitel 4.2] angegeben. Das Hochkomma wurde angefügt, um später beim Gesamtsystem mit <i>n</i>(<i>t</i>) arbeiten zu können.<br>
+
::<math>r(t) = s(t) + n\hspace{0.05cm}'(t) \cdot {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.05cm}\phi}= s(t) + n(t) \hspace{0.05cm}.</math>
  
*Der Empfänger kennt die Kanalphase <i>&#981;</i> und korrigiert diese durch den konjugiert&ndash;komplexen Drehfaktor exp(&ndash;j<i>&#981;</i>). Damit lautet das Empfangssignal im äquivalenten Tiefpassbereich:
+
*The phase rotation does not change the properties of the circular symmetric noise &nbsp; &rArr; &nbsp; $n(t) = n\hspace{0.05cm}'(t) \cdot {\rm e}^{-{\rm j}\hspace{0.05cm}\phi}$&nbsp; has exactly the same statistical properties as&nbsp; $n\hspace{0.05cm}'(t)$.&nbsp; The left graphic in the figure above illustrates the facts just described.
 +
:#The right graph shows the overall system as used for the rest of the fourth main chapter.
 +
:#The AWGN channel is followed by an optimal receiver according to the section&nbsp; [[Digital_Signal_Transmission/Structure_of_the_Optimal_Receiver#N-dimensional_Gaussian_noise|"N-dimensional Gaussian noise"]].  
  
::<math>r(t) = s(t) + n'(t) \cdot {\rm e}^{\hspace{0.05cm}{\rm j}\phi}= s(t) + n(t) \hspace{0.05cm}.</math>
 
  
*Durch die Phasendrehung ändert sich an den Eigenschaften des zirkular symmetrischen Rauschens nichts. Das heißt, <i>n</i>(<i>t</i>) = <i>n</i>'(<i>t</i>) &middot; exp(&ndash;j<i>&#981;</i>) hat genau gleiche statistische Eigenschaften wie <i>n</i>'(<i>t</i>).<br><br>
+
{{BlaueBox|TEXT=
 +
$\text{Definition:}$&nbsp; A &nbsp;'''symbol error'''&nbsp; occurs whenever &nbsp;$\hat{m}$&nbsp; does not match the sent message &nbsp;$m$:
 +
::<math>m = m_i \hspace{0.2cm} \cap \hspace{0.2cm} \hat{m} \ne m_i  \hspace{0.05cm}.</math>}}
  
Die linke Grafik im obigen Bild verdeutlicht die soeben beschriebenen Sachverhalte. Die rechte Grafik zeigt das Gesamtsystem, wie es für den Rest von Kapitel 4 verwendet wird. Nach dem AWGN&ndash;Kanal folgt ein optimaler Empfänger gemäß Kapitel 4.2. Ein Symbolfehler kann wie folgt beschrieben werden:
+
== On–off keying  (2–ASK) ==
 +
<br>
 +
The simplest digital modulation method is&nbsp; "On&ndash;off keying"&nbsp; $\rm (OOK)$,&nbsp; which has already been described in detail in the book&nbsp; [[Modulation_Methods/Linear_Digital_Modulation#ASK_.E2.80.93_Amplitude_Shift_Keying|"Modulation Methods"]]&nbsp; on the basis of its band-pass signals.&nbsp; There,&nbsp; this method was partly also called&nbsp; "Amplitude Shift Keying"&nbsp; $\rm (2&ndash;ASK)$.<br>
  
:<math>m = m_i \hspace{0.2cm} \cap \hspace{0.2cm} \hat{m} \ne m_i  \hspace{0.05cm}.</math>
+
[[File:EN_Dig_T_4_4_S3.png|right|frame|Signal space constellations for on-off keying|class=fit]]
  
== On–Off–Keying bzw. 2–ASK ==
+
This method can be characterized as follows:
<br>
+
*OOK is a one-dimensional modulation method&nbsp; $(N = 1)$&nbsp; with&nbsp; $s_{{\rm I}i} = \{0, E^{1/2}\}$&nbsp; <u>and</u> &nbsp;$s_{{\rm Q}i} \equiv 0$&nbsp; or &nbsp;$s_{{\rm I}i} \equiv 0$&nbsp; <u>and</u> &nbsp;$s_{{\rm Q}i} = \{0, -E^{1/2}\}$.&nbsp; As an abbreviation,&nbsp; $E = E_{g_s}$.
Das einfachste digitale Modulationsverfahren ist <i>On&ndash;Off&ndash;Keying</i> (OOK), das bereits im [http://en.lntwww.de/Modulationsverfahren/Lineare_digitale_Modulationsverfahren#ASK_.E2.80.93_Amplitude_Shift_Keying Kapitel 4.2] des Buches &bdquo;Modulationsverfahren&rdquo; anhand seiner Bandpass&ndash;Signale ausführlich beschrieben wurde. Dort wurde dieses Verfahren teilweise auch <i>Amplitude Shift Keying</i> (ASK) genannt.<br>
+
 
 +
*The first combination describes a cosinusoidal carrier signal,&nbsp; the second combination a sinusoidal carrier.<br>
  
[[File:P ID2054 Dig T 4 4 S3 version1.png|Signalraumkonstellationen für OOK|class=fit]]<br>
+
*Each bit is assigned to a binary symbol&nbsp; $(b = 1, \ M = 2)$; thus,&nbsp; no serial/parallel converter is needed.  
  
Dieses Verfahren kann wie folgt charakterisiert werden:
+
*For equally probable symbols,&nbsp; which is assumed for what follows,&nbsp; both the&nbsp; "mean energy per symbol"&nbsp; $(E_{\rm S})$&nbsp; and the&nbsp; "mean energy per bit"&nbsp; $(E_{\rm B})$&nbsp; are equal to&nbsp; $E/2$.<br>
*OOK ist ein eindimensionales Modulationsverfahren (<i>N</i> = 1) mit <i>s</i><sub>I</sub><sub><i>i</i></sub> &#8712; {0, <i>E</i><sup>1/2</sup>} und <i>s</i><sub>Q</sub><sub><i>i</i></sub> = 0 bzw. <i>s</i><sub>I</sub><sub><i>i</i></sub> = 0 und <i>s</i><sub>Q</sub><sub><i>i</i></sub> &#8712; {0, &ndash;<i>E</i><sup>1/2</sup>}. Abkürzend gilt <i>E</i> = <i>E</i><sub><i>gs</i></sub>. Die erste Kombination beschreibt ein cosinusförmiges Trägersignal, die zweite Kombination einen sinusförmigen Träger.<br>
 
  
*Jedes Bit wird einem Binärsymbol zugeordnet (<i>b</i> = 1, <i>M</i> = 2); man benötigt keinen S/P&ndash;Wandler. Bei gleichwahrscheinlichen Symbolen, was für das Folgende stets vorausgesetzt wird, ist sowohl die <i>mittlere Energie pro Symbol</i> (<i>E</i><sub>S</sub>) als auch die <i>mittlere Energie pro Bit</i> (<i>E</i><sub>B</sub>) gleich <i>E</i>/2.<br>
+
*The optimal OOK receiver virtually projects the complex&ndash;valued received signal&nbsp; $r(t)$&nbsp; onto the basis function&nbsp; $\varphi_1(t)$,&nbsp; if one starts from the left sketch&nbsp; (cosine carrier).<br>
  
*Der optimale OOK&ndash;Empfänger projiziert quasi das komplexwertige Empfangssignal <i>r</i>(<i>t</i>) auf die Basisfunktion <i>&phi;</i><sub>1</sub>(<i>t</i>), wenn man von der linken Skizze (Cosinusträger) ausgeht.<br>
+
*Because of&nbsp; $N = 1$,&nbsp; the noise can be one-dimensional with the variance&nbsp; $\sigma_n^2 = N_0/2$.&nbsp;
  
*Wegen <i>N</i> = 1 kann das Rauschen eindimensional angesetzt werden mit der Varianz <i>&sigma;<sub>n</sub></i><sup>2</sup> = <i>N</i><sub>0</sub>/2. Mit den Aussagen von [http://en.lntwww.de/Digitalsignal%C3%BCbertragung/Approximation_der_Fehlerwahrscheinlichkeit#Gleichwahrscheinliche_Bin.C3.A4rsymbole_.E2.80.93_Fehlerwahrscheinlichkeit_.283.29 Kapitel 4.3] erhält man für die mittlere <i>Symbolfehlerwahrscheinlichkeit</i>:
+
*Using the statements in the section&nbsp; [[Digital_Signal_Transmission/Approximation_of_the_Error_Probability#Error_probability_for_symbols_with_equal_probability|"Error probability for symbols with equal probability"]],&nbsp; we obtain for the (mean)&nbsp; "symbol error probability":
  
 
::<math>p_{\rm S} = {\rm Pr}({\cal{E}}) = {\rm Q} \left ( \frac{d/2}{\sigma_n}\right ) =  {\rm Q} \left ( \sqrt{\frac{E}{2 N_0}}\right )
 
::<math>p_{\rm S} = {\rm Pr}({\cal{E}}) = {\rm Q} \left ( \frac{d/2}{\sigma_n}\right ) =  {\rm Q} \left ( \sqrt{\frac{E}{2 N_0}}\right )
 
  =  {\rm Q} \left ( \sqrt{{E_{\rm S}}/{N_0}}\right ) \hspace{0.05cm}.</math>
 
  =  {\rm Q} \left ( \sqrt{{E_{\rm S}}/{N_0}}\right ) \hspace{0.05cm}.</math>
  
*Da jedes Bit genau auf ein Symbol abgebildet wird, ist die mittlere Bitfehlerwahrscheinlichkeit <i>p</i><sub>B</sub> genau so groß:
+
*Since each bit is mapped to one symbol,&nbsp; the average bit error probability&nbsp; $p_{\rm B}$&nbsp; is exactly:
  
 
::<math>p_{\rm B}   
 
::<math>p_{\rm B}   
 
  =  {\rm Q} \left ( \sqrt{{E_{\rm S}}/{N_0}}\right ) =  {\rm Q} \left ( \sqrt{{E_{\rm B}}/{N_0}}\right ) \hspace{0.05cm}.</math>
 
  =  {\rm Q} \left ( \sqrt{{E_{\rm S}}/{N_0}}\right ) =  {\rm Q} \left ( \sqrt{{E_{\rm B}}/{N_0}}\right ) \hspace{0.05cm}.</math>
  
== Binary Phase Shift Keying (BPSK) ==
+
== Binary phase shift keying  (BPSK) ==
 
<br>
 
<br>
Das sehr oft angewandte Verfahren <i>Binary Phase Shift Keying</i> (BPSK), das bereits im [http://en.lntwww.de/Modulationsverfahren/Lineare_digitale_Modulationsverfahren#BPSK_.E2.80.93_Binary_Phase_Shift_Keying Kapitel 4.2] des Buches &bdquo;Modulationsverfahren&rdquo; anhand der Bandpass&ndash;Signale (typisch: Phasensprünge) ausführlich beschrieben wurde, unterscheidet sich von <i>On&ndash;Off&ndash;Keying</i> durch eine konstante Hüllkurve.<br>
+
The very often used method&nbsp; "Binary Phase Shift Keying"&nbsp; $\rm (BPSK)$,&nbsp; which was already described in detail in the chapter&nbsp; [[Modulation_Methods/Linear_Digital_Modulation#BPSK_.E2.80.93_Binary_Phase_Shift_Keying|"Linear Digital Modulation"]]&nbsp; of the book "Modulation Methods"&nbsp; using the band&ndash;pass signals&nbsp; $($typical: &nbsp; phase jumps$)$,&nbsp; differs from&nbsp; "On&ndash;off keying"&nbsp; by a constant envelope.<br>
  
Für die Signalraumpunkte gilt stets <b><i>s</i></b><sub>1</sub> = &ndash; <b><i>s</i></b><sub>0</sub>. Sie lauten beispielsweise:
+
For the signal space points,&nbsp; $\boldsymbol{s}_1 = -\boldsymbol{s}_0$ always holds.&nbsp; For example:
*<i>s</i><sub>I</sub><sub><i>i</i></sub> &#8712; {&plusmn; <i>E</i><sup>1/2</sup>}, <i>s</i><sub>Q</sub><sub><i>i</i></sub> = 0 bei cosinusförmigem Träger,<br>
+
*with cosine carrier: &nbsp; $s_{{\rm I}i} = \{\pm E^{1/2}\}$&nbsp; and&nbsp; $s_{{\rm Q}i} \equiv 0$,&nbsp; <br>
*<i>s</i><sub>Q</sub><sub><i>i</i></sub> &#8712; {&plusmn; <i>E</i><sup>1/2</sup>}, <i>s</i><sub>I</sub><sub><i>i</i></sub> = 0 bei sinusförmigem Träger.<br><br>
 
  
[[File:P ID2055 Dig T 4 4 S4 version1.png|Signalraumkonstellationen der BPSK|class=fit]]<br>
+
*with sinusoidal carrier: &nbsp; $s_{{\rm I}i} \equiv 0$&nbsp; and&nbsp; $s_{{\rm Q}i} = \{\pm E^{1/2}\}$.
  
