Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Modulation Methods/Pulse Code Modulation"

From LNTwww
Line 153: Line 153:
 
#The spectrum  PR(f)  is in contrast to  P_δ(f)  not a Dirac comb  (all weights equal 1),  but the weights here are evaluated to the function  G_{\rm R}(f)/T_{\rm A} = T_{\rm R}/T_{\rm A} \cdot {\rm sinc}(f\cdot T_{\rm R}).  
 
#The spectrum  P_{\rm R}(f)  is in contrast to  P_δ(f)  not a Dirac comb  (all weights equal 1),  but the weights here are evaluated to the function  G_{\rm R}(f)/T_{\rm A} = T_{\rm R}/T_{\rm A} \cdot {\rm sinc}(f\cdot T_{\rm R}).  
 
#Because of the zero of the  \rm sinc-function,  the Dirac lines vanish here at  ±4f_{\rm A}.  
 
#Because of the zero of the  \rm sinc-function,  the Dirac lines vanish here at  ±4f_{\rm A}.  
#The spectrum  Q_{\rm A}(f)  results from the convolution with  Q(f).  The rectangle around  f = 0  has height  $T_{\rm R}/T_{\rm A} - Q_0, the proportions around  \mu - f_{\rm A} \ (\mu ≠ 0)$  are less high.  
+
#The spectrum  Q_{\rm A}(f)  results from the convolution with  Q(f).  The rectangle around  f = 0  has height  $T_{\rm R}/T_{\rm A} \cdot Q_0$,  the proportions around  $\mu \cdot f_{\rm A} \ (\mu ≠ 0)$  are lower.  
#If one uses an ideal, rectangular lowpass for signal reconstruction.
+
#If one uses for signal reconstruction an ideal,  rectangular low-pass
:$$H(f) = \left\{ \begin{array}{l} T_{\rm A}/T_{\rm R} = 4  \\ 0 \\  \end{array} \right.\quad
+
::$$H(f) = \left\{ \begin{array}{l} T_{\rm A}/T_{\rm R} = 4  \\ 0 \\  \end{array} \right.\quad
 
\begin{array}{*{5}c}{\rm{for}}\\{\rm{for}}  \\ \end{array}\begin{array}{*{10}c}
 
\begin{array}{*{5}c}{\rm{for}}\\{\rm{for}}  \\ \end{array}\begin{array}{*{10}c}
 
{\hspace{0.04cm}\left| \hspace{0.005cm} f\hspace{0.05cm} \right| < f_{\rm A}/2}\hspace{0.05cm},  \\
 
{\hspace{0.04cm}\left| \hspace{0.005cm} f\hspace{0.05cm} \right| < f_{\rm A}/2}\hspace{0.05cm},  \\
 
{\hspace{0.04cm}\left| \hspace{0.005cm} f\hspace{0.05cm} \right| > f_{\rm A}/2}\hspace{0.05cm},  \\
 
{\hspace{0.04cm}\left| \hspace{0.005cm} f\hspace{0.05cm} \right| > f_{\rm A}/2}\hspace{0.05cm},  \\
\end{array}$$
+
\end{array},$$
:so for the output spectrum&nbsp; V(f) = Q(f)&nbsp; and accordingly&nbsp; v(t) = q(t).
+
::so for the output spectrum&nbsp; V(f) = Q(f) &nbsp; &rArr; &nbsp; v(t) = q(t).
 +
 
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
 
\text{Conclusion:}&nbsp;  
 
\text{Conclusion:}&nbsp;  
*For natural sampling, a rectangular&ndash;low-pass filter is sufficient for signal reconstruction as for ideal sampling (with Dirac pulse).
+
*For natural sampling,&nbsp; '''a rectangular&ndash;low-pass filter is sufficient for signal reconstruction'''&nbsp; as for ideal sampling&nbsp; (with Dirac comb).
*However, for amplitude matching in the passband, a gain by the factor&nbsp; T_{\rm A}/T_{\rm R}&nbsp; must be considered. }}
+
*However,&nbsp; for amplitude matching in the passband,&nbsp; a gain by the factor&nbsp; T_{\rm A}/T_{\rm R}&nbsp; must be considered. }}
  
  
Line 173: Line 174:
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
 
\text{Definition:}&nbsp;  
 
\text{Definition:}&nbsp;  
In&nbsp; '''discrete sampling'''&nbsp; the multiplication of the Dirac pulse&nbsp; p_δ(t)&nbsp; with the source signal&nbsp; q(t)&nbsp; takes place - at least mentally - first and only afterwards the convolution with the square pulse&nbsp; g_{\rm R}(t):
+
In&nbsp; '''discrete sampling'''&nbsp; the multiplication of the Dirac com&nbsp; p_δ(t)&nbsp; with the source signal&nbsp; q(t)&nbsp; takes place first&nbsp; &ndash; at least mentally &ndash;&nbsp; and only afterwards the convolution with the rectangular pulse&nbsp; g_{\rm R}(t):
 
:$$q_{\rm A}(t) = \big [ {1}/{T_{\rm A} } \cdot p_{\rm \delta}(t)
 
:$$q_{\rm A}(t) = \big [ {1}/{T_{\rm A} } \cdot p_{\rm \delta}(t)
 
\cdot q(t)\big ]\star g_{\rm R}(t) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}Q_{\rm A}(f) = \big [ P_{\rm \delta}(f) \star Q(f) \big ] \cdot G_{\rm R}(f)/{T_{\rm A} } \hspace{0.05cm}.$$
 
