Difference between revisions of "Digital Signal Transmission"

From LNTwww
Line 1: Line 1:
The focus of this book is the  '''Calculation of the Error Probability''',  which is the decisive quality feature for digital systems.
+
===Brief summary===
*The description is mainly in baseband,  but most of the results can also be applied to digital carrier frequency systems.
 
  
*In order to understand the five chapters of this book, a basic knowledge of  [[Signal Representation|"Signal Representation"]]  and  [[Theory_of_Stochastic_Signals|"Stochastic Signal Theory"]]  is assumed,&nbsp which you can acquire e.g. with the help of the first and third books of this tutorial series.
+
{{BlueBox|TEXT=The focus of this book is the  »'''calculation of the error probability'''«,  which is the decisive quality feature for digital systems.  The description is mainly in baseband,  but most of the results can also be applied to the digital carrier frequency systems. 
 +
# Error probability and optimization of baseband transmission systems.  Properties of Nyquist systems.  First and second Nyquist criteria. 
 +
# Fundamentals of line coding:  Redundancy-free codes,  blockwise  $($4B3T$)$  and  symbolwise encoding  $($pseudoternary codes$)$.  Power spectral density.   
 +
# Optimization considering intersymbol interference:  Eye diagram,  linear Nyquist equalization,  decision feedback equalization,  Viterbi receiver.   
 +
# Generalized description of digital modulation schemes:  Basis functions and vector spaces,  coherent and incoherent demodulation.     
 +
# Digital channel models:  Error distance distribution and error correlation function.  BSC  model.  Gilbert/Elliott and McCullough bundle error models.
  
  
Here first a  »'''content overview'''«  on the basis of the  »'''five main chapters'''«  with a total of  »'''26 individual chapters«''':
+
<u>Notes:</u>
 +
*A basic knowledge of&nbsp; "[[Signal Representation]]"&nbsp; and &nbsp;[[Theory_of_Stochastic_Signals|"Stochastic Signal Theory"]]&nbsp; $($Books 1 and 3$)$&nbsp; is assumed for understanding this book.
 +
 
 +
*There are certain,&nbsp; quite intentional overlaps with the book &nbsp;[[Modulation Methods|"Modulation Methods"]].
 +
 
 +
*Mostly a time-variant channel is assumed.&nbsp; Time invariance is dealt with in the books&nbsp; [[Mobile_Communications|"Mobile Communications"]]&nbsp; and&nbsp; [[Examples_of_Communication_Systems|"Examples_of_Communication_Systems"]]&nbsp;.
 +
 
 +
 
 +
&rArr; &nbsp; Here first an&nbsp; &raquo;'''Overview of contents'''&laquo;&nbsp; on the basis of the &nbsp;&raquo;'''five main chapters'''&laquo;&nbsp; with a total of&nbsp; &raquo;'''26 individual chapters'''&laquo;&nbsp; and&nbsp; &raquo;'''201 sections''''&laquo;.}}
  
  
Line 53: Line 65:
  
 
{{Collapsible-Fuß}}
 
{{Collapsible-Fuß}}
 +
 +
{{BlaueBox|TEXT=
 +
In addition to these theory pages,&nbsp; we also offer exercises and multimedia modules on this topic,&nbsp; which could help to clarify the teaching material:
 +
 +
$(1)$&nbsp; &nbsp; [https://en.lntwww.de/Category:Digital_Signal_Transmission:_Exercises  $\text{Exercises}$]
 +
 +
$(2)$&nbsp; &nbsp; [[LNTwww:Learning_Videos_to_"Digital_Signal_Transmission"|$\text{Learning videos}$]]
 +
 +
$(3)$&nbsp; &nbsp; [[LNTwww:Applets_to_"Digital_Signal_Transmission"|$\text{Applets}$]]&nbsp;}}
 +
 +
 +
===Further links===
 +
 +
{{BlaueBox|TEXT=
 +
$(4)$&nbsp; &nbsp; [[LNTwww:Bibliography_to_"Modulation_Methods"|$\text{Bibliography}$]]
 +
 +
$(5)$&nbsp; &nbsp; [[LNTwww:Imprint_for_the_book_"Modulation_Methods"|$\text{Impressum}$]]}}
 +
<br><br>
 +
  
 
In addition to these theory pages,&nbsp; we also offer tasks and multimedia modules on this topic,&nbsp; which could help to clarify the teaching material:
 
In addition to these theory pages,&nbsp; we also offer tasks and multimedia modules on this topic,&nbsp; which could help to clarify the teaching material:

Revision as of 16:54, 19 March 2023

Brief summary

The focus of this book is the  »calculation of the error probability«,  which is the decisive quality feature for digital systems.  The description is mainly in baseband,  but most of the results can also be applied to the digital carrier frequency systems.

  1. Error probability and optimization of baseband transmission systems.  Properties of Nyquist systems.  First and second Nyquist criteria.
  2. Fundamentals of line coding:  Redundancy-free codes,  blockwise  $($4B3T$)$  and  symbolwise encoding  $($pseudoternary codes$)$.  Power spectral density.
  3. Optimization considering intersymbol interference:  Eye diagram,  linear Nyquist equalization,  decision feedback equalization,  Viterbi receiver.
  4. Generalized description of digital modulation schemes:  Basis functions and vector spaces,  coherent and incoherent demodulation.
  5. Digital channel models:  Error distance distribution and error correlation function.  BSC model.  Gilbert/Elliott and McCullough bundle error models.


Notes:


⇒   Here first an  »Overview of contents«  on the basis of the  »five main chapters«  with a total of  »26 individual chapters«  and  »201 sections'«.


Contents

In addition to these theory pages,  we also offer exercises and multimedia modules on this topic,  which could help to clarify the teaching material:

$(1)$    $\text{Exercises}$

$(2)$    $\text{Learning videos}$

$(3)$    $\text{Applets}$ 


Further links




In addition to these theory pages,  we also offer tasks and multimedia modules on this topic,  which could help to clarify the teaching material:



$\text{Further links:}$

$(1)$    $\text{Bibliography for the book}$

$(2)$    $\text{General notes about the book}$   (authors,  other participants,  materials as a starting point for the book,  list of sources)