Anhand der in der Grafik angegebenen Gleichungen (grün hinterlegtes Feld) erkennt man die folgenden Verbesserungen gegenüber On&ndash;Off&ndash;Keying (OOK):
+
[[File:EN_Dig_T_4_4_S4_v2.png|right|frame|Signal space constellations of the BPSK|class=fit]]
*Bei gegebener Normierungsenergie <i>E</i> ist der Abstand zwischen  <b><i>s</i></b><sub>1</sub> und  <b><i>s</i></b><sub>0</sub> doppelt so groß. Damit erhält man für die Fehlerwahrscheinlichkeit:
 
  
:<math>p_{\rm S} = {\rm Pr}({\cal{E}}) = {\rm Q} \left ( \frac{d/2}{\sigma_n}\right ) =  {\rm Q} \left ( \sqrt{{2 E}/{N_0}}\right )
+
The improvements compared to on&ndash;off keying can be seen from the equations given in the graphic&nbsp; $($in the field with green background$)$:
 +
*For a given normalization energy&nbsp; $E$,&nbsp; the distance between&nbsp;  $\boldsymbol{s}_0$&nbsp; and&nbsp;  $\boldsymbol{s}_1$&nbsp; is twice as large as with OOK.
 +
 
 +
* This gives the error probability (both related to symbols and bits):
 +
::<math>p_{\rm S} = p_{\rm B} = {\rm Pr}({\cal{E}}) =  {\rm Q} \left ( \sqrt{{2 E}/{N_0}}\right )
 
  =  {\rm Q} \left ( \sqrt{{2  E_{\rm S}}/{N_0}}\right ) \hspace{0.05cm}.</math>
 
  =  {\rm Q} \left ( \sqrt{{2  E_{\rm S}}/{N_0}}\right ) \hspace{0.05cm}.</math>
  
*In dieser Gleichung ist ebenfalls berücksichtigt, dass nun <i>E</i><sub>S</sub> = <i>E</i><sub>B</sub> = <i>E</i> gilt, das heißt, dass nun die mittleren Energien pro Symbol bzw. pro Bit doppelt so groß sind als bei OOK.<br>
+
*Now&nbsp; $E_{\rm S} = E_{\rm B} = E$&nbsp; applies,&nbsp; which means that the average energies per symbol or per bit are now twice as large as with OOK.<br>
  
*Die BPSK&ndash;Fehlerwahrscheinlichkeit ist durch den Faktor 2 unter der Wurzel im Argument der Q&ndash;Funktion merklich geringer als bei On&ndash;Off&ndash;Keying, wenn <i>E</i><sub>S</sub> und <i>N</i><sub>0</sub> nicht verändert werden.<br>
+
*Because of factor&nbsp; $2$&nbsp; in the square root in Q-function's argument,&nbsp; the BPSK error probability is noticeably lower than OOK with same &nbsp; $E_{\rm S}$&nbsp; and&nbsp; $N_0$.<br>
  
*Anders ausgedrückt: BPSK benötigt bei gleichem <i>N</i><sub>0</sub> nur die halbe Symbolenergie <i>E</i><sub>S</sub>, um die gleiche Fehlerwahrscheinlichkeit wie OOK zu erzielen. Der logarithmische Gewinn beträgt 3 dB.<br>
+
*In other words: &nbsp; With the same&nbsp; $N_0$,&nbsp; BPSK only requires half the symbol energy&nbsp; $E_{\rm S}$&nbsp; in order to achieve the same error probability as OOK.&nbsp; The logarithmic gain is&nbsp; $3 \ \rm dB$.<br>
  
== M–stufiges Amplitude Shift Keying (M–ASK) ==
+
== M–level amplitude shift keying  (M–ASK) ==
 
<br>
 
<br>
In Analogie zur <i>M</i>&ndash;stufigen Basisbandübertragung betrachten wir nun eine <i>M</i>&ndash;stufige ASK, dessen Tiefpass&ndash;Signalraumkonstellation für die Parameter <i>b</i> = 3 &#8658; <i>M</i> = 8 &nbsp;&#8658;&nbsp; 8&ndash;ASK wie folgt aussieht.<br>
+
In analogy to&nbsp; [[Digital_Signal_Transmission/Redundancy-Free_Coding#Error_probability_of_a_multilevel_system| "M&ndash;level baseband transmission"]],&nbsp; we now consider&nbsp; "M&ndash;level Amplitude Shift Keying"&nbsp;  $\text{(M&ndash;ASK)}$,&nbsp; whose low-pass signal space constellation for the parameters&nbsp; $b = 3$  &nbsp; &#8658; &nbsp; $M = 8$ &nbsp; &#8658; &nbsp; "$\text{8&ndash;ASK}$"&nbsp; looks as follows.<br>
  
[[File:P ID2056 Dig T 4 4 S5 version3.png|Signalraumkonstellation der 8-ASK|class=fit]]<br>
+
The name &nbsp;"M&ndash;ASK"&nbsp; is not entirely accurate.&nbsp; Rather,&nbsp; it is a&nbsp; "combined ASK/PSK method",&nbsp; since e.g.
 +
*the two innermost signal space points&nbsp; $(\pm 1)$&nbsp; do not differ in terms of amplitude&nbsp; ("envelope"),
 +
*but only in terms of phase&nbsp; $(0^\circ$ or $180^\circ)$.
 +
[[File:EN_Dig_T_4_4_S5.png|right|frame|Signal room constellation of the 8-ASK|class=fit]]  
  
Der Name <i>M</i>&ndash;ASK ist nicht ganz zutreffend. Vielmehr handelt es sich um ein <i>kombiniertes ASK/PSK&ndash;Verfahren</i>, da sich zum Beispiel die beiden innersten Signalraumpunkte (&plusmn;1) nicht in der Amplitude (Hüllkurve) unterscheiden, sondern nur durch die Phase (0&deg; bzw. 180&deg;). Weiter ist anzumerken:
 
*Die <i>mittlere Energie pro Symbol</i> kann für dieses eindimensionale Verfahren unter Ausnutzung der Symmetrie wie folgt berechnet werden:
 
  
 +
It should also be noted:
 +
*The&nbsp;  "average energy per symbol"&nbsp; can be calculated as follows for this one-dimensional modulation method using symmetry:
 
::<math>E_{\rm S} = \frac{2}{M} \cdot \sum_{k = 1}^{M/2} (2k -1)^2 \cdot E =  \frac{M^2 -1}{3} \cdot E \hspace{0.05cm}.</math>
 
::<math>E_{\rm S} = \frac{2}{M} \cdot \sum_{k = 1}^{M/2} (2k -1)^2 \cdot E =  \frac{M^2 -1}{3} \cdot E \hspace{0.05cm}.</math>
  
*Da jedes der <i>M</i> Symbole <i>b</i> = log<sub>2</sub> (<i>M</i>) Bit darstellt, erhält man für die <i>mittlere Energie pro Bit</i>:
+
*Since each of the&nbsp; $M$&nbsp; symbols represents&nbsp; $b = \log_2  (M)$&nbsp; bits,&nbsp; the&nbsp; "average energy per bit"&nbsp; is:
 +
:$$E_{\rm B} = \frac{E_{\rm S}}{b} =  \frac{E_{\rm S}}{{\rm log_2}\, (M)} =\frac{M^2 -1}{3 \cdot {\rm log_2}\, (M)} \cdot E$$
 +
:$$\Rightarrow\hspace{0.3cm}M= 8\hspace{-0.1cm}: \hspace{0.2cm} E_{\rm S}/E = 21
 +
\hspace{0.05cm}, \hspace{0.2cm}E_{\rm B}/E = 7\hspace{0.05cm}.$$
  
::<math>E_{\rm B} = \frac{E_{\rm S}}{b} =  \frac{E_{\rm S}}{{\rm log_2}\, (M)} =\frac{M^2 -1}{3 \cdot {\rm log_2}\, (M)} \cdot E
+
*The probability that one of the two outer symbols is falsified due to AWGN noise is therefore the same:
\hspace{0.3cm}\Rightarrow\hspace{0.3cm}M= 8\hspace{-0.1cm}: E_{\rm S}/E = 21
+
::<math>{\rm Pr}({\cal{E}} \hspace{0.05cm}|\hspace{0.05cm} \text{outer symbol)} =  {\rm Q} \left ( \sqrt{{2 E}/{N_0}}\right )\hspace{0.05cm}.</math>
\hspace{0.05cm}, \hspace{0.1cm}E_{\rm B}/E = 7\hspace{0.05cm}.</math>
 
 
 
*Die Wahrscheinlichkeit, dass eines der beiden äußeren Symbole aufgrund von AWGN&ndash;Rauschen verfälscht wird, ist gleich
 
 
 
::<math>{\rm Pr}({\cal{E}} \hspace{0.05cm}|\hspace{0.05cm} {\rm \ddot{a}usseres\hspace{0.15cm} Symbol}) =  {\rm Q} \left ( \sqrt{{2 E}/{N_0}}\right )\hspace{0.05cm}.</math>
 
 
 
*Die Verfälschungswahrscheinlichkeit der <i>M</i>&ndash;2 inneren Symbole ist doppelt so groß, da hier sowohl rechts als auch links andere Entscheidungsregionen angrenzen. Durch Mittelung erhält man die mittlere <i>Symbolfehlerwahrscheinlichkeit</i>:
 
  
 +
*The falsification probability of the&nbsp; $M-2$&nbsp; inner symbols is twice as large, since other decision regions border on both the right and the left.&nbsp; By averaging one obtains for the&nbsp; "symbol error probability":
 
::<math>p_{\rm S} = {\rm Pr}({\cal{E}}) = \frac{1}{M} \cdot \left [ 2 \cdot  1 \cdot {\rm Q} \left ( \sqrt{{2 E}/{N_0}}\right ) +
 
::<math>p_{\rm S} = {\rm Pr}({\cal{E}}) = \frac{1}{M} \cdot \left [ 2 \cdot  1 \cdot {\rm Q} \left ( \sqrt{{2 E}/{N_0}}\right ) +
  (M-2) \cdot  2 \cdot {\rm Q} \left ( \sqrt{{2 E}/{N_0}}\right ) \right ] = </math>
+
  (M-2) \cdot  2 \cdot {\rm Q} \left ( \sqrt{{2 E}/{N_0}}\right ) \right ] </math>
 
+
::<math>\Rightarrow \hspace{0.3cm} p_{\rm S} = \frac{2 \cdot (M-1)}{M} \cdot {\rm Q} \left ( \sqrt{{2 E}/{N_0}}\right ) =\frac{2 \cdot (M-1)}{M} \cdot {\rm Q} \left ( \sqrt{\frac{6 \cdot E_{\rm S}}{(M^2-1) \cdot N_0}}\right )
::<math>.\hspace{0.5cm} = \frac{2 \cdot (M-1)}{M} \cdot {\rm Q} \left ( \sqrt{{2 E}/{N_0}}\right ) =\frac{2 \cdot (M-1)}{M} \cdot {\rm Q} \left ( \sqrt{\frac{6 \cdot E_{\rm S}}{(M^2-1) \cdot N_0}}\right )
 
 
  \hspace{0.05cm}.</math>
 
  \hspace{0.05cm}.</math>
  
*Bei Verwendung des [http://en.lntwww.de/Digitalsignal%C3%BCbertragung/Redundanzfreie_Codierung#Symbol.E2.80.93_und_Bitfehlerwahrscheinlichkeit_.282.29 Graycodes] (benachbarte Symbole unterscheiden sich jeweils um ein Bit) ist die <i>Bitfehlerwahrscheinlichkeit</i> näherungsweise um den Faktor <i>b</i> = log<sub>2</sub> (<i>M</i>) kleiner als <i>p</i><sub>S</sub>:
+
*When using the&nbsp; [[Digital_Signal_Transmission/Redundancy-Free_Coding#Symbol_and_bit_error_probability|"Gray code"]]&nbsp; $($neighboring symbols each differ by one bit$)$,&nbsp; the&nbsp; "bit error probability"&nbsp; $p_{\rm B}$ is approximately factor&nbsp; $b = \log_2 \ (M)$&nbsp; smaller than the&nbsp; $p_{\rm S}$:
  
 
::<math>p_{\rm B} \approx \frac{p_{\rm S}}{b} =  \frac{2 \cdot (M-1)}{M \cdot {\rm log_2}\, (M)} \cdot {\rm Q} \left ( \sqrt{{6 \cdot {\rm log_2}\, (M)}/({M^2-1 }) \cdot { E_{\rm B}}/{ N_0}}\right )
 
::<math>p_{\rm B} \approx \frac{p_{\rm S}}{b} =  \frac{2 \cdot (M-1)}{M \cdot {\rm log_2}\, (M)} \cdot {\rm Q} \left ( \sqrt{{6 \cdot {\rm log_2}\, (M)}/({M^2-1 }) \cdot { E_{\rm B}}/{ N_0}}\right )
 
  \hspace{0.05cm}.</math>
 
  \hspace{0.05cm}.</math>
  
== Quadraturamplitudenmodulation (M–QAM) ==
+
== Quadrature amplitude modulation (M-QAM) ==
 
<br>
 
<br>
[[File:P ID2057 Dig T 4 4 S6 version1.png|rahmenlos|rechts|Signalraumkonstellation der 16-QAM]]
+
[[Modulation_Methods/Quadrature_Amplitude_Modulation#General_description_and_signal_space_allocation|"Quadrature amplitude modulation"]]&nbsp;  $\text{(M&ndash;QAM)}$ results from a&nbsp; M&ndash;ASK each for the&nbsp; "in-phase component"&nbsp; and the "quadrature component"&nbsp; &#8658; &nbsp; $M^2$&nbsp; signal space points.<br>
 +
[[File:P ID2057 Dig T 4 4 S6 version1.png|right|frame|Signal space constellation of 16-QAM]]
 +
*Each symbol now represents&nbsp; $b = \log_2  (M)$&nbsp; binary characters&nbsp; (bits).
 +
 +
*The graphic shows the special case&nbsp; $M = 16$ &nbsp; &#8658; &nbsp;  $b = 4$.
  