\cdot q(t)\big ]\star g_{\rm R}(t) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}Q_{\rm A}(f) = \big [ P_{\rm \delta}(f) \star Q(f) \big ] \cdot G_{\rm R}(f)/{T_{\rm A} } \hspace{0.05cm}.$$
*It is irrelevant, but quite convenient, that here the factor&nbsp; 1/T_{\rm A}&nbsp; has been added to the valuation function&nbsp; G_{\rm R}(f)&nbsp; .  
+
*It is irrelevant,&nbsp; but quite convenient,&nbsp; that here the factor&nbsp; 1/T_{\rm A}&nbsp; has been added to the evaluation function&nbsp; G_{\rm R}(f).  
*Thus, $G_{\rm R}(f)/T_{\rm A} = T_{\rm R}/T_{\rm A} - {\rm si}(πfT_{\rm R}).$}}
+
*Thus,&nbsp; $G_{\rm R}(f)/T_{\rm A} = T_{\rm R}/T_{\rm A} \cdot {\rm sinc}(fT_{\rm R}).$}}
 +
 
  
 +
[[File:EN_Mod_T_4_1_S3c.png|right|frame| Spectrum when discretely sampled with a rectangular comb]]
  
The upper graph shows (highlighted in green) the spectral function&nbsp; P_δ(f) \star Q(f)&nbsp; after ideal sampling.&nbsp; In contrast, discrete sampling with a square pulse yields the spectrum&nbsp; Q_{\rm A}(f)&nbsp; corresponding to the lower graph.  
+
*The upper graph shows&nbsp; (highlighted in green)&nbsp; the spectral function&nbsp; P_δ(f) \star Q(f)&nbsp; after ideal sampling.&nbsp;  
 +
*In contrast, discrete sampling with a square pulse yields the spectrum&nbsp; Q_{\rm A}(f)&nbsp; corresponding to the lower graph.  
  
[[File:EN_Mod_T_4_1_S3c.png|right|frame| Spectrum when discretely sampled with a square pulse]]
 
  
 
You can see:  
 
You can see:  

Revision as of 15:47, 1 April 2022

# OVERVIEW OF THE FOURTH MAIN CHAPTER #


The fourth chapter deals with the digital modulation methods  »Amplitude Shift Keying«  \rm (ASK),  »Phase Shift Keying«  \rm (PSK)  and  »Frequency Shift Keying«  \rm (FSK)  as well as some modifications derived from them.  Most of the properties of the analog modulation methods mentioned in the last two chapters still apply.  Differences result from the now required  »decision component«  of the receiver.

We restrict ourselves here essentially to the  »system-theoretical and transmission aspects«.  The error probability is given only for ideal conditions.  The derivations and the consideration of non-ideal boundary conditions can be found in the book  "Digital Signal Transmission".

In detail are treated:

  • the  »Pulse Code Modulation«  \rm (PCM)  and its components  "Sampling"  –  "Quantization"  –   "Coding",
  • the  »linear modulation«  \rm (ASK)\rm (BPSK)  and  \rm (DPSK)  and associated demodulators,
  • the  »quadrature amplitude modulation«  \rm (QAM)  and more complicated signal space mappings,
  • the  »Frequency Shift Keying«  \rm (FSK)  as an example of non-linear digital modulation,
  • the FSK with  »continuous phase matching«  \rm (CPM)),  especially the  \rm (G)MSK  method.


Principle and block diagram


Almost all modulation methods used today work digitally.  Their advantages have already been mentioned in the  first chapter  of this book.  The first concept for digital signal transmission was already developed in 1938 by  Alec Reeves  and has also been used in practice since the 1960s under the name  "Pulse Code Modulation"  \rm (PCM).  Even though many of the digital modulation methods conceived in recent years differ from PCM in detail,  it is very well suited to explain the principle of all these methods.

The task of the PCM system is

  • to convert the analog source signal  q(t)  into the binary signal  q_{\rm C}(t)  – this process is also called   A/D conversion,
  • transmitting this signal over the channel,  where the receiver-side signal  v_{\rm C}(t)  is also binary because of the decision maker,
  • to reconstruct from the binary signal  v_{\rm C}(t)  the analog  (continuous-value as well as continuous-time)  sink signal  v(t)    ⇒   D/A conversion.
Principle of Pulse Code Modulation  \rm (PCM)

q(t)\ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,\ Q(f)   ⇒   source signal   (from German:  "Quellensignal"),  analog
q_{\rm A}(t)\ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,\ Q_{\rm A}(f)   ⇒   sampled source signal   (from German:  "abgetastet"   ⇒   "A")
q_{\rm Q}(t)\ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,\ Q_{\rm Q}(f)   ⇒   quantized source signal   (from German:  "quantisiert"   ⇒   "Q")
q_{\rm C}(t)\ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,\ Q_{\rm C}(f)   ⇒   coded source signal   (from German:  "codiert"   ⇒   "C"),  binary
s(t)\ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,\ S(f)   ⇒   transmitted signal   (from German:  "Sendesignal"),  digital
n(t)   ⇒   noise signal,  characerized by the power-spectral density  {\it Φ}_n(f),   analog r(t)= s(t) \star h_{\rm K}(t) + n(t)   ⇒   received signal,  h_{\rm K}(t)\ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,\ H_{\rm K}(f),  analog
  Note:   spectrum  R(f)  is due to stochastic component  n(t)  not specifiable
v_{\rm C}(t)\ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,\ V_{\rm C}(f)   ⇒   signal after decision,  binary
v_{\rm Q}(t)\ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,\ V_{\rm Q}(f)   ⇒   signal after PCM decoding,  M–level
  Note:   on the receiver side,  there is no counterpart to  "Quantization"
v(t)\ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,\ V(f)   ⇒   sink signal,  analog


Further it should be noted to this PCM block diagram:

  • The PCM transmitter  ("A/D converter")  is composed of three function blocks  Sampling - Quantization - PCM Coding  which will be described in more detail in the next sections.
  • The gray-background block  "Digital Transmission System"  shows  "transmitter"  (modulation),  "receiver"  (with decision unit),  and  "analog transmission channel"   ⇒   channel frequency response  H_{\rm K}(f)  and noise power-spectral density  {\it Φ}_n(f).
  • This block is covered in the first three chapters of the book  Digital Signal Transmission.  In chapter 5 of the same book,  you will find  Digital Channel Models  that phenomenologically describe the transmission behavior using the signals  q_{\rm C}(t)  and  v_{\rm C}(t).
  • Further, it can be seen from the block diagram that there is no equivalent for  "quantization"  at the receiver-side.  Therefore,  even with error-free transmission,  i.e.,  for  v_{\rm C}(t) = q_{\rm C}(t),  the analog sink signal  v(t)  will differ from the source signal  q(t).
  • As a measure of the quality of the digital transmission system,  we use the  Signal-to-Noise Power Ratio   ⇒   in short:   Sink-SNR  as the quotient of the powers of source signal  q(t)  and fault signal  ε(t) = v(t) - q(t):
\rho_{v} = \frac{P_q}{P_\varepsilon}\hspace{0.3cm} {\rm with}\hspace{0.3cm}P_q = \overline{[q(t)]^2}, \hspace{0.2cm}P_\varepsilon = \overline{[v(t) - q(t)]^2}\hspace{0.05cm}.
  • Here,  an ideal amplitude matching is assumed,  so that in the ideal case  (that is:   sampling according to the sampling theorem,  best possible signal reconstruction,  infinitely fine quantization)  the sink signal  v(t)  would exactly match the source signal  q(t).


We would like to refer you already here to the three-part  (German language)  learning video  "Pulse Code Modulation"  which contains all aspects of PCM.  Its principle is explained in detail in the first part of the video.

Sampling and signal reconstruction


Sampling  – that is, time discretization of the analog signal  q(t) –  was covered in detail in the chapter  "Discrete-Time Signal Representation"  of the book  "Signal Representation."  Here follows a brief summary of that section.

Time domain representation of sampling

The graph illustrates the sampling in the time domain: 

  • The  (blue)  source signal  q(t)  is  "continuous-time",  the (green) signal sampled at a distance  T_{\rm A}  is  "discrete-time". 
  • The sampling can be represented by multiplying the analog signal  q(t)  by the  Dirac comb in the time domain  ⇒   p_δ(t):
q_{\rm A}(t) = q(t) \cdot p_{\delta}(t)\hspace{0.3cm} {\rm with}\hspace{0.3cm}p_{\delta}(t)= \sum_{\nu = -\infty}^{\infty}T_{\rm A}\cdot \delta(t - \nu \cdot T_{\rm A}) \hspace{0.05cm}.
  • The Dirac delta function at  t = ν \cdot T_{\rm A}  has the weight  T_{\rm A} \cdot q(ν \cdot T_{\rm A}).  Since  δ(t)  has the unit  "\rm 1/s"  thus  q_{\rm A}(t)  has the same unit as  q(t),  e.g.  "V".
  • The Fourier transform of the Dirac comb  p_δ(t)  is also a Dirac comb,  but now in the frequency domain   ⇒   P_δ(f).  The spacing of the individual Dirac delta lines is  f_{\rm A} = 1/T_{\rm A},  and all weights of  P_δ(f)  are  1:
p_{\delta}(t)= \sum_{\nu = -\infty}^{+\infty}T_{\rm A}\cdot \delta(t - \nu \cdot T_{\rm A}) \hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} P_{\delta}(f)= \sum_{\mu = -\infty}^{+\infty} \delta(f - \mu \cdot f_{\rm A}) \hspace{0.05cm}.
  • The spectrum  Q_{\rm A}(f)  of the sampled source signal  q_{\rm A}(t)  is obtained from the  Convolution Theorem, where  Q(f)\hspace{0.2cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.2cm} q(t): 
Q_{\rm A}(f) = Q(f) \star P_{\delta}(f)= \sum_{\mu = -\infty}^{+\infty} Q(f - \mu \cdot f_{\rm A}) \hspace{0.05cm}.

We refer you to part 2 of the  (German language)  learning video  "Pulse Code Modulation"  which explains sampling and signal reconstruction in terms of system theory.

\text{Example 1:}  The graph on the schematically shows the spectrum  Q(f)  of an analog source signal  q(t)  with frequencies up to  f_{\rm N, \ max} = 5 \ \rm kHz.

Periodic continuation of the spectrum by sampling
  • If one samples  q(t)  with the sampling rate  f_{\rm A} = 20 \ \rm kHz  (so at the respective distance  T_{\rm A} = 50 \ \rm µ s),  one obtains the periodic spectrum  Q_{\rm A}(f)  sketched in green.


  • Since the Dirac delta functions are infinitely narrow,  q_{\rm A}(t)  also contains arbitrary high frequency components and accordingly  Q_{\rm A}(f)  is extended to infinity (middle graph).


  • Drawn below  (in red)  is the spectrum  Q_{\rm A}(f)  of the sampled source signal for the sampling parameters  T_{\rm A} = 100 \ \rm µ s   ⇒   f_{\rm A} = 10 \ \rm kHz.


\text{Conclusion:}  From this example,  the following important lessons can be learned regarding sampling:

  1. If  Q(f)  contains frequencies up to  f_\text{N, max},  then according to the  Sampling Theorem  the sampling rate  f_{\rm A} ≥ 2 \cdot f_\text{N, max}  should be chosen.  At smaller sampling rate  f_{\rm A}  (thus larger spacing T_{\rm A})  overlaps of the periodized spectra occur,  i.e. irreversible distortions.
  2. If exactly  f_{\rm A} = 2 \cdot f_\text{N, max}  as in the lower graph of  \text{Example 1}, then  Q(f)  can be can be completely reconstructed from  Q_{\rm A}(f)  by an ideal rectangular low-pass filter  H(f)  with cutoff frequency  f_{\rm G} = f_{\rm A}/2.  The same facts apply in the PCM system  to extract  V(f)  from  V_{\rm Q}(f)  in the best possible way.
  3. On the other hand,  if sampling is performed with  f_{\rm A} > 2 \cdot f_\text{N, max}  as in the middle graph of the example,  a low-pass filter  H(f)  with a smaller slope can also be used on the receiver side for signal reconstruction,  as long as the following condition is met:
H(f) = \left\{ \begin{array}{l} 1 \\ 0 \\ \end{array} \right.\quad \begin{array}{*{5}c}{\rm{for} } \\{\rm{for} } \\ \end{array}\begin{array}{*{10}c} {\hspace{0.04cm}\left \vert \hspace{0.005cm} f\hspace{0.05cm} \right \vert \le f_{\rm N, \hspace{0.05cm}max},} \\ {\hspace{0.04cm}\left \vert\hspace{0.005cm} f \hspace{0.05cm} \right \vert \ge f_{\rm A}- f_{\rm N, \hspace{0.05cm}max}.} \\ \end{array}

