Difference between revisions of "Signal Representation/Equivalent Low-Pass Signal and its Spectral Function"

From LNTwww
 
(72 intermediate revisions by 4 users not shown)
Line 1: Line 1:
 
   
 
   
 
{{Header
 
{{Header
|Untermenü=Bandpass Signals
+
|Untermenü=Band-Pass Signals
 
|Vorherige Seite=Analytical Signal and Its Spectral Function
 
|Vorherige Seite=Analytical Signal and Its Spectral Function
|Nächste Seite=Time Discrete Signal Representation
+
|Nächste Seite=Discrete-Time Signal Representation
 
}}
 
}}
  
==Motivation for Describing in the Equivalent Low Pass Range==
+
==Motivation for describing in the equivalent low-pass range==
 
<br>
 
<br>
The following figure shows a possible structure of a message transmission system:
+
The following figure shows a possible structure of a transmission system:
*Often the low frequency source signal&nbsp; $q(t)$&nbsp; is converted into a bandpass signal&nbsp; $s(t)$&nbsp; &nbsp; &rArr; &nbsp; '''modulation''.
+
[[File:EN_Sig_T_4_3_S1.png|right|frame|Block diagram of a band-pass transmission system]]
*After transmission, the received signal&nbsp; $r(t)$&nbsp; - compared to the transmit signal&nbsp; $s(t)$&nbsp; possibly distorted and with (noise) interference applied - must be reset to the original frequency range &nbsp; &rArr; &nbsp; '''Demodulation''.
 
*The sink signal&nbsp; $v(t)$, which should match the source signal&nbsp; $q(t)$&nbsp; as closely as possible, is then again a low pass signal.
 
  
 +
*Often the low-frequency source signal&nbsp; $q(t)$&nbsp; is converted into a band-pass signal&nbsp; $s(t)$&nbsp; &nbsp; &rArr; &nbsp; &raquo;'''modulation'''&laquo;.
 +
 +
*After transmission,&nbsp; the received signal&nbsp; $r(t)$&nbsp; &ndash; compared to the transmitted signal&nbsp; $s(t)$&nbsp; possibly distorted and with interference&nbsp; $($noise$)$&nbsp; applied &ndash; must be reset to the original frequency range &nbsp; &rArr; &nbsp; &raquo;'''demodulation'''&laquo;.
 +
 +
*The sink signal&nbsp; $v(t)$, which should match the source signal&nbsp; $q(t)$&nbsp; as closely as possible,&nbsp; is then again a low-pass signal.
 +
<br clear=All>
 +
Modulation and demodulation are therefore fundamental components of a transmission system,&nbsp; which are dealt in detail in the book&nbsp; [[Modulation_Methods|&raquo;Modulation Methods&laquo;]].&nbsp; A short summary can be found in the first chapter&nbsp; [[Signal_Representation/Principles_of_Communication|&raquo;Principles of Communication&laquo;]]&nbsp; of this book.
  
[[File:EN_Sig_T_4_3_S1.png|center|frame|Block Diagram of a Bandpass Transmission System]]
+
The investigation,&nbsp; simulation,&nbsp; optimization,&nbsp; and dimensioning of band-pass systems are mostly done in the&nbsp; &raquo;equivalent low-pass range}&laquo;,&nbsp; for which the following reasons can be given:
 +
*If quality characteristics&nbsp; $($bandwidth efficiency,&nbsp; signal-to-noise ratio,&nbsp; bit error rate,&nbsp;  etc.$)$&nbsp; of a low-pass system are known,&nbsp; the corresponding values of related band-pass systems can be derived from them relatively easily.&nbsp; Examples are the digital modulation methods&nbsp; [[Modulation_Methods/Linear_Digital_Modulation#ASK_.E2.80.93_Amplitude_Shift_Keying|&raquo;Amplitude Shift Keying&laquo;]]&nbsp; $\text{(ASK)}$&nbsp; and&nbsp; [[Modulation_Methods/Linear_Digital_Modulation#BPSK_.E2.80.93_Binary_Phase_Shift_Keying|&raquo;Binary Phase Shift Keying&laquo;]]&nbsp; $\text{(BPSK)}$,&nbsp; whose performance variables can be&nbsp; "extrapolated"&nbsp; from the comparable&nbsp; [[Digital_Signal_Transmission/System_Components_of_a_Baseband_Transmission_System#Simplified_system_model|&raquo;baseband system&raquo;]]&nbsp; $($i.e.,&nbsp; without modulator and demodulator$)$.
  