Die Quadraturamplitudenmodulation (<i>M</i>&ndash;QAM) ergibt sich durch je eine <i>M</i>&ndash;ASK für Inphase&ndash; und Quadraturkomponente&nbsp;&#8658;&nbsp; <i>M</i><sup>2</sup> Signalraumpunkte.<br>
+
*The bit assignment for&nbsp; [[Digital_Signal_Transmission/Redundancy-Free_Coding#Symbol_and_bit_error_probability|"Gray coding"]]&nbsp; is shown in red (neighboring symbols each differ by one bit).<br>
  
Durch jedes Symbol werden nun <i>b</i> = log<sub>2</sub> (<i>M</i>) Binärzeichen (Bit) dargestellt. Die Grafik zeigt den Sonderfall <i>M</i> = 16 &#8658; <i>b</i> = 4. Rot eingezeichnet ist die Bitzuordnung nach der Graycodierung.<br>
 
  
Die <i>mittlere Energie</i> pro Symbol (<i>E</i><sub>S</sub>) bzw. pro Bit (<i>E</i><sub>B</sub>) kann man aus dem Ergebnis für die <i>M</i>&ndash;ASK einfach berechnen (beachten Sie in dieser Gleichung den Unterschied zwischen einer Energie <i>E</i> und dem Erwartungswert E[...]):
+
The&nbsp; "average energy per symbol" &nbsp; $(E_{\rm S})$ &nbsp; or the&nbsp; "average energy per bit" &nbsp; $(E_{\rm B})$  &nbsp;can be easily derived from the result for the&nbsp; "M&ndash;ASK" &nbsp; $($note the difference in the equation between an energy&nbsp; "$E$"&nbsp; and the expected value&nbsp; "$\rm E[\text{...}]$"$)$:
 
+
::<math>E_{\rm S} = {\rm E} \left [ |s_{i}|^2 \right ] = {\rm E} \left [ |s_{{\rm I}i}|^2  \right ] + {\rm E} \left [ |s_{{\rm Q}i}|^2 \right ] = 2 \cdot {\rm E} \left [ |s_{{\rm I}i}|^2  \right ]</math>
:<math>E_{\rm S} \hspace{-0.1cm}  = \hspace{-0.1cm} {\rm E} \left [ |s_{i}|^2 \right ] = {\rm E} \left [ |s_{{\rm I}i}|^2  \right ] + {\rm E} \left [ |s_{{\rm Q}i}|^2 = 2 \cdot {\rm E} \left [ |s_{{\rm I}i}|^2  \right ]\right ]=</math>
+
::<math>\Rightarrow \hspace{0.3cm} E_{\rm S} = 2 \cdot \frac{M_{\rm I}^2-1}{3} \cdot E = \frac{2}{3} \cdot (M-1) \cdot E\hspace{0.01cm},\hspace{0.3cm}E_{\rm B} =\frac{2 \cdot (M-1)}{3 \cdot {\rm log_2}\, (M)} \cdot E \hspace{0.01cm}.</math>
::<math> \hspace{-0.1cm} \hspace{-0.1cm}2 \cdot \frac{M_{\rm I}^2-1}{3} \cdot E = 2/3 \cdot (M-1) \cdot E\hspace{0.05cm},\hspace{0.8cm}E_{\rm B} =\frac{2 \cdot (M-1)}{3 \cdot {\rm log_2}\, (M)} \cdot E \hspace{0.05cm}.</math>
 
 
 
Daneben hat die <i>M</i>&ndash;stufige Quadraturamplitudenmodulation folgende Eigenschaften:
 
*Als obere Schranke für die Symbolfehlerwahrscheinlichkeit kann die [http://en.lntwww.de/Digitalsignal%C3%BCbertragung/Approximation_der_Fehlerwahrscheinlichkeit#Union_Bound_-_Obere_Schranke_f.C3.BCr_die_Fehlerwahrscheinlichkeit_.281.29 Union Bound] herangezogen werden, wobei zu beachten ist, dass ein inneres Symbol in vier Richtungen verfälscht werden kann:
 
  
 +
In addition, &nbsp; the M&ndash;level quadrature amplitude modulation shows the following properties:
 +
*The&nbsp; [[Digital_Signal_Transmission/Approximation_of_the_Error_Probability#Union_Bound_-_Upper_bound_for_the_error_probability|"Union Bound"]]&nbsp; can be used as an upper bound for the symbol error probability,&nbsp; whereby it should be noted that an inner symbol can be falsified in four directions:
 
::<math>p_{\rm S} = {\rm Pr}({\cal{E}}) \le \left\{ \begin{array}{c}  4 \cdot p \\
 
::<math>p_{\rm S} = {\rm Pr}({\cal{E}}) \le \left\{ \begin{array}{c}  4 \cdot p \\
 
  2 \cdot p  \end{array} \right.\quad
 
  2 \cdot p  \end{array} \right.\quad
  \begin{array}{*{1}c} {\rm f{\rm \ddot{u}r}}  \hspace{0.15cm} M \ge 16 \hspace{0.05cm},
+
  \begin{array}{*{1}c} {\rm for}  \hspace{0.15cm} M \ge 16 \hspace{0.05cm},
\\  {\rm f{\rm \ddot{u}r}}  \hspace{0.15cm} M = 4 \hspace{0.05cm},\\ \end{array}  \hspace{0.4cm} {\rm mit} \hspace{0.4cm} p = {\rm Q} \left ( \sqrt{{2 E}/{N_0}}\right )  
+
\\  {\rm for}  \hspace{0.15cm} M = 4 \hspace{0.05cm},\\ \end{array}  \hspace{0.4cm} {\rm with} \hspace{0.4cm} p = {\rm Q} \left ( \sqrt{{2 E}/{N_0}}\right )  
 
  \hspace{0.05cm}.</math>
 
  \hspace{0.05cm}.</math>
  
*Berücksichtigt man, dass nur die (<i>M</i><sub>I</sub> &ndash; 2)<sup>2</sup> inneren Punkte in vier Richtungen verfälscht werden, die vier Eckpunkte dagegen nur in zwei und die restlichen in drei Richtungen (blaue Pfeile in der Grafik), so erhält man mit <i>M</i> = <i>M</i><sub>I</sub><sup>2</sup> die bessere Näherung
+
*If one takes into account that only the&nbsp; $(b-2)^2$&nbsp; inner points are falsified in four directions,&nbsp; in contrast,&nbsp; the four vertices are falsified only in two and the remaining points in three directions&nbsp; (blue arrows in the graphic),&nbsp; therefore one obtains with&nbsp; $M = b^2$&nbsp; the better approximation
 
 
::<math>p_{\rm S} \hspace{-0.1cm}  \approx  \hspace{-0.1cm} {1}/{M} \cdot \left [(M_{\rm I} - 2)^2 \cdot 4p + 4 \cdot 2p + 4 \cdot (M_{\rm I} - 2) \cdot 3p \right ] =</math>
 
:::<math> \hspace{-0.1cm}  =  \hspace{-0.1cm} {p}/{M} \cdot \left [ 4 \cdot M - 16 \cdot \sqrt{M} + 16 + 8  + 12 \cdot \sqrt{M} - 24\right ]= </math>
 
:::<math> \hspace{-0.1cm}  =    \hspace{-0.1cm} {4p}/{M} \cdot \left [ M -  \sqrt{M} \right ] = 4p \cdot \left [ 1 -  {1}/{\sqrt{M}} \right ] </math>
 
  
 +
::<math>p_{\rm S} \approx  {1}/{M} \cdot \big [(b - 2)^2 \cdot 4p + 4 \cdot 2p + 4 \cdot (b - 2) \cdot 3p \big ] = {p}/{M} \cdot \big [ 4 \cdot M - 16 \cdot \sqrt{M} + 16 + 8  + 12 \cdot \sqrt{M} - 24\big ] </math>
 +
::<math>\Rightarrow \hspace{0.3cm} p_{\rm S} \approx  {4 \cdot p}/{M} \cdot \big [ M -  \sqrt{M} \big ] = 4p \cdot \hspace{0.05cm} \big [ 1 -  {1}/{\sqrt{M}} \hspace{0.05cm}\big ] </math>
 
::<math>\Rightarrow\hspace{0.3cm} M = 16\hspace{-0.1cm}:  \hspace{0.1cm}
 
::<math>\Rightarrow\hspace{0.3cm} M = 16\hspace{-0.1cm}:  \hspace{0.1cm}
p_{\rm S} \approx  3 \cdot p = 3 \cdot {\rm Q} \left ( \sqrt{{2 E}/{N_0}}\right ) = 3 \cdot {\rm Q} \left ( \sqrt{{1/5 \cdot E_{\rm S}}/{ N_0}}\right ) \hspace{0.05cm}.</math>
+
p_{\rm S} \approx  3 \cdot p = 3 \cdot {\rm Q} \big ( \sqrt{{2 E}/{N_0}}\big ) = 3 \cdot {\rm Q} \big ( \sqrt{{1/5 \cdot E_{\rm S}}/{ N_0}}\big ) \hspace{0.05cm}.</math>
  
Allgemein gilt <i>E</i><sub>B</sub> = <i>E</i><sub>S</sub>/log<sub>2</sub>(<i>M</i>) und bei Graycodierung zusätzlich <i>p</i><sub>B</sub> = <i>p</i><sub>S</sub>/log<sub>2</sub>(<i>M</i>). Damit erhält man für die mittlere <i>Bitfehlerwahrscheinlichkeit</i>:
+
{{BlaueBox|TEXT= 
 +
$\text{Conclusion:}$&nbsp; With &nbsp;$M$&ndash;level QAM, &nbsp; $E_{\rm B} = E_{\rm S}/\log_2 \hspace{0.05cm} (M)$&nbsp; generally applies and with Gray coding,&nbsp; $p_{\rm B} = p_{\rm S}/\log_2 \hspace{0.05cm} (M)$ is also applicable.
  
:<math>p_{\rm B} \approx {4 \cdot (1 - 1/\sqrt{M})}/{ {\rm log_2}\, (M)} \cdot {\rm Q} \left ( \sqrt{{3 \cdot {\rm log_2}\, (M)}/({M-1 }) \cdot { E_{\rm B}}/{ N_0}}\right )
+
*This gives the&nbsp; '''mean bit error probability''':
 +
::<math>p_{\rm B} \approx \frac{4 \cdot (1 - 1/\sqrt{M})}{ {\rm log_2}\hspace{0.05cm} (M)} \cdot {\rm Q} \left ( \sqrt{ \frac{3 \cdot {\rm log_2}\, (M)}{M-1 } \cdot { E_{\rm B} }/{ N_0} }\right )
 
  \hspace{0.05cm}.</math>
 
  \hspace{0.05cm}.</math>
  
<b>Anmerkung:</b> Die beiden Näherungen gelten für <i>M</i> &#8805; 16 exakt, wenn &ndash; wie für die obere Grafik vorausgesetzt &ndash; keine &bdquo;diagonalen Verfälschungen&rdquo; auftreten können. Der Sonderfall <b>4&ndash;QAM</b> (ohne innere Symbole) wird in der Aufgabe A4.13 behandelt.<br>
+
*The approximation is exactly valid for&nbsp; $M \le 16$&nbsp; if&nbsp; &ndash; as assumed for the upper graphic &ndash;&nbsp; no&nbsp; "diagonal falsifications"&nbsp; occur.
 +
 
 +
*The special case&nbsp; "4&ndash;QAM"&nbsp; (without inner symbols)&nbsp; is dealt with in &nbsp;[[Aufgaben:Exercise_4.13:_Four-level_QAM|"Exercise 4.13"]].&nbsp; <br>}}
  
== Mehrstufiges Phase–Shift Keying (M–PSK) ==
+
== Multi-level phase–shift keying  (M–PSK) ==
 
<br>
 
<br>
Bei mehrstufiger Phasenmodulation, wobei die Stufenzahl <i>M</i> in der Praxis meist eine Zweierpotenz ist, liegen alle Signalraumpunkte auf einem Kreis mit Radius <i>E</i><sup>1/2</sup> gleichmäßig verteilt. Damit gilt für die mittlere Symbolenergie <i>E</i><sub>S</sub> = <i>E</i> und für die <i>mittlere Energie pro Bit</i> &nbsp;&#8658;&nbsp; <i>E</i><sub>B</sub> = <i>E</i><sub>S</sub>/<i>b</i> = <i>E</i>/log<sub>2</sub> (<i>M</i>).<br>
+
In the case of multi-level phase modulation,&nbsp; in which case the level number&nbsp; $M$&nbsp; is usually a power of two in practice,&nbsp; all signal space points are evenly distributed on a circle with radius&nbsp; $E^{1/2}$.&nbsp; This means that &nbsp;
 +
[[File:P ID2064 Dig T 4 4 S7 version2.png|right|frame|Signal space constellation of the 8–PSK and 16–PSK|class=fit]]
 +
 +
#$E_{\rm S} = E$&nbsp; holds for the&nbsp; "'average symbol energy",&nbsp; and
 +
#$E_{\rm B} = E_{\rm S}/b = E/\hspace{-0.05cm}\log_2 \hspace{0.05cm} (M)$ for the&nbsp; "average energy per bit".&nbsp;<br>
  
[[File:P ID2064 Dig T 4 4 S7 version2.png|Signalraumkonstellation der 8–PSK und 16–PSK|class=fit]]<br>
+
*For the in-phase and quadrature components of the signal space points&nbsp; $\boldsymbol{s}_i$,&nbsp; the general rule is &nbsp;$(i = 0, \hspace{0.05cm}\text{...} \hspace{0.05cm}, \hspace{0.05cm}M-1)$:
 +
:$$s_{{\rm I}i} = \cos \left ( { 2\pi i}/{ M} + \phi_{\rm off} \right ) \hspace{0.05cm},$$
 +
:$$ s_{{\rm Q}i} = \sin \left ( { 2\pi i}/{ M} + \phi_{\rm off} \right )$$
 +
:$$\Rightarrow \hspace{0.2cm} || \boldsymbol{ s}_i || = \sqrt{ s_{{\rm I}i}^2 +  s_{{\rm Q}i}^2} = 1 \hspace{0.05cm}.$$
 +
*The phase offset is set to&nbsp; $\phi_{\rm off} = 0$&nbsp; in the graphic above. The 4&ndash;PSK with&nbsp; $\phi_{\rm off} = \pi/4 \ (45^\circ)$&nbsp; is identical to the&nbsp; [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation#Quadrature_amplitude_modulation_.28M-QAM.29|"4&ndash;QAM"]].
  