Natural and discrete sampling


Multiplication by the Dirac comb provides only an idealized description of the sampling,  since a Dirac delta function  (duration T_{\rm R} → 0,  height 1/T_{\rm R} → ∞)  is not realizable.  In practice,  the  "Dirac comb"  p_δ(t)  must be replaced,  for example, by a  "rectangular comb"  p_{\rm R}(t)  with rectangle duration  T_{\rm R}  (see upper sketch):

Rectangular comb  (on the top),  natural and discrete sampling
p_{\rm R}(t)= \sum_{\nu = -\infty}^{+\infty}g_{\rm R}(t - \nu \cdot T_{\rm A}),
g_{\rm R}(t) = \left\{ \begin{array}{l} 1 \\ 1/2 \\ 0 \\ \end{array} \right.\quad \begin{array}{*{5}c}{\rm{f\ddot{u}r}}\\{\rm{f\ddot{u}r}} \\{\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{10}c}{\hspace{0.04cm}\left|\hspace{0.06cm} t \hspace{0.05cm} \right|} < T_{\rm R}/2\hspace{0.05cm}, \\{\hspace{0.04cm}\left|\hspace{0.06cm} t \hspace{0.05cm} \right|} = T_{\rm R}/2\hspace{0.05cm}, \\ {\hspace{0.005cm}\left|\hspace{0.06cm} t \hspace{0.05cm} \right|} > T_{\rm R}/2\hspace{0.05cm}. \\ \end{array}

T_{\rm R}  should be significantly smaller than the sampling distance  T_{\rm A}.

The graphic show two different sampling methods using the comb  p_{\rm R}(t):

  • In  natural sampling  the sampled signal  q_{\rm A}(t)  is obtained by multiplying the analog source signal  q(t)  by  p_{\rm R}(t).   Thus in the ranges  p_{\rm R}(t) = 1q_{\rm A}(t)  has the same progression as  q(t).
  • In  discrete sampling  the signal  q(t)  is  – at least mentally – first multiplied by the Dirac comb  p_δ(t).  Then each Dirac delta impulse  T_{\rm A} \cdot δ(t - ν \cdot T_{\rm A})  is replaced by a rectangular pulse  g_{\rm R}(t - ν \cdot T_{\rm A})  .


Here and in the following frequency domain consideration,  an acausal description form is chosen for simplicity. 

For a  (causal)  realization,  g_{\rm R}(t) = 1  would have to hold in the range from  0  to  T_{\rm R}  and not as here for  -T_{\rm R}/2 < t < T_{\rm R}/2.


Frequency domain view of natural sampling


\text{Definition:}  The  natural sampling  can be represented by the convolution theorem in the spectral domain as follows:

q_{\rm A}(t) = p_{\rm R}(t) \cdot q(t) = \left [ \frac{1}{T_{\rm A} } \cdot p_{\rm \delta}(t) \star g_{\rm R}(t)\right ]\cdot q(t) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}Q_{\rm A}(f) = \left [ P_{\rm \delta}(f) \cdot \frac{1}{T_{\rm A} } \cdot G_{\rm R}(f) \right ] \star Q(f) = P_{\rm R}(f) \star Q(f)\hspace{0.05cm}.


The graph shows the result for

  • an  (unrealistic)  rectangular spectrum  Q(f) = Q_0  limited to the range  |f| ≤ 4 \ \rm kHz,
  • the sampling rate  f_{\rm A} = 10 \ \rm kHz   ⇒   T_{\rm A} = 100 \ \rm µ s,  and
  • the rectangular pulse duration  T_{\rm R} = 25 \ \rm µ s   ⇒   T_{\rm R}/T_{\rm A} = 0.25.
Spectrum in natural sampling with rectangular comb


One can see from this plot:

  1. The spectrum  P_{\rm R}(f)  is in contrast to  P_δ(f)  not a Dirac comb  (all weights equal 1),  but the weights here are evaluated to the function  G_{\rm R}(f)/T_{\rm A} = T_{\rm R}/T_{\rm A} \cdot {\rm sinc}(f\cdot T_{\rm R}).
  2. Because of the zero of the  \rm sinc-function,  the Dirac lines vanish here at  ±4f_{\rm A}.
  3. The spectrum  Q_{\rm A}(f)  results from the convolution with  Q(f).  The rectangle around  f = 0  has height  T_{\rm R}/T_{\rm A} \cdot Q_0,  the proportions around  \mu \cdot f_{\rm A} \ (\mu ≠ 0)  are lower.
  4. If one uses for signal reconstruction an ideal,  rectangular low-pass
H(f) = \left\{ \begin{array}{l} T_{\rm A}/T_{\rm R} = 4 \\ 0 \\ \end{array} \right.\quad \begin{array}{*{5}c}{\rm{for}}\\{\rm{for}} \\ \end{array}\begin{array}{*{10}c} {\hspace{0.04cm}\left| \hspace{0.005cm} f\hspace{0.05cm} \right| < f_{\rm A}/2}\hspace{0.05cm}, \\ {\hspace{0.04cm}\left| \hspace{0.005cm} f\hspace{0.05cm} \right| > f_{\rm A}/2}\hspace{0.05cm}, \\ \end{array},
so for the output spectrum  V(f) = Q(f)   ⇒   v(t) = q(t).


\text{Conclusion:} 

  • For natural sampling,  a rectangular–low-pass filter is sufficient for signal reconstruction  as for ideal sampling  (with Dirac comb).
  • However,  for amplitude matching in the passband,  a gain by the factor  T_{\rm A}/T_{\rm R}  must be considered.