Modulation and demodulation are therefore fundamental components of a transmission system, which are dealt with in detail in the book&nbsp; [[Modulation_Methods]]&nbsp;. A short summary can be found in the first chapter&nbsp; &nbsp; [[Signal_Representation/Principles_of_Communication|Principles of Message Transmission]]&nbsp; of this book.
+
*Individual subchannels in a so-called&nbsp; [[Modulation_Methods/Objectives_of_Modulation_and_Demodulation#Channel_bundling_.E2.80.93_Frequency_Division_Multiplexing|&raquo;Frequency Division Multiplex&laquo;]]&nbsp; system,&nbsp; which differ by different carrier frequencies,&nbsp; can often be considered qualitatively equivalent.&nbsp; Therefore,&nbsp; it is sufficient to limit the calculation and dimensioning to a single channel and to perform these investigations in the equivalent low-pass range &ndash; i.e. without considering the specific carrier frequency.
  
The investigation, simulation, optimization, and dimensioning of bandpass systems are mostly done in the&nbsp; '''equivalent low pass range'', for which the following reasons can be given
+
*It is often the case that the bandwidth of a communication connection is orders of magnitude smaller than the carrier frequency.&nbsp; For example,&nbsp; in the&nbsp; [[Examples_of_Communication_Systems/Allgemeine_Beschreibung_von_GSM|&raquo;GSM standard&laquo;]]&nbsp; the individual channels are located in the frequency range around&nbsp; $900\ \rm MHz$&nbsp; $($&raquo;D-Network&laquo;$)$&nbsp; and &nbsp; $1800\ \rm MHz$&nbsp; $($&raquo;E-Network&laquo;$)$,&nbsp; while each channel has only a small bandwidth of&nbsp; $200\ \rm kHz$.&nbsp; Therefore a simulation in the equivalent low-pass range is much less complex than a simulation of the corresponding band-pass signals.
*If quality characteristics (bandwidth efficiency, signal-to-noise ratio, bit error rate, power requirements, etc.) of a low pass system are known, the corresponding values of related bandpass systems can be derived from them relatively easily. Examples are the digital modulation methods&nbsp; [[Modulation_Methods/Lineare_digitale_Modulationsverfahren#ASK_.E2.80.93_Amplitude_Shift_Keying|Amplitude Shift Keying]]&nbsp; (ASK) and&nbsp; [[Modulation_Methods/Lineare_digitale_Modulationsverfahren#BPSK_.E2.80.93_Binary_Phase_Shift_Keying|Binary Phase Shift Keying]]&nbsp; (BPSK), whose performance variables can be "extrapolated" from the comparable&nbsp; [[Digital_Signal_Transmission/Systemkomponenten_eines_Basisbandübertragungssystems#Vereinfachtes_Systemmodell|baseband system]]&nbsp; (i.e., without modulator and demodulator).
 
  
*Individual subchannels in a so-called [[Modulation_Methods/Zielsetzung_von_Modulation_und_Demodulation#B.C3.BCndelung_von_Kan.C3.A4len_.E2.80.93_Frequenzmultiplex|frequency division multiplex system]], which differ by different carrier frequencies, can often be considered qualitatively equivalent. Therefore, it is sufficient to limit the calculation and dimensioning to a single channel and to perform these investigations in the equivalent low-pass range - i.e. without considering the specific carrier frequency.
 
 
*t is often the case that the bandwidth of a communication connection is orders of magnitude smaller than the carrier frequency. For example, in the&nbsp; [[Examples_of_Communication_Systems/Allgemeine_Beschreibung_von_GSM|GSM standard]]&nbsp the individual channels are located in the frequency range around&nbsp; $900\ \rm MHz$&nbsp; (&bdquo;D-Network&rdquo;) and &nbsp; $1800\ \rm MHz$&nbsp; (&bdquo;E-Network&rdquo;), while each channel has only a small bandwidth of&nbsp; $200\ \rm kHz$&nbsp; available. Therefore a simulation in the equivalent low pass range is much less complex than a simulation of the corresponding bandpass signals.
 
  
 +
==Definition in the frequency domain==
 +
<br>
 +
We consider a real band-pass signal&nbsp; $x(t)$&nbsp; with the spectrum&nbsp; $X(f)$.&nbsp; Furthermore,&nbsp; the following shall apply:
 +
*The band-pass signal&nbsp; $x(t)$&nbsp; is said to result from the modulation of a low-frequency source signal&nbsp; $q(t)$&nbsp; with the carrier signal&nbsp; $z(t)$&nbsp; of frequency&nbsp; $f_{\rm T}$.&nbsp; The type of modulation&nbsp; $($whether analog or digital,&nbsp; amplitude  or angle modulation,&nbsp; single-sideband or double-sideband$)$&nbsp; is not specified.
  