Für Inphase&ndash; und die Quadraturkomponente der Signalraumpunkte <b><i>s</i></b><sub><i>i</i></sub> gilt allgemein (<i>i</i> = 0, ... , <i>M</i>&ndash;1):
+
*The distance between two adjacent points is the same in all cases:<br>
 +
::<math>d_{\rm min}  =  d_{\rm 0, \hspace{0.05cm}1} =  d_{\rm 1, \hspace{0.05cm}2} = \hspace{0.05cm}\text{...} \hspace{0.05cm} =  d_{M-1,  \hspace{0.05cm}0} = 2 \cdot \sqrt{E} \cdot \sin (\pi/M)</math>
 +
::<math>\Rightarrow\hspace{0.3cm} M = 4\hspace{-0.1cm}:\hspace{0.1cm}d_{\rm min}/E^{1/2}  = \sqrt{2} \approx 1.414  \hspace{0.05cm}, \hspace{0.8cm} M = 8\hspace{-0.1cm}:\hspace{0.1cm}d_{\rm min}/E^{1/2}  \approx 0.765  \hspace{0.05cm},\hspace{0.8cm} M = 16\hspace{-0.1cm}:\hspace{0.1cm}d_{\rm min}/E^{1/2}  \approx 0.390  \hspace{0.05cm}.</math>
  
:<math>s_{{\rm I}i} = \cos \left ( { 2\pi i}/{ M} + \phi_{\rm off} \right ) \hspace{0.05cm},\hspace{0.2cm}
+
*The upper bound&nbsp; $p_{\rm UB}$&nbsp; for the AWGN symbol error probability&nbsp; $p_{\rm S}$&nbsp; after the&nbsp; [[Digital_Signal_Transmission/Approximation_of_the_Error_Probability#Union_Bound_-_Upper_bound_for_the_error_probability|"Union Bound"]]&nbsp; yields:
s_{{\rm Q}i} = \sin \left ( { 2\pi i}/{ M} + \phi_{\rm off} \right ) \hspace{0.2cm}\Rightarrow \hspace{0.2cm} || \boldsymbol{ s}_i || = \sqrt{ s_{{\rm I}i}^2 +  s_{{\rm Q}i}^2} = 1 \hspace{0.05cm}.</math>
 
  
Der Phasenoffset <i>&#981;</i><sub>off</sub> ist in obiger Grafik jeweils zu 0 gesetzt. Die 4&ndash;PSK mit <i>&#981;</i><sub>off</sub> = &pi;/4 (45&deg;) ist identisch mit der [http://en.lntwww.de/index.php?title=Digitalsignal%C3%BCbertragung/Tr%C3%A4gerfrequenzsysteme_mit_koh%C3%A4renter_Demodulation&action=submit#Quadraturamplitudenmodulation_.28M.E2.80.93QAM.29 4&ndash;QAM]. Der Abstand zwischen zwei benachbarten Punkten ist in allen Fällen gleich:<br>
+
::<math>p_{\rm UB} = 2 \cdot {\rm Q} \left ( \sin ({ \pi}/{ M}) \cdot \sqrt{ { {2E_{\rm S}}}/{ N_0} }\right )  \ge  p_{\rm S} 
 +
\hspace{0.05cm}.</math>
  
:<math>d_{\rm min}  = d_{\rm 0, \hspace{0.05cm}1} = d_{\rm 1, \hspace{0.05cm}2} = ... =  d_{M-1,  \hspace{0.05cm}0} = 2 \cdot \sqrt{E} \cdot \sin (\pi/M)
+
*One recognises:
 +
#For&nbsp; $M = 2$&nbsp; $\rm (BPSK)$&nbsp; one obtains the estimate &nbsp; $p_{\rm S\le p_{\rm UB} =2 \cdot {\rm Q} \left ( \sqrt{ 2E_{\rm S}/{ N_0} }\right )$.&nbsp; A comparison with the equation &nbsp; $p_{\rm S}   ={\rm Q} \left ( \sqrt{ 2E_{\rm S}/{ N_0} }\right )$ &nbsp; given on the&nbsp; [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation#Binary_phase_shift_keying_.28BPSK.29|"BPSK section"]]&nbsp; shows that in this special case the&nbsp; "Union Bound"&nbsp; returns double the value as the upper limit.
 +
#The larger&nbsp; $M$&nbsp; is,&nbsp; the more precisely&nbsp; $p_{\rm UB}$&nbsp; approximates the exact symbol error probability&nbsp; $p_{\rm S}$.&nbsp; The interactive SWF applet&nbsp; [[Applets:MPSK_%26_Union-Bound(Applet)|"Multi-level PSK & Union Bound"]]&nbsp; also gives the more accurate error probability obtained through simulation.<br>
 +
 
 +
 
 +
{{BlaueBox|TEXT=   
 +
$\text{Conclusion:}$&nbsp; The limit for the&nbsp; '''M&ndash;PSK bit error probability'''&nbsp; is,&nbsp; assuming Gray code &nbsp;&#8658;&nbsp; red labeling:
 +
 
 +
::<math>p_{\rm B} \le \frac{2}{ {\rm log_2} \hspace{0.05cm}(M)} \cdot {\rm Q} \left ( \sqrt{ {\rm log_2} \hspace{0.05cm}(M)} \cdot \sin ({ \pi}/{ M}) \cdot \sqrt{ { {2E_{\rm B} } }/{ N_0} }\right ) 
 
  \hspace{0.05cm}.</math>
 
  \hspace{0.05cm}.</math>
  
&#8658;&nbsp; <i>d</i><sub>min</sub>/<i>E</i><sup>0.5</sup> = 2<sup>0.5</sup> &asymp; 1.414 (für <i>M</i> = 4), &asymp0.765 (für <i>M</i> = 8) und &asymp; 0.390  (für <i>M</i> = 16).
+
*However,&nbsp; this limit only has to be applied for&nbsp; $M > 4$.&nbsp;
 +
 +
*For&nbsp; $M = 2$&nbsp; (BPSK)&nbsp;  and&nbsp; $M = 4$&nbsp; (identity between 4&ndash;PSK and 4&ndash;QAM),&nbsp; the bit error probability can be specified exactly:
 +
:$$p_{\rm B} = {\rm Q} \left ( \sqrt{ { {2E_{\rm B} } }/{ N_0} }\right )   
 +
\hspace{0.05cm}.$$}}
  
Die obere Schranke für die AWGN&ndash;Symbolfehlerwahrscheinlichkeit nach der [http://en.lntwww.de/Digitalsignal%C3%BCbertragung/Approximation_der_Fehlerwahrscheinlichkeit#Union_Bound_-_Obere_Schranke_f.C3.BCr_die_Fehlerwahrscheinlichkeit_.281.29 Union Bound] liefert:
+
== Binary frequency shift keying (2–FSK) ==
 +
<br>
 +
This type of modulation with parameter&nbsp; $b = 1$ &nbsp; &#8658; &nbsp; $M = 2$ &nbsp; has already been described in detail in the section&nbsp; [[Modulation_Methods/Non-Linear_Digital_Modulation#FSK_.E2.80.93_Frequency_Shift_Keying|"FSK &ndash; Frequency Shift Keying"]]&nbsp; of the book&nbsp; "Modulation Methods"&nbsp; using the band-pass signals.
  
:<math>p_{\rm S} = {\rm Pr}({\cal{E}}) \le  2 \cdot {\rm Q} \left ( \sin ({ \pi}/{ M}) \cdot \sqrt{ { {2E_{\rm S}}}/{ N_0} }\right ) = p_{\rm UB}  
+
*The two possible signal forms are represented by two different frequencies in the range&nbsp; $0 \le t \le T$:&nbsp; <br>
 +
::<math>s_{\rm BP0}(t) \hspace{-0.1cm} = \hspace{-0.1cm}  A \cdot \cos( 2\pi \cdot( f_{\rm T} + \Delta f_{\rm A})\cdot t)\hspace{0.05cm},</math>
 +
::<math> s_{\rm BP1}(t) \hspace{-0.1cm}  =  \hspace{-0.1cm}  A \cdot \cos( 2\pi \cdot( f_{\rm T} - \Delta f_{\rm A})\cdot t)\hspace{0.05cm}.</math>
 +
 
 +
*$f_{\rm T}$&nbsp; designates the&nbsp; "carrier frequency"&nbsp; and&nbsp; $\Delta f_{\rm A}$&nbsp; the (one-sided)&nbsp; "frequency deviation".&nbsp; The average energy per symbol or per bit is the same in each case:
 +
 
 +
::<math>E_{\rm S} = E_{\rm B} = E = \frac{A^2 \cdot T}{2}
 
  \hspace{0.05cm}.</math>
 
  \hspace{0.05cm}.</math>
  
Für <i>M</i> = 2 (BPSK) erhält man daraus die Abschätzung <i>p</i><sub>S</sub> &#8804; <i>p</i><sub>UB</sub> = 2 &middot; Q[(2<i>E</i><sub>S</sub>/<i>N</i><sub>0</sub>)<sup>1/2</sup>]. Ein Vergleich mit der auf der [http://en.lntwww.de/index.php?title=Digitalsignal%C3%BCbertragung/Tr%C3%A4gerfrequenzsysteme_mit_koh%C3%A4renter_Demodulation&action=submit#Binary_Phase_Shift_Keying_.28BPSK.29 BPSK&ndash;Seite] angegebenen Gleichung <i>p</i><sub>S</sub> = Q [(2<i>E</i><sub>S</sub>/<i>N</i><sub>0</sub>)<sup>1/2</sup>] zeigt, dass in diesem Sonderfall die &bdquo;Union Bound&rdquo; als obere Schranke den doppelten Wert liefert. Je größer <i>M</i> ist, umso genauer nähert <i>p</i><sub>UB</sub> die Symbolfehlerwahrscheinlichkeit <i>p</i><sub>S</sub> an. Das Interaktionsmodul [[:File:MPSK_UB.swf|Mehrstufige PSK und Union Bound]] gibt auch die exakte, durch Simulation gewonnene Fehlerwahrscheinlichkeit an.<br>
+
*The FSK in the equivalent low-pass signal space is now to be considered here.&nbsp; Then:
 +
 
 +
::<math>s_{\rm TP0}(t) \hspace{-0.1cm}  =  \hspace{-0.1cm}  \sqrt{E/T} \cdot {\rm e}^{\hspace{0.05cm}+{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm} 2\pi \hspace{0.03cm}\cdot \hspace{0.03cm} \Delta f_{\rm A} \hspace{0.03cm}\cdot t}\hspace{0.05cm},\hspace{0.2cm} 0 \le t \le T\hspace{0.05cm},</math>
 +
::<math> s_{\rm TP1}(t) \hspace{-0.1cm}  =  \hspace{-0.1cm}  \sqrt{E/T} \cdot {\rm e}^{\hspace{0.05cm}-{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm} 2\pi \hspace{0.03cm}\cdot \hspace{0.03cm} \Delta f_{\rm A} \hspace{0.03cm}\cdot t}\hspace{0.05cm},\hspace{0.2cm} 0 \le t \le T\hspace{0.05cm},</math>
 +
 
 +
:and for the&nbsp; "inner product"&nbsp; one obtains:
 +
 
 +
::<math>< \hspace{0.02cm} s_{\rm TP0}(t) \cdot s_{\rm TP1}(t) \hspace{0.02cm}> \hspace{0.1cm}  =  \hspace{-0.1cm} 
 +
\int_{0}^{T} s_{\rm TP0}(t) \cdot s_{\rm TP1}^{\star}(t) \,{\rm d} t = A^2 \cdot \int_{0}^{T} {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm} 4\pi \hspace{0.03cm}\cdot \hspace{0.03cm} \Delta f_{\rm A} \hspace{0.03cm}\cdot t} \,{\rm d} t =  \frac{A^2}{{\rm j} \cdot 4\pi \cdot  \Delta f_{\rm A}} \cdot \big [ {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm} 4\pi \hspace{0.03cm}\cdot \hspace{0.03cm} \Delta f_{\rm A} \hspace{0.03cm}\cdot T} - 1 \big ] \hspace{0.05cm}.</math>
 +
 
 +
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp; The&nbsp; '''modulation index'''&nbsp; $h = 2 \cdot \Delta f_{\rm A}\hspace{0.03cm}\cdot T$&nbsp; is the ratio
 +
*between the total (bilateral) frequency deviation&nbsp; $(2 \cdot \Delta f_{\rm A})$&nbsp;  
 +
 