Frequency domain view of discrete sampling


\text{Definition:}  In  discrete sampling  the multiplication of the Dirac com  p_δ(t)  with the source signal  q(t)  takes place first  – at least mentally –  and only afterwards the convolution with the rectangular pulse  g_{\rm R}(t):

q_{\rm A}(t) = \big [ {1}/{T_{\rm A} } \cdot p_{\rm \delta}(t) \cdot q(t)\big ]\star g_{\rm R}(t) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}Q_{\rm A}(f) = \big [ P_{\rm \delta}(f) \star Q(f) \big ] \cdot G_{\rm R}(f)/{T_{\rm A} } \hspace{0.05cm}.
  • It is irrelevant,  but quite convenient,  that here the factor  1/T_{\rm A}  has been added to the evaluation function  G_{\rm R}(f).
  • Thus,  G_{\rm R}(f)/T_{\rm A} = T_{\rm R}/T_{\rm A} \cdot {\rm sinc}(fT_{\rm R}).


Spectrum when discretely sampled with a rectangular comb
  • The upper graph shows  (highlighted in green)  the spectral function  P_δ(f) \star Q(f)  after ideal sampling. 
  • In contrast, discrete sampling with a square pulse yields the spectrum  Q_{\rm A}(f)  corresponding to the lower graph.


You can see:

  • Each of the infinitely many partial spectra now has a different shape.  Only the middle spectrum around  f = 0.&nbsp is important;
  • All other spectral components are removed at the receiver side by the low pass of the signal reconstruction.
  • If one uses for this low pass again a rectangular filter with the gain around T_{\rm A}/T_{\rm R} in the passband, one obtains for the output spectrum:  
V(f) = Q(f) \cdot {\rm si}(\pi f T_{\rm R}) \hspace{0.05cm}.


\text{Conclusion:}  With discrete sampling and rectangular filtering, attenuation distortions gaccording to the weighting function  {\rm si}(πfT_{\rm R}).

  • These are the stronger, the larger  T_{\rm R}  is.  Only in the limiting case  T_{\rm R} → 0  holds {\rm si}(πfT_{\rm R}) = 1.
  • However, ideal equalization can fully compensate for these linear attenuation distortions.
  • To obtain  V(f) = Q(f)  respectively,  v(t) = q(t)  then must hold:
H(f) = \left\{ \begin{array}{l} (T_{\rm A}/T_{\rm R})/{\rm si}(\pi f T_{\rm R}) \\ 0 \\ \end{array} \right.\quad\begin{array}{*{5}c}{\rm{for} }\\{\rm{for} } \\ \end{array}\begin{array}{*{10}c} {\hspace{0.04cm}\left \vert \hspace{0.005cm} f\hspace{0.05cm} \right \vert < f_{\rm A}/2}\hspace{0.05cm}, \\ {\hspace{0.04cm}\left \vert \hspace{0.005cm} f\hspace{0.05cm} \right \vert > f_{\rm A}/2} \\ \end{array}


Quantization and quantization noise


The second functional unit  Quantization  of the PCM transmitter is used for value discretization.

  • For this purpose the whole value range of the analog source signal  (for example the range ± q_{\rm max})  is divided into  M  intervals.
  • Each sample  q_{\rm A}(ν ⋅ T_{\rm A})  is then assigned a representative  q_{\rm Q}(ν ⋅ T_{\rm A})  of the associated interval  (for example, the interval center) .


\text{Example 2:}  The graph illustrates quantization using the quantization step number as an example  M = 8.

To illustrate quantization with  M = 8  steps
  • In fact, a power of two is always chosen for  M  in practice because of the subsequent binary coding.
  • Each of the samples marked by circles  q_{\rm A}(ν - T_{\rm A})  is replaced by the corresponding quantized value  q_{\rm Q}(ν - T_{\rm A})  The quantized values are entered as crosses.
  • However, this process of value discretization is associated with an irreversible falsification.
  • The falsification  ε_ν = q_{\rm Q}(ν - T_{\rm A}) \ - \ q_{\rm A}(ν - T_{\rm A})  depends on the quantization level number  M  The following bound applies:
\vert \varepsilon_{\nu} \vert < {1}/{2} \cdot2/M \cdot q_{\rm max}= {q_{\rm max} }/{M}\hspace{0.05cm}.


\text{Definition:}  One refers to the root mean square error magnitude  ε_ν  as  quantization noise power:

P_{\rm Q} = \frac{1}{2N+1 } \cdot\sum_{\nu = -N}^{+N}\varepsilon_{\nu}^2 \approx \frac{1}{N \cdot T_{\rm A} } \cdot \int_{0}^{N \cdot T_{\rm A} }\varepsilon(t)^2 \hspace{0.05cm}{\rm d}t \hspace{0.3cm} {\rm with}\hspace{0.3cm}\varepsilon(t) = q_{\rm Q}(t) - q(t) \hspace{0.05cm}.


Notes:

  • For calculating the quantization noise power  P_{\rm Q}  the given approximation of  "spontaneous quantization"  is usually used. 
  • Here, one ignores sampling and forms the error signal from the continuous-time signals  q_{\rm Q}(t)  and  q(t).
  • P_{\rm Q}  also depends on the source signal  q(t)  .   Assuming that  q(t)  takes all values between  ±q_{\rm max}  with equal probability and the quantizer is designed exactly for this range, we get accordingly  Exercise 4.4:
P_{\rm Q} = \frac{q_{\rm max}^2}{3 \cdot M^2 } \hspace{0.05cm}.
  • In a speech or music signal, arbitrarily large amplitude values can occur - even if only very rarely.  In this case, for  q_{\rm max}  usually that amplitude value is used which is exceeded only at  1\%  all times (in amplitude).