==Definition in the Frequency Domain==
+
*The spectral function&nbsp; $X_+(f)$&nbsp; of the corresponding analytical signal&nbsp; $x_+(t)$&nbsp; exists only for positive frequencies and is twice as large as&nbsp; $X(f)$.&nbsp; For the derivation of&nbsp; $X_+(f)$&nbsp; the carrier frequency&nbsp; $f_{\rm T}$&nbsp; $($German:&nbsp; "Trägerfrequenz" &nbsp; &rArr; &nbsp; "$\rm T$"$)$&nbsp;  of the system does not need to be known.
<br>
 
We consider a real bandpass signal&nbsp; $x(t)$&nbsp; with the spectrum&nbsp; $X(f)$. Furthermore we want to apply:
 
*The bandpass signal&nbsp; $x(t)$&nbsp; is said to result from the modulation of a low-frequency message signal&nbsp; $q(t)$&nbsp; with the carrier signal&nbsp; $z(t)$&nbsp; the frequency&nbsp; $f_{\rm T}$&nbsp;. The type of modulation (whether analog or digital, amplitudes&ndash; or angle modulation, single sideband or double sideband) is not specified.
 
*The spectral function&nbsp; $X_+(f)$&nbsp; of the corresponding analytical signal&nbsp; $x_+(t)$&nbsp; exists only for positive frequencies and is twice as large as&nbsp; $X(f)$. For the derivation of&nbsp; $X_+(f)$&nbsp; the carrier frequency&nbsp; $f_{\rm T}$&nbsp; of the system does not need be known.
 
  
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
 
$\text{Definition:}$&nbsp;
 
$\text{Definition:}$&nbsp;
If the spectrum of the analytical signal&nbsp; $x_+(t)$&nbsp; is shifted to the left for &nbsp; $f_{\rm T}$&nbsp; , the result is called the&nbsp; '''Spectrum of the Equivalent Low-Pass Signal''':
+
If the spectrum of the analytical signal&nbsp; $x_+(t)$&nbsp; is shifted to the left by&nbsp; $f_{\rm T}$,&nbsp; the result is called the&nbsp; &raquo;'''equivalent low-pass spectrum'''&laquo;:  
 
   
 
   
 
:$$X_{\rm TP}(f)  = X_{\rm +}(f + f_{\rm T}).$$
 
:$$X_{\rm TP}(f)  = X_{\rm +}(f + f_{\rm T}).$$
  
In general&nbsp; $X(f)$,&nbsp; $X_+(f)$&nbsp; and&nbsp; $X_{\rm TP}(f)$&nbsp; are complex-valued. However, if&nbsp; $X(f)$&nbsp; is purely real, then the spectral functions&nbsp; $X_+(f)$&nbsp; and&nbsp; $X_{\rm TP}(f)$&nbsp; are also purely real, because they result from&nbsp; $X(f)$&nbsp; only from the operations "Cut and Double" or "Frequency Shift" respectively.}}}
+
<u>Note:</u>
 
+
# The identifier "$\rm TP$"&nbsp; stands for&nbsp; "low-pass"&nbsp; $($German:&nbsp; "Tiefpass"$)$&nbsp; and the identifier&nbsp; "$\rm T$"&nbsp; stands for&nbsp; "carrier"&nbsp; $($German:&nbsp; Träger$)$.
 +
#In general: &nbsp; $X(f)$,&nbsp; $X_+(f)$&nbsp; and&nbsp; $X_{\rm TP}(f)$&nbsp; are complex-valued.&nbsp;
 +
#However,&nbsp; if&nbsp; $X(f)$&nbsp; is real,&nbsp; then the spectral functions&nbsp; $X_+(f)$&nbsp; and&nbsp; $X_{\rm TP}(f)$&nbsp; are real too,&nbsp; because they result from&nbsp; $X(f)$&nbsp; only with the linear operations&nbsp; &raquo;truncate&laquo;,&nbsp; &raquo;double&laquo;,&nbsp; and&nbsp; &raquo;frequency shift&laquo;.
 +
#In contrast to&nbsp; $X_+(f)$,&nbsp; for the calculation of the equivalent low-pass spectrum&nbsp; $X_{\rm TP}(f)$&nbsp; the knowledge of the carrier frequency $f_{\rm T}$&nbsp; is absolutely necessary.&nbsp; For other values of $f_{\rm T}$&nbsp; other low-pass spectra will  result.}}
  
For the calculation of the equivalent low-pass spectrum&nbsp; $X_{\rm TP}(f)$&nbsp; - in contrast to&nbsp; $X_+(f)$&nbsp; - the knowledge of the carrier frequency&nbsp; $f_{\rm T}$&nbsp; is absolutely necessary. For other values of&nbsp; $f_{\rm T}$&nbsp; other low-pass spectra will also result.
 