 +
*and the symbol rate&nbsp; $(1/T)$.}}
 +
 
 +
 
 +
*The two signals are&nbsp; "orthogonal"&nbsp; if this inner product is equal to zero:
 +
 
 +
[[File:P ID2076 Dig T 4 4 S8 version2.png|right|frame|Signal space constellation of the FSK, if &nbsp;$h$&nbsp; is an integer|class=fit]]
 +
:$$< \hspace{0.02cm} s_{\rm TP0}(t) \cdot s_{\rm TP1}(t) \hspace{0.02cm}> \hspace{0.1cm}  =    \frac{A^2\cdot T}{{\rm j} \cdot 2\pi \cdot  h} \cdot \left [ {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm} 2h} - 1 \right ] = 0$$
 +
:$$ \Rightarrow \hspace{0.3cm} h = 2 \cdot \Delta f_{\rm A} \cdot T = 1,\hspace{0.1cm} 2, \hspace{0.1cm}3,\ \text{ ... }\hspace{0.05cm}.$$
  
Die Schranke für die Bitfehlerwahrscheinlichkeit lautet (Graycode &nbsp;&#8658;&nbsp; rote Beschriftung vorausgesetzt):
+
*If the modulation index&nbsp; $h$&nbsp; is assumed to be an integer, the low-pass signals can be written in the form
  
:<math>p_{\rm B}  \le \frac{2}{{\rm log_2} \hspace{0.05cm}(M)} \cdot {\rm Q} \left ( \sqrt{{\rm log_2} \hspace{0.05cm}(M)} \cdot \sin ({ \pi}/{ M}) \cdot \sqrt{{ {2E_{\rm B}}}/{ N_0} }\right ) 
+
::<math>s_{\rm TP0}(t) = \sqrt{E} \cdot \xi_1(t) \hspace{0.05cm},</math>
\hspace{0.05cm}.</math>
+
::<math>s_{\rm TP1}(t) = \sqrt{E} \cdot \xi_2(t)</math>
 +
 
 +
:with complex basis functions:
  
Diese Schranke muss man allerdings nur für <i>M</i> > 4 anwenden. Für <i>M</i> = 2 (BPSK) und <i>M</i> = 4 (wegen der Identität zwischen 4&ndash;PSK und 4&ndash;QAM) kann man die Bitfehlerwahrscheinlichkeit direkt angeben:<br>
+
:$$\xi_1(t) = \sqrt{1/T} \cdot {\rm e}^{\hspace{0.05cm}+{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm} \pi \hspace{0.03cm}\cdot \hspace{0.03cm} h \hspace{0.03cm}\cdot \hspace{0.03cm}t/T}\hspace{0.05cm},\hspace{0.2cm} 0 \le t \le T\hspace{0.05cm},$$
 +
:$$ \xi_2(t)= \sqrt{1/T} \cdot {\rm e}^{\hspace{0.05cm}-{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm} \pi \hspace{0.03cm}\cdot \hspace{0.03cm} h \hspace{0.03cm}\cdot \hspace{0.03cm}t/T}\hspace{0.05cm},\hspace{0.2cm} 0 \le t \le T \hspace{0.05cm}.$$
  
:<math>p_{\rm B}  = {\rm Q} \left (  \sqrt{ { {2E_{\rm B}}}/{ N_0} }\right ) 
+
*The result is the signal space representation of the binary FSK outlined here.<br>
\hspace{0.05cm}.</math>
 
  
== Binary Frequency Shift Keying ⇒ 2–FSK (1) ==
 
<br>
 
Auch diese Modulationsart mit Parameter <i>b</i> = 1 &#8658; <i>M</i> = 2 wurde bereits im [http://en.lntwww.de/Modulationsverfahren/Nichtlineare_Modulationsverfahren#FSK_.E2.80.93_Frequency_Shift_Keying_.281.29 Kapitel 4.4] des Buches &bdquo;Modulationsverfahren&rdquo; anhand der Bandpass&ndash;Signale ausführlich beschrieben. Die beiden möglichen Signalformen werden im Bereich 0 &#8804; <i>t</i> &#8804; <i>T</i> durch zwei unterschiedliche Frequenzen dargestellt:<br>
 
  
:<math>s_{\rm BP0}(t) \hspace{-0.1cm}  =  \hspace{-0.1cm}  A \cdot \cos( 2\pi \cdot( f_{\rm T} + \Delta f_{\rm A})\cdot t)\hspace{0.05cm},</math>
+
{{BlaueBox|TEXT=   
:<math> s_{\rm BP1}(t) \hspace{-0.1cm}  =  \hspace{-0.1cm} A \cdot \cos( 2\pi \cdot( f_{\rm T} - \Delta f_{\rm A})\cdot t)\hspace{0.05cm}.</math>
+
$\text{Conclusions:}$&nbsp;
 +
*With an integer modulation index&nbsp; $h$,&nbsp; the low-pass signals &nbsp; $s_{\rm TP0}(t)$&nbsp; and &nbsp; $s_{\rm TP1}(t)$&nbsp; of the binary FSK are orthogonal to one another.<br>
  
Hierbei bezeichnet <i>f</i><sub>T</sub> die Trägerfrequenz und &Delta;<i>f</i><sub>A</sub> den (einseitigen) Frequenzhub. Die mittlere Energie pro Symbol bzw. pro Bit ist jeweils gleich:
+
*This results in the symbol error probability&nbsp; (derivation in the graphic):
  
:<math>E_{\rm S} = E_{\rm B} = E = \frac{A^2 \cdot T}{2}
+
::<math>p_{\rm S} = {\rm Pr}({\cal{E} }) = {\rm Q} \left (  \sqrt{ { {E_{\rm S} } }/{ N_0} }\right )
 
  \hspace{0.05cm}.</math>
 
  \hspace{0.05cm}.</math>
  
Hier soll nun die FSK im äquivalenten Tiefpass&ndash;Signalraum betrachtet werden. Hier gilt:
+
*The bit error probability has the same value: &nbsp; $p_{\rm B} = p_{\rm S}$.}}<br>
  
:<math>s_{\rm TP0}(t) \hspace{-0.1cm}  =  \hspace{-0.1cm}  \sqrt{E/T} \cdot {\rm e}^{\hspace{0.05cm}+{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm} 2\pi \hspace{0.03cm}\cdot \hspace{0.03cm} \Delta f_{\rm A} \hspace{0.03cm}\cdot t}\hspace{0.05cm},\hspace{0.2cm} 0 \le t \le T\hspace{0.05cm},</math>
+
<u>Note:</u>  
:<math> s_{\rm TP1}(t) \hspace{-0.1cm}  =  \hspace{-0.1cm}  \sqrt{E/T} \cdot {\rm e}^{\hspace{0.05cm}-{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm} 2\pi \hspace{0.03cm}\cdot \hspace{0.03cm} \Delta f_{\rm A} \hspace{0.03cm}\cdot t}\hspace{0.05cm},\hspace{0.2cm} 0 \le t \le T\hspace{0.05cm},</math>
+
#In contrast to the representation in&nbsp; [KöZ08]<ref>Kötter, R., Zeitler, G.: Nachrichtentechnik 2. Vorlesungsmanuskript, Lehrstuhl für Nachrichtentechnik, Technische Universität München, 2008.</ref>,&nbsp; the frequency deviation&nbsp; $\Delta f_{\rm A}$&nbsp; is defined here on one side.  
 +
#Therefore,&nbsp; the equations sometimes differ by a factor of&nbsp; $2$.&nbsp; However,&nbsp; if you work with the modulation index&nbsp; $h$,&nbsp; there are no differences.<br>
  
und für das innere Produkt erhält man
+
== Minimum Shift Keying (MSK) ==
 +
<br>
 +
[[Modulation_Methods/Non-Linear_Digital_Modulation#MSK_.E2.80.93_Minimum_Shift_Keying| "Minimum Shift Keying"]]&nbsp; $\rm (MSK)$&nbsp; is a binary FSK system with the modulation index&nbsp; $h = 0.5$ &nbsp; &#8658; &nbsp; frequency deviation $\Delta f_{\rm A} = 1/(2T)$. The graphic shows an MSK signal for the carrier frequency&nbsp; $ f_{\rm T} = 4/T$:
 +
[[File:P ID2072 Dig T 4 4 S9 version2.png|right|frame|Source signal and band-pass MSK signal|class=fit]]
 +
 +
*The two frequencies within the transmitted signal are&nbsp; $ f_{\rm 0} = f_{\rm T} + 1/(4T)$&nbsp; to represent the message&nbsp; $m_0$&nbsp; (yellow background)&nbsp; and&nbsp; $ f_{\rm 1} = f_{\rm T} -1/(4T)$ &nbsp; &#8658; &nbsp; message&nbsp; $m_1$&nbsp; (green background).
 +
 +
*The graph also accounts for continuous phase adjustment at the transitions to further reduce the signal bandwidth.&nbsp; This is then referred to as&nbsp; [[Modulation_Methods/Non-Linear_Digital_Modulation#Binary_FSK_with_Continuous_Phase_Matching|"Continuous Phase Modulation"]]&nbsp; $\rm (CPM)$.<br>
  
:<math>< \hspace{0.02cm} s_{\rm TP0}(t) \cdot s_{\rm TP1}(t) \hspace{0.02cm}> \hspace{0.1cm}  =  \hspace{-0.1cm} 
 
\int_{0}^{T} s_{\rm TP0}(t) \cdot s_{\rm TP1}^{\star}(t) \,{\rm d} t = A^2 \cdot \int_{0}^{T} {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm} 4\pi \hspace{0.03cm}\cdot \hspace{0.03cm} \Delta f_{\rm A} \hspace{0.03cm}\cdot t} \,{\rm d} t =</math>
 
:::::::<math>  \hspace{0.2cm}  =  \hspace{-0.1cm}  \frac{A^2}{{\rm j} \cdot 4\pi \cdot  \Delta f_{\rm A}} \cdot \left [ {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm} 4\pi \hspace{0.03cm}\cdot \hspace{0.03cm} \Delta f_{\rm A} \hspace{0.03cm}\cdot T} - 1 \right ] \hspace{0.05cm}.</math>
 
  
Die beiden Signale sind dann orthogonal, wenn dieses innere Produkt gleich 0 ist. Also muss gelten:
+
Without this phase adjustment,&nbsp; the two band-pass waveforms are:
  
:<math>h = 2 \cdot \Delta f_{\rm A} \cdot T = 1,\hspace{0.1cm} 2, \hspace{0.1cm}3, ... </math>
+
::<math>s_{\rm BP0}(t) = \sqrt{2E/T} \cdot \cos( 2\pi  f_0  t)\hspace{0.05cm},\hspace{0.2cm} 0 \le t \le T\hspace{0.05cm},</math>
 +
::<math> s_{\rm BP1}(t) = \sqrt{2E/T} \cdot \cos( 2\pi  f_1  t)\hspace{0.05cm},\hspace{0.2cm} 0 \le t \le T\hspace{0.05cm}.</math>
  
Diese Größe bezeichnet man als den Modulationsindex.<br>
+
If you form the inner product of the band-pass signals,&nbsp; you get with the abbreviation&nbsp; $f_{\rm \Delta} = f_0 - f_1$&nbsp; and&nbsp; $f_{\rm \Sigma} = f_0 + f_1$:
  
== Binary Frequency Shift Keying ⇒ 2–FSK (2) ==
+
::<math>< \hspace{0.02cm} s_{\rm BP0}(t) \hspace{0.2cm}  \cdot  \hspace{0.2cm} s_{\rm BP1}(t) \hspace{0.02cm}> \hspace{0.2cm} =
<br>
+
  {2E}/{T} \cdot \int_{0}^{T} \cos( 2\pi  f_0  t) \cdot \cos( 2\pi  f_1  t)\,{\rm d} t =   {E}/{T} \cdot \int_{0}^{T} \cos( 2\pi f_{\rm \Delta} t) \,{\rm d} t +    {E}/{T} \cdot \int_{0}^{T} \cos( 2\pi f_{\rm \Sigma} t) \,{\rm d} t</math>
Der <i>Modulationsindex</i> <i>h</i> = 2 &middot; &Delta;<i>f</i><sub>A</sub> &middot; <i>T</i> gibt das Verhältnis zwischen dem gesamten (also beideseitigen) Frequenzhub (2 &middot; &Delta;<i>f</i><sub>A</sub>) und der Symbolrate (1/<i>T</i>) an. Setzt man <i>h</i> als ganzzahlig voraus, so lassen sich die beiden Tiefpass&ndash;Signale in der Form
+
::<math> \Rightarrow \hspace{0.3cm}< \hspace{0.02cm} s_{\rm BP0}(t) \hspace{0.2cm}  \cdot  \hspace{0.2cm} s_{\rm BP1}(t) \hspace{0.02cm}> \hspace{0.2cm} =
 +
  {E}/{T} \cdot \int_{0}^{T} \hspace{-0.1cm} \cos( \pi \cdot {t}/{T}) \,{\rm d} t +
 +
  {E}/{T} \cdot \int_{0}^{T} \hspace{-0.1cm}\cos( 2\pi \cdot 2 f_{\rm T}  \cdot t) \,{\rm d} t
 +
  \hspace{0.05cm}.</math>
  