PCM encoding and decoding


The block  PCM coding  is used to convert the discrete-time  (after sampling)  and discrete-value  (after quantization with  M  steps)  signal values  q_{\rm Q}(ν - T_{\rm A})  into a sequence of  N = {\rm log_2}(M)  binary values.   Logarithm to base 2   ⇒   Binary logarithm.

{{GraueBox|TEXT= \text{Example 3:}  Each binary value   ⇒   bit is represented by a rectangle of duration  T_{\rm B} = T_{\rm A}/N  resulting in the signal  q_{\rm C}(t)  .

[[File: Mod_T_4_1_S5a_vers2.png|center|frame | PCM coding with the dual code  (M = 8,\ N = 3)]

You can see:

  • The  dual code   is used here.  This means that the quantization intervals  \mu  are numbered consecutively from  0  to  M-1  and then written in simple binary.   With  M = 8  for example  \mu = 6   ⇔   110.
  • The three binary symbols of the coded signal  q_{\rm C}(t)  are obtained by replacing  0  by  L  ("Low") and  1  by  H  ("High").  In the example, this gives:    HHL HHL LLH LHL HLH LHH.
  • The bit duration  T_{\rm B}  is here shorter than the sampling distance by a factor  N = {\rm log_2}(M) = 3  T_{\rm A} = 1/f_{\rm A}, and the bit rate is  R_{\rm B} = {\rm log_2}(M) - f_{\rm A}.
  • If one uses the same mapping in decoding  (v_{\rm C}   ⇒   v_{\rm Q})  as in coding  (q_{\rm Q}   ⇒   q_{\rm C}), then,  if there are no transmission errors:     v_{\rm Q}(ν - T_{\rm A}) = q_{\rm Q}(ν - T_{\rm A}).
  • An alternative to dual code is  Gray code, where adjacent binary values differ only in one bit.  For  N = 3:
    \mu = 0LLL,     \mu = 1LLH,     \mu = 2LHH,     \mu = 3:   LHL,     \mu = 4HHL,     \mu = 5HHH,     \mu =6HLH,     \mu = 7HLL. }}

Signal-to-noise power ratio


The digital pulse code modulation  \rm (PCM)  is now compared to the analog modulation methods  \rm (AM, \ FM)  regarding the achievable sink SNR  ρ_v = P_q/P_ε  with AWGN noise.

Sink SNR at AM, FM, PCM 30/32

As denoted in previous chapters  (for example)  ξ = {α_{\rm K}}^2 - P_{\rm S}/(N_0 - B_{\rm NF})  the power parameter.  This summarizes different influences:

  • the channel transmission factor  α_{\rm K}  (quadratic),
  • the transmit power  P_{\rm S},
  • the AWGN noise power density  N_0  (reciprocal), and.
  • the signal bandwidth  B_{\rm NF}  (also reciprocal);
    for a harmonic oscillation:   Frequency  f_{\rm N}  instead of  B_{\rm NF}.


The two comparison curves for amplitude modulation (AM) and for frequency modulation (FM) can be described as follows:

  • Two-sideband FM without carrier:
ρ_v = ξ \ ⇒ \ 10 · \lg ρ_v = 10 · \lg \ ξ,
  • Frequency modulation with  η = 3:  
ρ_υ = 3/2 \cdot η^2 - ξ = 13.5 - ξ \ ⇒ \ 10 · \lg \ ρ_v = 10 · \lg \ ξ + 11.3 \ \rm dB.

The curve for the  PCM 30/32 system  should be interpreted as follows:

  • If the power parameter  ξ  is sufficiently large, then no transmission errors occur.  The error signal  ε(t) = v(t) \ - \ q(t)  is then due to quantization alone  (P_ε = P_{\rm Q}).
  • With the quantization step number  M = 2^N  holds approximately in this case:
\rho_{v} = \frac{P_q}{P_\varepsilon}= M^2 = 2^{2N} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{v}=20 \cdot {\rm lg}\hspace{0.1cm}M = N \cdot 6.02\,{\rm dB}
\Rightarrow \hspace{0.3cm} N = 8, \hspace{0.05cm} M =256\text{:}\hspace{0.2cm}10 \cdot {\rm lg}\hspace{0.1cm}\rho_{v}=48.16\,{\rm dB}\hspace{0.05cm}.
  • Note that the given equation is exactly valid only for a sawtooth shaped source signal.   However, for cosine shaped source signal the deviation from this is not very large.
  • As  ξ  (smaller transmit power or larger noise power density)  decreases, the transmission errors increase.  Thus  P_ε > P_{\rm Q}  and the sink-to-noise ratio becomes smaller.
  • The PCM  (with M = 256)  is superior to the analog methods  (AM and FM)  only in the lower and middle  ξ-range.  But if transmission errors do not play a role anymore, no improvement can be achieved by a larger  ξ  (horizontal curve section with yellow background).
  • An improvement is only achieved by increasing  N  (number of bits per sample)  ⇒   larger  M = 2^N  (number of quantization steps).   For example, for a  Compact Disc  (CD) with parameter  N = 16   ⇒   M = 65536  the value 
10 · \lg \ ρ_v = 96.32 \ \rm dB.

\text{Example 4:}  The following graph shows the limiting influence of quantization:

  • White dotted is the source signal  q(t),  green dotted is the sink signal  v(t)  after PCM with  N = 4   ⇒   M = 16.
  • Sampling times are marked by crosses.
  • Transfer errors are excluded for the time being.  Sampling and signal reconstruction are best fit to  q(t)  .


Influence of quantization with  N = 4  and  N = 8

This image can be interpreted as follows:

  • With  N = 8   ⇒   M = 256  the sink signal  v(t)  is indistinguishable from the source signal  q(t)  with the naked eye.  The white dotted signal curve applies approximately to both.
  • From the signal-to-noise ratio  10 · \lg \ ρ_v = 47.8 \ \rm dB  however, it can be seen that the quantization noise  (power  P_\varepsilon  of the error signal)  is only reduced by a factor  1. 6 - 10^{-5}  smaller than the power  P_q  of the source signal.  This SNR would already be clearly audible with a speech or music signal.
  • Although the source signal considered here is neither sawtooth nor cosine shaped, but is composed of several frequency components, the given approximation  ρ_v ≈ M^2   ⇒   10 · \lg \ ρ_υ = 48.16 \ \rm dB  deviates only insignificantly from the actual value.
  • In contrast, for  N = 4   ⇒   M = 16  deviations between the sink signal (marked in green) and the source signal (marked in white) can already be seen in the image, which is also quantitatively expressed by the very small signal-to-noise ratio  10 · \lg \ ρ_υ = 28.2 \ \rm dB 

.