:<math>s_{\rm TP0}(t)  \hspace{-0.15cm }= \hspace{-0.15cm }\sqrt{E} \cdot \xi_1(t) \hspace{0.05cm},</math>
+
#The first integral is zero&nbsp; $($integral over&nbsp; "cosine"&nbsp; from&nbsp; $0$&nbsp; to &nbsp;$\pi)$.
:<math>s_{\rm TP1}(t) \hspace{-0.15cm }\hspace{-0.15cm } \sqrt{E} \cdot \xi_2(t)</math>
+
#For&nbsp; $f_{\rm T} \gg 1/T$,&nbsp; which can be assumed in practice,&nbsp; the second integral also vanishes.  
 +
#This gives the inner product: &nbsp; &nbsp; $< \hspace{0.02cm} s_{\rm BP0}(t) \cdot  s_{\rm BP1}(t) \hspace{0.02cm}> \hspace{0.2cm}=  0 \hspace{0.05cm}.$
  
mit den komplexen Basisfunktionen
 
  
:<math>\xi_1(t) \hspace{-0.1cm}  =  \hspace{-0.1cm\sqrt{1/T} \cdot {\rm e}^{\hspace{0.05cm}+{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm} \pi \hspace{0.03cm}\cdot \hspace{0.03cm} h \hspace{0.03cm}\cdot \hspace{0.03cm}t/T}\hspace{0.05cm},\hspace{0.2cm} 0 \le t \le T\hspace{0.05cm},</math>
+
{{BlaueBox|TEXT=   
:<math> \xi_2(t) \hspace{-0.1cm} =  \hspace{-0.1cm}  \sqrt{1/T} \cdot {\rm e}^{\hspace{0.05cm}-{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm} \pi \hspace{0.03cm}\cdot \hspace{0.03cm} h \hspace{0.03cm}\cdot \hspace{0.03cm}t/T}\hspace{0.05cm},\hspace{0.2cm} 0 \le t \le T \hspace{0.05cm}</math>
+
$\text{Conclusions:}$&nbsp;
 +
   
 +
'''(1)''' &nbsp; This shows that the two band-pass signals are orthogonal for the modulation index&nbsp;  $h = 0.5$&nbsp; $($i.e. &nbsp;$\rm MSK)$&nbsp; and all multiples thereof.
  
darstellen, und es ergibt sich die nachfolgend skizzierte Signalraumdarstellung der binären FSK.<br>
+
'''(2)''' &nbsp; With the new real basis functions
  
[[File:P ID2076 Dig T 4 4 S8 version2.png|Signalraumkonstellation der FSK, falls <i>h</i> ganzzahlig|class=fit]]<br>
+
::<math>\varphi_1(t) = \sqrt{2/T} \cdot \cos( 2\pi  f_0  t)\hspace{0.05cm},\hspace{0.2cm} 0 \le t \le T\hspace{0.05cm},</math>
 +
::<math> \varphi_2(t) = \sqrt{2/T} \cdot \cos( 2\pi  f_1  t)\hspace{0.05cm},\hspace{0.2cm} 0 \le t \le T</math>
  
Daraus folgt:
+
:one obtains exactly the same signal space constellation as for even-numbered &nbsp; $h = 1, 2, 3, \ \text{ ...}$.
*Bei ganzzahligem Modulationsindex <i>h</i> sind die beiden Tiefpass-Signale <i>s</i><sub>TP0</sub>(<i>t</i>) und <i>s</i><sub>TP1</sub>(<i>t</i>) der binären FSK zueinander orthogonal.<br>
+
'''(3)''' &nbsp; This results in the same&nbsp; $($symbol resp. bit$)$&nbsp; error probability:
  
*Damit ergibt sich für die Symbolfehlerwahrscheinlichkeit (Herleitung in der Grafik):
+
::<math>p_{\rm S} = {\rm Pr}({\cal{E} }) = {\rm Q} \left (  \sqrt{ { {E_{\rm S} } }/{ N_0} }\right ) = p_{\rm B}
 +
\hspace{0.05cm}.</math>}}
  
::<math>p_{\rm S} = {\rm Pr}({\cal{E}}) = {\rm Q} \left (  \sqrt{{ {E_{\rm S}}}/{ N_0} }\right )
+
==Exercises for the chapter==
\hspace{0.05cm}.</math>
+
<br>
 +
[[Aufgaben:Exercise_4.11:_On-Off_Keying_and_Binary_Phase_Shift_Keying|Exercise 4.11: On-Off Keying and Binary Phase Shift Keying]]
 +
 
 +
[[Aufgaben:Exercise_4.11Z:_OOK_and_BPSK_once_again|Exercise 4.11Z: OOK and BPSK once again]]
  
*Die Bitfehlerwahrscheinlichkeit hat den gleichen Wert: &nbsp; <i>p</i><sub>B</sub> = <i>p</i><sub>S</sub>.<br><br>
+
[[Aufgaben:Exercise_4.12:_Calculations_for_the_16-QAM|Exercise 4.12: Calculations for the 16-QAM]]
  
<b>Hinweis:</b> Im Gegensatz zur Darstellung in Kötter, R., Zeitler, G.: ''Nachrichtentechnik 2.'' Vorlesungsmanuskript, Lehrstuhl für Nachrichtentechnik, Technische Universität München, 2008 ist hier der Frequenzhub &Delta;<i>f</i><sub>A</sub> einseitig definiert. Deshalb unterscheiden sich die Gleichungen teilweise um den Faktor 2. Arbeitet man jedoch mit dem Modulationsindex <i>h</i>, so gibt es keine Unterschiede.<br>
+
[[Aufgaben:Exercise_4.13:_Four-level_QAM|Exercise 4.13: Four-level QAM]]
  
 +
[[Aufgaben:Exercise_4.14:_8-PSK_and_16-PSK|Exercise 4.14: 8-PSK and 16-PSK]]
  
 +
[[Aufgaben:Exercise_4.14Z:_4-QAM_and_4-PSK|Exercise 4.14Z: 4-QAM and 4-PSK]]
  
 +
[[Aufgaben:Exercise_4.15:_Optimal_Signal_Space_Allocation|Exercise 4.15: Optimal Signal Space Allocation]]
  
 +
[[Aufgaben:Exercise_4.16:_Binary_Frequency_Shift_Keying|Exercise 4.16: Binary Frequency Shift Keying]]
  
 +
==References==
  
 +
<references/>
  
 
{{Display}}
 
{{Display}}

Latest revision as of 11:04, 17 November 2022

Signal space representation of linear modulation


In the first three chapters of this  fourth main chapter:   "Generalized Description of Digital Modulation Methods",  the structure of the optimal receiver and the signal representation by means of basis functions were treated by the example of baseband transmission.

Equivalent low-pass model of carrier-modulated transmission methods

With the same systematics and the same uniformity,  band–pass systems will now also be considered which have already been described in earlier books or chapters,  namely

In the following,  we restrict ourselves to  linear modulation methods  and  coherent demodulation.  This means that  "the receiver must know exactly the frequency and phase of the carrier signal added to the transmitter". 

In the following chapter  "Carrier Frequency Systems with Non-Coherent Demodulation"  are discussed.

In the case of coherent demodulation,  the entire transmission system can be described in the  "equivalent low-pass domain",  and the relationship to baseband transmission is even more obvious than when band-pass signals are considered.

This results in the sketched model.  Complex quantities are marked by a yellow filled double arrow.  It should be noted with regard to this graph:

  • From the incoming bit stream  $\langle q_k \rangle \in \{\rm 0, \ L \}$,    $b$  data bits each are converted serially/parallel.  These output bits result in the message  $m \in \{m_0, \hspace{0.05cm}\text{...} \hspace{0.05cm}, m_{M-1} \}$,  where  $M = 2^b$  indicates the level number.  For the following,  the message  $m = m_i$  is assumed.
  • In the  signal space allocation,   a complex amplitude coefficient  $a_i = a_{{\rm I}i} + {\rm j} \cdot a_{{\rm Q}i}$  is assigned to each message  $m_i$,  whose real part will form the  "in-phase component"  and whose imaginary part will form the  "quadrature component"  of the later transmitted signal.
  • At the output of the blue marked block   generation of the low-pass signal   the (in general) complex-valued  "equivalent low-pass signal"  is present,  where  $g_s(t)$  shall be limited for the time being to the range  $ 0 \le t \le T$  just like  $s_{\rm TP}(t)$.  The index  $i$  again provides an indication of the message  $m_i$ sent:
\[s_{\rm TP}(t) \big {|}_{m \hspace{0.05cm}= \hspace{0.05cm} m_i} = a_i \cdot g_s(t) = a_{{\rm I}i} \cdot g_s(t) + {\rm j} \cdot a_{{\rm Q}i} \cdot g_s(t)\]
  • By energy normalization one gets from the basic transmission pulse  $g_s(t)$  to the basis function
$$\varphi_1(t) = { g_s(t)}/{\sqrt{E_{gs}}} \hspace{0.4cm} {\rm with} \hspace{0.4cm} E_{gs} = \int_{0}^{T} g_s(t)^2 \,{\rm d} t$$
$$ \hspace{0.3cm} \Rightarrow \hspace{0.3cm} s_{\rm TP}(t) \big {|}_{m\hspace{0.05cm} =\hspace{0.05cm} m_i} = s_{{\rm I}i} \cdot \varphi_1(t) + s_{{\rm Q}i} \cdot {\rm j} \cdot \varphi_1(t) \hspace{0.05cm}.$$
  • While the coefficients   $a_{{\rm I}i}$   and   $a_{{\rm Q}i}$   are dimensionless,  the new coefficients   $s_{{\rm I}i}$   and   $s_{{\rm Q}i}$   have the unit  "root of energy"   ⇒   see section  "Nomenclature in the fourth main chapter":
$$s_{{\rm I}i} = {\sqrt{E_{gs}}} \cdot a_{{\rm I}i}\hspace{0.05cm}, $$
$$ s_{{\rm Q}i} = {\sqrt{E_{gs}}} \cdot a_{{\rm Q}i}\hspace{0.05cm}. $$
  • The equations show that the system considered here is completely described in the equivalent low-pass  $($German:  "Tiefpass"   ⇒   "TP"$)$  domain by one real basis function  $\varphi_1(t)$  and one purely imaginary basis function  $\psi_1(t) = {\rm j} \cdot \varphi_1(t)$  each,  or by a single complex basis function  $\xi_1(t)$. 
  • The gray shaded part shows the model for generating the band-pass signal  $s_{\rm BP}(t)$,  first the generation of the  "analytical signal"  $s_{\rm +}(t) = s_{\rm TP}(t) \cdot {\rm e}^{{\rm j}2\pi \cdot f_{\rm T} \cdot T}$  and then the real part formation.
  • The two basis functions of the band-pass signal  $s_{\rm BP}(t)$  result here as energy-normalized and time-limited to the range   $0 \le t \le T$   cosine and minus-sine oscillations, respectively.


Coherent demodulation and optimal receiver


In the following,  we always assume the equivalent low-pass signal unless explicitly stated otherwise.  In particular,  the signals 

AWGN channel model for complex signals
  • $s(t) = s_{\rm TP}(t)$  and 
  • $r(t) = r_{\rm TP}(t)$ 


in the graph are  "low-pass signals"  and thus generally complex.  The suffix  "TP"  is omitted in the remainder of this paper .

To this figure is to be noted:

  • The phase delay of the channel  $($i.e. a phase function increasing linearly with frequency$)$  is expressed in the low-pass range by the time-independent rotation factor   ${\rm e}^{{\rm j}\hspace{0.05cm} \phi}$. 
  • The signal  $n\hspace{0.05cm}'(t)$  describes a complex white Gaussian random process in the low-pass domain,  as given in the section  "N-dimensional Gaussian noise".  The apostrophe was added in order to be able to work with  $n(t)$  later in the overall system.
  • The receiver knows the channel phase   $\phi$   and corrects it by the conjugate-complex rotation factor  ${\rm e}^{-{\rm j}\hspace{0.05cm}\phi}$.  Thus,  the received signal in the equivalent low-pass range is:
\[r(t) = s(t) + n\hspace{0.05cm}'(t) \cdot {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.05cm}\phi}= s(t) + n(t) \hspace{0.05cm}.\]
  • The phase rotation does not change the properties of the circular symmetric noise   ⇒   $n(t) = n\hspace{0.05cm}'(t) \cdot {\rm e}^{-{\rm j}\hspace{0.05cm}\phi}$  has exactly the same statistical properties as  $n\hspace{0.05cm}'(t)$.  The left graphic in the figure above illustrates the facts just described.
  1. The right graph shows the overall system as used for the rest of the fourth main chapter.
  2. The AWGN channel is followed by an optimal receiver according to the section  "N-dimensional Gaussian noise".


$\text{Definition:}$  A  symbol error  occurs whenever  $\hat{m}$  does not match the sent message  $m$:

\[m = m_i \hspace{0.2cm} \cap \hspace{0.2cm} \hat{m} \ne m_i \hspace{0.05cm}.\]

On–off keying (2–ASK)


The simplest digital modulation method is  "On–off keying"  $\rm (OOK)$,  which has already been described in detail in the book  "Modulation Methods"  on the basis of its band-pass signals.  There,  this method was partly also called  "Amplitude Shift Keying"  $\rm (2–ASK)$.

Signal space constellations for on-off keying

This method can be characterized as follows:

  • OOK is a one-dimensional modulation method  $(N = 1)$  with  $s_{{\rm I}i} = \{0, E^{1/2}\}$  and  $s_{{\rm Q}i} \equiv 0$  or  $s_{{\rm I}i} \equiv 0$  and  $s_{{\rm Q}i} = \{0, -E^{1/2}\}$.  As an abbreviation,  $E = E_{g_s}$.
  • The first combination describes a cosinusoidal carrier signal,  the second combination a sinusoidal carrier.
  • Each bit is assigned to a binary symbol  $(b = 1, \ M = 2)$; thus,  no serial/parallel converter is needed.
  • For equally probable symbols,  which is assumed for what follows,  both the  "mean energy per symbol"  $(E_{\rm S})$  and the  "mean energy per bit"  $(E_{\rm B})$  are equal to  $E/2$.
  • The optimal OOK receiver virtually projects the complex–valued received signal  $r(t)$  onto the basis function  $\varphi_1(t)$,  if one starts from the left sketch  (cosine carrier).
  • Because of  $N = 1$,  the noise can be one-dimensional with the variance  $\sigma_n^2 = N_0/2$. 
\[p_{\rm S} = {\rm Pr}({\cal{E}}) = {\rm Q} \left ( \frac{d/2}{\sigma_n}\right ) = {\rm Q} \left ( \sqrt{\frac{E}{2 N_0}}\right ) = {\rm Q} \left ( \sqrt{{E_{\rm S}}/{N_0}}\right ) \hspace{0.05cm}.\]
  • Since each bit is mapped to one symbol,  the average bit error probability  $p_{\rm B}$  is exactly:
\[p_{\rm B} = {\rm Q} \left ( \sqrt{{E_{\rm S}}/{N_0}}\right ) = {\rm Q} \left ( \sqrt{{E_{\rm B}}/{N_0}}\right ) \hspace{0.05cm}.\]

Binary phase shift keying (BPSK)


The very often used method  "Binary Phase Shift Keying"  $\rm (BPSK)$,  which was already described in detail in the chapter  "Linear Digital Modulation"  of the book "Modulation Methods"  using the band–pass signals  $($typical:   phase jumps$)$,  differs from  "On–off keying"  by a constant envelope.

For the signal space points,  $\boldsymbol{s}_1 = -\boldsymbol{s}_0$ always holds.  For example:

  • with cosine carrier:   $s_{{\rm I}i} = \{\pm E^{1/2}\}$  and  $s_{{\rm Q}i} \equiv 0$, 
  • with sinusoidal carrier:   $s_{{\rm I}i} \equiv 0$  and  $s_{{\rm Q}i} = \{\pm E^{1/2}\}$.
Signal space constellations of the BPSK

The improvements compared to on–off keying can be seen from the equations given in the graphic  $($in the field with green background$)$:

  • For a given normalization energy  $E$,  the distance between  $\boldsymbol{s}_0$  and  $\boldsymbol{s}_1$  is twice as large as with OOK.
  • This gives the error probability (both related to symbols and bits):
\[p_{\rm S} = p_{\rm B} = {\rm Pr}({\cal{E}}) = {\rm Q} \left ( \sqrt{{2 E}/{N_0}}\right ) = {\rm Q} \left ( \sqrt{{2 E_{\rm S}}/{N_0}}\right ) \hspace{0.05cm}.\]
  • Now  $E_{\rm S} = E_{\rm B} = E$  applies,  which means that the average energies per symbol or per bit are now twice as large as with OOK.
  • Because of factor  $2$  in the square root in Q-function's argument,  the BPSK error probability is noticeably lower than OOK with same   $E_{\rm S}$  and  $N_0$.
  • In other words:   With the same  $N_0$,  BPSK only requires half the symbol energy  $E_{\rm S}$  in order to achieve the same error probability as OOK.  The logarithmic gain is  $3 \ \rm dB$.

M–level amplitude shift keying (M–ASK)


In analogy to  "M–level baseband transmission",  we now consider  "M–level Amplitude Shift Keying"  $\text{(M–ASK)}$,  whose low-pass signal space constellation for the parameters  $b = 3$   ⇒   $M = 8$   ⇒   "$\text{8–ASK}$"  looks as follows.

The name  "M–ASK"  is not entirely accurate.  Rather,  it is a  "combined ASK/PSK method",  since e.g.

  • the two innermost signal space points  $(\pm 1)$  do not differ in terms of amplitude  ("envelope"),
  • but only in terms of phase  $(0^\circ$ or $180^\circ)$.
Signal room constellation of the 8-ASK


It should also be noted:

  • The  "average energy per symbol"  can be calculated as follows for this one-dimensional modulation method using symmetry:
\[E_{\rm S} = \frac{2}{M} \cdot \sum_{k = 1}^{M/2} (2k -1)^2 \cdot E = \frac{M^2 -1}{3} \cdot E \hspace{0.05cm}.\]
  • Since each of the  $M$  symbols represents  $b = \log_2 (M)$  bits,  the  "average energy per bit"  is:
$$E_{\rm B} = \frac{E_{\rm S}}{b} = \frac{E_{\rm S}}{{\rm log_2}\, (M)} =\frac{M^2 -1}{3 \cdot {\rm log_2}\, (M)} \cdot E$$
$$\Rightarrow\hspace{0.3cm}M= 8\hspace{-0.1cm}: \hspace{0.2cm} E_{\rm S}/E = 21 \hspace{0.05cm}, \hspace{0.2cm}E_{\rm B}/E = 7\hspace{0.05cm}.$$
  • The probability that one of the two outer symbols is falsified due to AWGN noise is therefore the same:
\[{\rm Pr}({\cal{E}} \hspace{0.05cm}|\hspace{0.05cm} \text{outer symbol)} = {\rm Q} \left ( \sqrt{{2 E}/{N_0}}\right )\hspace{0.05cm}.\]
  • The falsification probability of the  $M-2$  inner symbols is twice as large, since other decision regions border on both the right and the left.  By averaging one obtains for the  "symbol error probability":
\[p_{\rm S} = {\rm Pr}({\cal{E}}) = \frac{1}{M} \cdot \left [ 2 \cdot 1 \cdot {\rm Q} \left ( \sqrt{{2 E}/{N_0}}\right ) + (M-2) \cdot 2 \cdot {\rm Q} \left ( \sqrt{{2 E}/{N_0}}\right ) \right ] \]
\[\Rightarrow \hspace{0.3cm} p_{\rm S} = \frac{2 \cdot (M-1)}{M} \cdot {\rm Q} \left ( \sqrt{{2 E}/{N_0}}\right ) =\frac{2 \cdot (M-1)}{M} \cdot {\rm Q} \left ( \sqrt{\frac{6 \cdot E_{\rm S}}{(M^2-1) \cdot N_0}}\right ) \hspace{0.05cm}.\]
  • When using the  "Gray code"  $($neighboring symbols each differ by one bit$)$,  the  "bit error probability"  $p_{\rm B}$ is approximately factor  $b = \log_2 \ (M)$  smaller than the  $p_{\rm S}$:
\[p_{\rm B} \approx \frac{p_{\rm S}}{b} = \frac{2 \cdot (M-1)}{M \cdot {\rm log_2}\, (M)} \cdot {\rm Q} \left ( \sqrt{{6 \cdot {\rm log_2}\, (M)}/({M^2-1 }) \cdot { E_{\rm B}}/{ N_0}}\right ) \hspace{0.05cm}.\]

Quadrature amplitude modulation (M-QAM)


"Quadrature amplitude modulation"  $\text{(M–QAM)}$ results from a  M–ASK each for the  "in-phase component"  and the "quadrature component"  ⇒   $M^2$  signal space points.

Signal space constellation of 16-QAM
  • Each symbol now represents  $b = \log_2 (M)$  binary characters  (bits).
  • The graphic shows the special case  $M = 16$   ⇒   $b = 4$.
  • The bit assignment for  "Gray coding"  is shown in red (neighboring symbols each differ by one bit).


The  "average energy per symbol"   $(E_{\rm S})$   or the  "average energy per bit"   $(E_{\rm B})$  can be easily derived from the result for the  "M–ASK"   $($note the difference in the equation between an energy  "$E$"  and the expected value  "$\rm E[\text{...}]$"$)$:

\[E_{\rm S} = {\rm E} \left [ |s_{i}|^2 \right ] = {\rm E} \left [ |s_{{\rm I}i}|^2 \right ] + {\rm E} \left [ |s_{{\rm Q}i}|^2 \right ] = 2 \cdot {\rm E} \left [ |s_{{\rm I}i}|^2 \right ]\]
\[\Rightarrow \hspace{0.3cm} E_{\rm S} = 2 \cdot \frac{M_{\rm I}^2-1}{3} \cdot E = \frac{2}{3} \cdot (M-1) \cdot E\hspace{0.01cm},\hspace{0.3cm}E_{\rm B} =\frac{2 \cdot (M-1)}{3 \cdot {\rm log_2}\, (M)} \cdot E \hspace{0.01cm}.\]

In addition,   the M–level quadrature amplitude modulation shows the following properties:

  • The  "Union Bound"  can be used as an upper bound for the symbol error probability,  whereby it should be noted that an inner symbol can be falsified in four directions:
\[p_{\rm S} = {\rm Pr}({\cal{E}}) \le \left\{ \begin{array}{c} 4 \cdot p \\ 2 \cdot p \end{array} \right.\quad \begin{array}{*{1}c} {\rm for} \hspace{0.15cm} M \ge 16 \hspace{0.05cm}, \\ {\rm for} \hspace{0.15cm} M = 4 \hspace{0.05cm},\\ \end{array} \hspace{0.4cm} {\rm with} \hspace{0.4cm} p = {\rm Q} \left ( \sqrt{{2 E}/{N_0}}\right ) \hspace{0.05cm}.\]
  • If one takes into account that only the  $(b-2)^2$  inner points are falsified in four directions,  in contrast,  the four vertices are falsified only in two and the remaining points in three directions  (blue arrows in the graphic),  therefore one obtains with  $M = b^2$  the better approximation
\[p_{\rm S} \approx {1}/{M} \cdot \big [(b - 2)^2 \cdot 4p + 4 \cdot 2p + 4 \cdot (b - 2) \cdot 3p \big ] = {p}/{M} \cdot \big [ 4 \cdot M - 16 \cdot \sqrt{M} + 16 + 8 + 12 \cdot \sqrt{M} - 24\big ] \]
\[\Rightarrow \hspace{0.3cm} p_{\rm S} \approx {4 \cdot p}/{M} \cdot \big [ M - \sqrt{M} \big ] = 4p \cdot \hspace{0.05cm} \big [ 1 - {1}/{\sqrt{M}} \hspace{0.05cm}\big ] \]
\[\Rightarrow\hspace{0.3cm} M = 16\hspace{-0.1cm}: \hspace{0.1cm} p_{\rm S} \approx 3 \cdot p = 3 \cdot {\rm Q} \big ( \sqrt{{2 E}/{N_0}}\big ) = 3 \cdot {\rm Q} \big ( \sqrt{{1/5 \cdot E_{\rm S}}/{ N_0}}\big ) \hspace{0.05cm}.\]

$\text{Conclusion:}$  With  $M$–level QAM,   $E_{\rm B} = E_{\rm S}/\log_2 \hspace{0.05cm} (M)$  generally applies and with Gray coding,  $p_{\rm B} = p_{\rm S}/\log_2 \hspace{0.05cm} (M)$ is also applicable.

  • This gives the  mean bit error probability:
\[p_{\rm B} \approx \frac{4 \cdot (1 - 1/\sqrt{M})}{ {\rm log_2}\hspace{0.05cm} (M)} \cdot {\rm Q} \left ( \sqrt{ \frac{3 \cdot {\rm log_2}\, (M)}{M-1 } \cdot { E_{\rm B} }/{ N_0} }\right ) \hspace{0.05cm}.\]
  • The approximation is exactly valid for  $M \le 16$  if  – as assumed for the upper graphic –  no  "diagonal falsifications"  occur.
  • The special case  "4–QAM"  (without inner symbols)  is dealt with in  "Exercise 4.13"

Multi-level phase–shift keying (M–PSK)


In the case of multi-level phase modulation,  in which case the level number  $M$  is usually a power of two in practice,  all signal space points are evenly distributed on a circle with radius  $E^{1/2}$.  This means that  

Signal space constellation of the 8–PSK and 16–PSK
  1. $E_{\rm S} = E$  holds for the  "'average symbol energy",  and
  2. $E_{\rm B} = E_{\rm S}/b = E/\hspace{-0.05cm}\log_2 \hspace{0.05cm} (M)$ for the  "average energy per bit". 
  • For the in-phase and quadrature components of the signal space points  $\boldsymbol{s}_i$,  the general rule is  $(i = 0, \hspace{0.05cm}\text{...} \hspace{0.05cm}, \hspace{0.05cm}M-1)$:
$$s_{{\rm I}i} = \cos \left ( { 2\pi i}/{ M} + \phi_{\rm off} \right ) \hspace{0.05cm},$$
$$ s_{{\rm Q}i} = \sin \left ( { 2\pi i}/{ M} + \phi_{\rm off} \right )$$
$$\Rightarrow \hspace{0.2cm} || \boldsymbol{ s}_i || = \sqrt{ s_{{\rm I}i}^2 + s_{{\rm Q}i}^2} = 1 \hspace{0.05cm}.$$
  • The phase offset is set to  $\phi_{\rm off} = 0$  in the graphic above. The 4–PSK with  $\phi_{\rm off} = \pi/4 \ (45^\circ)$  is identical to the  "4–QAM".
  • The distance between two adjacent points is the same in all cases:
\[d_{\rm min} = d_{\rm 0, \hspace{0.05cm}1} = d_{\rm 1, \hspace{0.05cm}2} = \hspace{0.05cm}\text{...} \hspace{0.05cm} = d_{M-1, \hspace{0.05cm}0} = 2 \cdot \sqrt{E} \cdot \sin (\pi/M)\]
\[\Rightarrow\hspace{0.3cm} M = 4\hspace{-0.1cm}:\hspace{0.1cm}d_{\rm min}/E^{1/2} = \sqrt{2} \approx 1.414 \hspace{0.05cm}, \hspace{0.8cm} M = 8\hspace{-0.1cm}:\hspace{0.1cm}d_{\rm min}/E^{1/2} \approx 0.765 \hspace{0.05cm},\hspace{0.8cm} M = 16\hspace{-0.1cm}:\hspace{0.1cm}d_{\rm min}/E^{1/2} \approx 0.390 \hspace{0.05cm}.\]
  • The upper bound  $p_{\rm UB}$  for the AWGN symbol error probability  $p_{\rm S}$  after the  "Union Bound"  yields:
\[p_{\rm UB} = 2 \cdot {\rm Q} \left ( \sin ({ \pi}/{ M}) \cdot \sqrt{ { {2E_{\rm S}}}/{ N_0} }\right ) \ge p_{\rm S} \hspace{0.05cm}.\]
  • One recognises:
  1. For  $M = 2$  $\rm (BPSK)$  one obtains the estimate   $p_{\rm S} \le p_{\rm UB} =2 \cdot {\rm Q} \left ( \sqrt{ 2E_{\rm S}/{ N_0} }\right )$.  A comparison with the equation   $p_{\rm S} ={\rm Q} \left ( \sqrt{ 2E_{\rm S}/{ N_0} }\right )$   given on the  "BPSK section"  shows that in this special case the  "Union Bound"  returns double the value as the upper limit.
  2. The larger  $M$  is,  the more precisely  $p_{\rm UB}$  approximates the exact symbol error probability  $p_{\rm S}$.  The interactive SWF applet  "Multi-level PSK & Union Bound"  also gives the more accurate error probability obtained through simulation.