Influence of transmission errors


Starting from the same analog signal  q(t)  as in the last section and a linear quantization with  N = 8 bits   ⇒   M = 256  the effects of transmission errors are now illustrated using the respective sink signal  v(t) .

Influence of a transmission error concerning  Bit 5'  at the dual code
  • The white dots again mark the source signal  q(t).  Without transmission error the sink signal  v(t)  has the same course when neglecting quantization.
  • Now, exactly one bit of the fifth sample at a time  q(5 - T_{\rm A}) = -0.715  is corrupted, where this sample has been coded as  LLHL LHLL'  .   This graph is based on dual code, meaning that the lowest quantization interval  (\mu = 0)  is represented with  LLLL LLLL'  and the highest interval  (\mu = 255)  is represented with  HHHH HHHH .
Table showing the results of the bit error analysis


The table shows the results of this analysis:

  • The specified signal-to-noise ratio  10 · \lg \ ρ_v  was calculated from the presented (very short) signal section of duration  10 - T_{\rm A} .


  • For each transmission error of  10 - 8 = 80  bits, this corresponds to a bit error rate of  1.25\%.


The results of this error analysis shown in the graph and table can be summarized as follows:

  • If only the last bit of the binary word is corrupted  (LSB:   Least Significant Bit,  LLHL LHLL   ⇒   LLHL LHLH),  then no difference from error-free transmission is visible to the naked eye  (white curve).   Nevertheless, the signal-to-noise ratio is reduced by   3.5 \ \rm dB  .
  • A transmission error of the fourth last bit  (green curve,  LLHLLHLL ⇒ LLHLHHLL)  already leads to a clearly detectable distortion by eight quantization intervals.   That is,   v(5T_{\rm A}) \ - \ q(5T_{\rm A}) = 8/256 - 2 = 0.0625  and the signal-to-noise ratio drops to   10 · \lg \ ρ_υ = 28.2 \ \rm dB.
  • Finally, the red curve shows the case where the MSB  (Most Significant Bit)  is corrupted:   LLHLLHLL ⇒ HLHLL.  This leads to distortion  v(5T_{\rm A}) \ - \ q(5T_{\rm A}) = 1  (corresponding to half the modulation range).  The signal-to-noise ratio is now only about   4 \ \rm dB.
  • At all sampling times except  5T_{\rm A}  matches  v(t)  exactly except for the quantization error with  q(t)  .   Outside these time points marked by yellow crosses, however, the single error at  5T_{\rm A}  leads to strong deviations in an extended range, which is due to the interpolation with the  \rm si-shaped impulse response of the reconstruction low-pass  H(f)  .


Estimation of SNR degradation due to transmission errors


Now we will try to determine the SNR curve of the PCM system taking into account bit errors, at least approximately.  We start from the following block diagram and further assume:

  • Each sample  q_{\rm A}(νT)  is quantized by  M  stages and quantized by  N = {\rm log_2} (M)  binary sign (bit).  In the example  M = 8   ⇒   N = 3.
  • The binary representation of  q_{\rm Q}(νT)  yields the amplitude coefficients  a_k\, (k = 1, \text{...} \hspace{0.08cm}, N), which can be corrupted by bit errors in the coefficients  b_k  .
  • Both  a_k  and  b_k  are  ±1, respectively.
  • A bit error  (b_k ≠ a_k)  occurs with probability  p_{\rm B}  .
  • Each bit is equally likely to be corrupted and in each PCM word there is at most one error   ⇒   only one of the  N  bits can be wrong.


For calculating PCM SNR with bit errors taken into account

From the diagram given in the graph, it can be seen for  N = 3  and natural binary coding (dual code):

  • A corruption of  a_1  changes the quantized value  q_{\rm Q}(νT)  by  ±A.
  • A corruption of  a_2  changes the quantized value  q_{\rm Q}(νT)  by  ±A/2..
  • A corruption of  a_3  changes the quantized value value  q_{\rm Q}(νT)  by  ±A/4.


By generalization, we obtain for the deviation  ε_k = υ_{\rm Q}(νT) \ - \ q_{\rm Q}(νT)  for the case when the amplitude coefficient  a_k  was transferred incorrectly:

\varepsilon_k = - a_k \cdot A \cdot 2^{-k +1} \hspace{0.05cm}.

For the  error noise power  after averaging over all corruption values  ε_k  (with  1 ≤ k ≤ N)  taking into account the bit error probability  p_{\rm B}:

P_{\rm F}= {\rm E}\big[\varepsilon_k^2 \big] = \sum\limits^{N}_{k = 1} p_{\rm B} \cdot \left ( - a_k \cdot A \cdot 2^{-k +1} \right )^2 =\ p_{\rm B} \cdot A^2 \cdot \sum\limits^{N-1}_{k = 0} 2^{-2k } = p_{\rm B} \cdot A^2 \cdot \frac{1- 2^{-2N }}{1- 2^{-2 }} \approx {4}/{3} \cdot p_{\rm B} \cdot A^2 \hspace{0.05cm}.
  • Here the summation formula of the geometric series and the approximation  1 - 2^{-2N } ≈ 1  are used.
  • For  N = 8   ⇒   M = 256  the associated relative error is, for example, about  \rm 10^{-5}.


Excluding transmission errors, the signal-to-noise power ratio  ρ_v = P_{\rm S}/P_{\rm Q}  has been found, where for a uniformly distributed source signal  (for example, sawtooth-shaped)  the signal power and quantization noise power are to be calculated as follows:

Sink SNR for PCM considering bit errors
P_{\rm S}={A^2}/{3}\hspace{0.05cm},\hspace{0.3cm}P_{\rm Q}= {A^2}/{3} \cdot 2^{-2N } \hspace{0.05cm}.

Taking into account the transfer errors, the above result gives:

\rho_{\upsilon}= \frac{P_{\rm S}}{P_{\rm Q}+P_{\rm F}} = \frac{A^2/3}{A^2/3 \cdot 2^{-2N } + A^2/3 \cdot 4 \cdot p_{\rm B}} = \frac{1}{ 2^{-2N } + 4 \cdot p_{\rm B}} \hspace{0.05cm}.

The graph shows  10 - \lg ρ_v  as a function of the (logarithmized) power parameter  ξ = P_{\rm S}/(N_0 - B_{\rm NF}), where  B_{\rm NF}  indicates the signal bandwidth.  Let the constant channel transmission factor be ideally  α_{\rm K} = 1.

  • But for the optimal binary system and AWGN noise, the power parameter is also  ξ = E_{\rm B}/N_0  (energy per bit related to noise power density).
  • The bit error probability is then given by the Gaussian error function  {\rm Q}(x)  as follows:
p_{\rm B}= {\rm Q} \left ( \sqrt{{2E_{\rm B}}/{N_0} }\right ) \hspace{0.05cm}.
  • For  N = 8   ⇒   2^{-2{\it N} } = 1.5 - 10^{-5}  and  10 - \lg \ ξ = 6 \ \rm dB   ⇒   p_{\rm B} = 0.0024  (point marked in red) results:
\rho_{\upsilon}= \frac{1}{ 1.5 \cdot 10^{-5} + 4 \cdot 0.0024} \approx 100 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}10 \cdot {\rm lg} \hspace{0.15cm}\rho_{\upsilon}\approx 20\,{\rm dB} \hspace{0.05cm}.
  • This small  ρ_v value goes back to the term  4 · 0.0024  in the denominator  (influence of the transmission error)  while in the horizontal section of the curve for each  N  (number of bits per sample) the term  \rm 2^{-2{\it N} }  dominates - i.e. the quantization noise.

Nonlinear quantization


Often the quantization intervals are not chosen equally large, but one uses a finer quantization for the inner amplitude range than for large amplitudes.  There are several reasons for this:

  • In audio signals, distortions of the quiet signal components  (i.e. values near the zero line)  are subjectively perceived as more disturbing than an impairment of large amplitude values.
  • Such an uneven quantization also leads to a larger sink-interval for such a music or speech signal, because here the signal amplitude is not evenly distributed.


The graph shows a speech signal  q(t)  and its amplitude distribution  f_q(q)   ⇒   Probability density function

Uniform quantization of a speech signal

This is the  Laplace distribution, which can be approximated as follows:

  • by a continuous two-sided exponential distribution, and.
  • by a Dirac function  δ(q)  to account for the speech pauses (magenta colored).


In the graph, nonlinear quantization is only implied, for example, by means of the 13-segment characteristic, which is described in more detail in the  Exercise 4.5 :

  • The quantization intervals here become wider and wider towards the edges section by section.
  • The more frequent small amplitudes, on the other hand, are quantized very finely.

Compression and expansion


Non-uniform quantization can be realized, for example, by.

  • the sampled values  q_{\rm A}(ν - T_{\rm A})  are first deformed by a nonlinear characteristic  q_{\rm K}(q_{\rm A})  and
  • subsequently, the resulting output values  q_{\rm K}(ν · T_{\rm A})  are uniformly quantized.
Realization of a non-uniform quantization




This results in the signal chain sketched opposite.

\text{Conclusion:}  Such non-uniform quantization means:

  • Through the nonlinear characteristic  q_{\rm K}(q_{\rm A})  small signal values are amplified and large values are attenuated   ⇒   Compression.
  • This deliberate signal distortion is undone at the receiver by the inverse function  v_{\rm E}(υ_{\rm Q})    ⇒   expansion.
  • The total process of transmit-side compression and receiver-side expansion is also called  'companding.


For the PCM system 30/32, the  Comité Consultatif International des Télégraphique et Téléphonique  (CCITT) recommended the so-called A characteristic:

y(x) = \left\{ \begin{array}{l} \frac{1 + {\rm ln}(A \cdot x)}{1 + {\rm ln}(A)} \\ \frac{A \cdot x}{1 + {\rm ln}(A)} \ - \frac{1 + {\rm ln}( - A \cdot x)}{1 + {\rm ln}(A)} \end{array} \right.\quad\begin{array}{*{5}c}{\rm{for}}\\{\rm{for}}\\{\rm{for}} \end{array}\begin{array}{*{10}c}1/A \le x \le 1\hspace{0.05cm}, \ - 1/A \le x \le 1/A\hspace{0.05cm}, \ - 1 \le x \le - 1/A\hspace{0.05cm}. \end{array}
  • Here, for abbreviation  x = q_{\rm A}(ν - T_{\rm A}) and y = q_{\rm K}(ν - T_{\rm A})  is used.
  • This characteristic curve with the value  A = 87.56  introduced in practice has a constantly changing slope.
  • For more details on this type of non-uniform quantization, see the  Exercise 4.5.


Note:   In the third part of the tutorial video  Pulse code modulation  are covered:

  • the definition of signal-to-noise power ratio (SNR),
  • the influence of quantization noise and transmission errors,
  • the differences between linear and nonlinear quantization.


Exercises for the chapter


Exercise 4.1: PCM System 30/32

Exercise 4.2: Low-Pass for Signal Reconstruction

Exercise 4.2Z: About the Sampling Theorem

Exercise 4.3: Natural and Discrete Sampling

Exercise 4.4: About the Quantization Noise

Exercise 4.4Z: Signal-to-Noise Ratio with PCM

Exercise 4.5: Non-Linear Quantization

Exercise 4.6: Quantization Characteristics