$\text{Conclusion:}$  The limit for the  M–PSK bit error probability  is,  assuming Gray code  ⇒  red labeling:

\[p_{\rm B} \le \frac{2}{ {\rm log_2} \hspace{0.05cm}(M)} \cdot {\rm Q} \left ( \sqrt{ {\rm log_2} \hspace{0.05cm}(M)} \cdot \sin ({ \pi}/{ M}) \cdot \sqrt{ { {2E_{\rm B} } }/{ N_0} }\right ) \hspace{0.05cm}.\]
  • However,  this limit only has to be applied for  $M > 4$. 
  • For  $M = 2$  (BPSK)  and  $M = 4$  (identity between 4–PSK and 4–QAM),  the bit error probability can be specified exactly:
$$p_{\rm B} = {\rm Q} \left ( \sqrt{ { {2E_{\rm B} } }/{ N_0} }\right ) \hspace{0.05cm}.$$

Binary frequency shift keying (2–FSK)


This type of modulation with parameter  $b = 1$   ⇒   $M = 2$   has already been described in detail in the section  "FSK – Frequency Shift Keying"  of the book  "Modulation Methods"  using the band-pass signals.

  • The two possible signal forms are represented by two different frequencies in the range  $0 \le t \le T$: 
\[s_{\rm BP0}(t) \hspace{-0.1cm} = \hspace{-0.1cm} A \cdot \cos( 2\pi \cdot( f_{\rm T} + \Delta f_{\rm A})\cdot t)\hspace{0.05cm},\]
\[ s_{\rm BP1}(t) \hspace{-0.1cm} = \hspace{-0.1cm} A \cdot \cos( 2\pi \cdot( f_{\rm T} - \Delta f_{\rm A})\cdot t)\hspace{0.05cm}.\]
  • $f_{\rm T}$  designates the  "carrier frequency"  and  $\Delta f_{\rm A}$  the (one-sided)  "frequency deviation".  The average energy per symbol or per bit is the same in each case:
\[E_{\rm S} = E_{\rm B} = E = \frac{A^2 \cdot T}{2} \hspace{0.05cm}.\]
  • The FSK in the equivalent low-pass signal space is now to be considered here.  Then:
\[s_{\rm TP0}(t) \hspace{-0.1cm} = \hspace{-0.1cm} \sqrt{E/T} \cdot {\rm e}^{\hspace{0.05cm}+{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm} 2\pi \hspace{0.03cm}\cdot \hspace{0.03cm} \Delta f_{\rm A} \hspace{0.03cm}\cdot t}\hspace{0.05cm},\hspace{0.2cm} 0 \le t \le T\hspace{0.05cm},\]
\[ s_{\rm TP1}(t) \hspace{-0.1cm} = \hspace{-0.1cm} \sqrt{E/T} \cdot {\rm e}^{\hspace{0.05cm}-{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm} 2\pi \hspace{0.03cm}\cdot \hspace{0.03cm} \Delta f_{\rm A} \hspace{0.03cm}\cdot t}\hspace{0.05cm},\hspace{0.2cm} 0 \le t \le T\hspace{0.05cm},\]
and for the  "inner product"  one obtains:
\[< \hspace{0.02cm} s_{\rm TP0}(t) \cdot s_{\rm TP1}(t) \hspace{0.02cm}> \hspace{0.1cm} = \hspace{-0.1cm} \int_{0}^{T} s_{\rm TP0}(t) \cdot s_{\rm TP1}^{\star}(t) \,{\rm d} t = A^2 \cdot \int_{0}^{T} {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm} 4\pi \hspace{0.03cm}\cdot \hspace{0.03cm} \Delta f_{\rm A} \hspace{0.03cm}\cdot t} \,{\rm d} t = \frac{A^2}{{\rm j} \cdot 4\pi \cdot \Delta f_{\rm A}} \cdot \big [ {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm} 4\pi \hspace{0.03cm}\cdot \hspace{0.03cm} \Delta f_{\rm A} \hspace{0.03cm}\cdot T} - 1 \big ] \hspace{0.05cm}.\]

$\text{Definition:}$  The  modulation index  $h = 2 \cdot \Delta f_{\rm A}\hspace{0.03cm}\cdot T$  is the ratio

  • between the total (bilateral) frequency deviation  $(2 \cdot \Delta f_{\rm A})$ 
  • and the symbol rate  $(1/T)$.


  • The two signals are  "orthogonal"  if this inner product is equal to zero:
Signal space constellation of the FSK, if  $h$  is an integer
$$< \hspace{0.02cm} s_{\rm TP0}(t) \cdot s_{\rm TP1}(t) \hspace{0.02cm}> \hspace{0.1cm} = \frac{A^2\cdot T}{{\rm j} \cdot 2\pi \cdot h} \cdot \left [ {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm} 2h} - 1 \right ] = 0$$
$$ \Rightarrow \hspace{0.3cm} h = 2 \cdot \Delta f_{\rm A} \cdot T = 1,\hspace{0.1cm} 2, \hspace{0.1cm}3,\ \text{ ... }\hspace{0.05cm}.$$
  • If the modulation index  $h$  is assumed to be an integer, the low-pass signals can be written in the form
\[s_{\rm TP0}(t) = \sqrt{E} \cdot \xi_1(t) \hspace{0.05cm},\]
\[s_{\rm TP1}(t) = \sqrt{E} \cdot \xi_2(t)\]
with complex basis functions:
$$\xi_1(t) = \sqrt{1/T} \cdot {\rm e}^{\hspace{0.05cm}+{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm} \pi \hspace{0.03cm}\cdot \hspace{0.03cm} h \hspace{0.03cm}\cdot \hspace{0.03cm}t/T}\hspace{0.05cm},\hspace{0.2cm} 0 \le t \le T\hspace{0.05cm},$$
$$ \xi_2(t)= \sqrt{1/T} \cdot {\rm e}^{\hspace{0.05cm}-{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm} \pi \hspace{0.03cm}\cdot \hspace{0.03cm} h \hspace{0.03cm}\cdot \hspace{0.03cm}t/T}\hspace{0.05cm},\hspace{0.2cm} 0 \le t \le T \hspace{0.05cm}.$$
  • The result is the signal space representation of the binary FSK outlined here.


$\text{Conclusions:}$ 

  • With an integer modulation index  $h$,  the low-pass signals   $s_{\rm TP0}(t)$  and   $s_{\rm TP1}(t)$  of the binary FSK are orthogonal to one another.
  • This results in the symbol error probability  (derivation in the graphic):
\[p_{\rm S} = {\rm Pr}({\cal{E} }) = {\rm Q} \left ( \sqrt{ { {E_{\rm S} } }/{ N_0} }\right ) \hspace{0.05cm}.\]
  • The bit error probability has the same value:   $p_{\rm B} = p_{\rm S}$.


Note:

  1. In contrast to the representation in  [KöZ08][1],  the frequency deviation  $\Delta f_{\rm A}$  is defined here on one side.
  2. Therefore,  the equations sometimes differ by a factor of  $2$.  However,  if you work with the modulation index  $h$,  there are no differences.

Minimum Shift Keying (MSK)


"Minimum Shift Keying"  $\rm (MSK)$  is a binary FSK system with the modulation index  $h = 0.5$   ⇒   frequency deviation $\Delta f_{\rm A} = 1/(2T)$. The graphic shows an MSK signal for the carrier frequency  $ f_{\rm T} = 4/T$:

Source signal and band-pass MSK signal
  • The two frequencies within the transmitted signal are  $ f_{\rm 0} = f_{\rm T} + 1/(4T)$  to represent the message  $m_0$  (yellow background)  and  $ f_{\rm 1} = f_{\rm T} -1/(4T)$   ⇒   message  $m_1$  (green background).
  • The graph also accounts for continuous phase adjustment at the transitions to further reduce the signal bandwidth.  This is then referred to as  "Continuous Phase Modulation"  $\rm (CPM)$.


Without this phase adjustment,  the two band-pass waveforms are:

\[s_{\rm BP0}(t) = \sqrt{2E/T} \cdot \cos( 2\pi f_0 t)\hspace{0.05cm},\hspace{0.2cm} 0 \le t \le T\hspace{0.05cm},\]
\[ s_{\rm BP1}(t) = \sqrt{2E/T} \cdot \cos( 2\pi f_1 t)\hspace{0.05cm},\hspace{0.2cm} 0 \le t \le T\hspace{0.05cm}.\]

If you form the inner product of the band-pass signals,  you get with the abbreviation  $f_{\rm \Delta} = f_0 - f_1$  and  $f_{\rm \Sigma} = f_0 + f_1$:

\[< \hspace{0.02cm} s_{\rm BP0}(t) \hspace{0.2cm} \cdot \hspace{0.2cm} s_{\rm BP1}(t) \hspace{0.02cm}> \hspace{0.2cm} = {2E}/{T} \cdot \int_{0}^{T} \cos( 2\pi f_0 t) \cdot \cos( 2\pi f_1 t)\,{\rm d} t = {E}/{T} \cdot \int_{0}^{T} \cos( 2\pi f_{\rm \Delta} t) \,{\rm d} t + {E}/{T} \cdot \int_{0}^{T} \cos( 2\pi f_{\rm \Sigma} t) \,{\rm d} t\]
\[ \Rightarrow \hspace{0.3cm}< \hspace{0.02cm} s_{\rm BP0}(t) \hspace{0.2cm} \cdot \hspace{0.2cm} s_{\rm BP1}(t) \hspace{0.02cm}> \hspace{0.2cm} = {E}/{T} \cdot \int_{0}^{T} \hspace{-0.1cm} \cos( \pi \cdot {t}/{T}) \,{\rm d} t + {E}/{T} \cdot \int_{0}^{T} \hspace{-0.1cm}\cos( 2\pi \cdot 2 f_{\rm T} \cdot t) \,{\rm d} t \hspace{0.05cm}.\]
  1. The first integral is zero  $($integral over  "cosine"  from  $0$  to  $\pi)$.
  2. For  $f_{\rm T} \gg 1/T$,  which can be assumed in practice,  the second integral also vanishes.
  3. This gives the inner product:     $< \hspace{0.02cm} s_{\rm BP0}(t) \cdot s_{\rm BP1}(t) \hspace{0.02cm}> \hspace{0.2cm}= 0 \hspace{0.05cm}.$


$\text{Conclusions:}$ 

(1)   This shows that the two band-pass signals are orthogonal for the modulation index  $h = 0.5$  $($i.e.  $\rm MSK)$  and all multiples thereof.

(2)   With the new real basis functions

\[\varphi_1(t) = \sqrt{2/T} \cdot \cos( 2\pi f_0 t)\hspace{0.05cm},\hspace{0.2cm} 0 \le t \le T\hspace{0.05cm},\]
\[ \varphi_2(t) = \sqrt{2/T} \cdot \cos( 2\pi f_1 t)\hspace{0.05cm},\hspace{0.2cm} 0 \le t \le T\]
one obtains exactly the same signal space constellation as for even-numbered   $h = 1, 2, 3, \ \text{ ...}$.

(3)   This results in the same  $($symbol resp. bit$)$  error probability:

\[p_{\rm S} = {\rm Pr}({\cal{E} }) = {\rm Q} \left ( \sqrt{ { {E_{\rm S} } }/{ N_0} }\right ) = p_{\rm B} \hspace{0.05cm}.\]

Exercises for the chapter


Exercise 4.11: On-Off Keying and Binary Phase Shift Keying

Exercise 4.11Z: OOK and BPSK once again

Exercise 4.12: Calculations for the 16-QAM

Exercise 4.13: Four-level QAM

Exercise 4.14: 8-PSK and 16-PSK

Exercise 4.14Z: 4-QAM and 4-PSK

Exercise 4.15: Optimal Signal Space Allocation

Exercise 4.16: Binary Frequency Shift Keying

References

  1. Kötter, R., Zeitler, G.: Nachrichtentechnik 2. Vorlesungsmanuskript, Lehrstuhl für Nachrichtentechnik, Technische Universität München, 2008.