  
If one transforms the above equation into the time domain, one obtains after applying the&nbsp; [[Signal_Representation/Fourier_Transform_Laws#Verschiebungssatz|shifting theorem]]:
+
If one transforms the above equation into the time domain,&nbsp; one obtains after applying the&nbsp; [[Signal_Representation/Fourier_Transform_Theorems#Shifting_Theorem|&raquo;Shifting Theorem&laquo;]]:
 
   
 
   
 
:$$x_{\rm TP}(t) = x_{\rm +}(t)\cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi \cdot f_{\rm T}\cdot \hspace{0.05cm}t}.$$
 
:$$x_{\rm TP}(t) = x_{\rm +}(t)\cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi \cdot f_{\rm T}\cdot \hspace{0.05cm}t}.$$
  
The relation&nbsp; $x(t) = \text{Re}\big[x_+(t)\big]$&nbsp; yields the procedure to determine the actual physical bandpass signal from the equivalent lowpass signal:
+
The relation&nbsp; $x(t) = \text{Re}\big[x_+(t)\big]$&nbsp; yields the procedure to determine the actual physical band-pass signal from the equivalent low-pass signal:
 
   
 
   
:$$x(t) = {\rm Re}[x_{\rm +}(t)] = {\rm Re}\big[x_{\rm TP}(t)\cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm} \cdot 2\pi \hspace{0.05cm}\cdot\hspace{0.05cm} f_{\rm T}\hspace{0.05cm} \cdot \hspace{0.05cm} \hspace{0.05cm}t}\big].$$
+
:$$x(t) = {\rm Re}\big [x_{\rm +}(t)\big] = {\rm Re}\big[x_{\rm TP}(t)\cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm} \cdot 2\pi \hspace{0.05cm}\cdot\hspace{0.05cm} f_{\rm T}\hspace{0.05cm} \cdot \hspace{0.05cm} \hspace{0.05cm}t}\big].$$
 
 
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
 
$\text{Example 1:}$&nbsp;
 
$\text{Example 1:}$&nbsp;
The upper figure shows the purely real spectral function&nbsp; $X(f)$&nbsp; of a bandpass signal&nbsp; $x(t)$ which is the result of modulating a low frequency signal&nbsp; $q(t)$&nbsp; with the carrier frequency&nbsp; $f_{\rm T}$&nbsp;.
+
The upper figure shows the real spectral function&nbsp; $X(f)$&nbsp; of a band-pass signal&nbsp; $x(t)$&nbsp; which is the result of modulating a low-frequency signal&nbsp; $q(t)$&nbsp; with the carrier frequency&nbsp; $f_{\rm T}$.
[[File:P_ID749__Sig_T_4_3_S2_neu.png|right|frame|Construction of The Equivalent Low Pass Signals <br>in The Frequeny Domain]]
 
 
 
Below that, the two likewise real spectral functions&nbsp; $X_+(f)$&nbsp; and&nbsp; $X_{\rm TP}(f)$ are shown. Due to the asymmetries concerning the frequency origin&nbsp; $(f = 0)$&nbsp; the corresponding time functions are complex.
 
*The continuous green spectral function&nbsp; $X_{\rm TP}(f)$&nbsp; is shifted to the left with respect to&nbsp; $X_{+}(f)$&nbsp; by the&nbsp; carrier frequency $f_{\rm T}$&nbsp;.
 
 
 
 
 
*If the spectrum&nbsp; $X(f)$&nbsp; is the modulation result of another message signal&nbsp; $q\hspace{0.05cm}'(t)$&nbsp; with a different carrier frequency&nbsp; ${f_{\rm T} }\hspace{0.05cm}'$, this would also result in another equivalent TP signal&nbsp; ${X_{\rm TP} }\hspace{0.05cm}'(f)$.
 
  
 +
[[File:P_ID749__Sig_T_4_3_S2_neu.png|right|frame|Construction of the equivalent low-pass spectrum]]
  
*An exemplary spectral function&nbsp; ${X_{\rm TP} }\hspace{0.05cm}'(f)$&nbsp; is drawn in the graphic with green-dashed lines.}}
+
Below the two likewise real spectral functions&nbsp; $X_+(f)$&nbsp; and&nbsp; $X_{\rm TP}(f)$ are shown:&nbsp;
 +
#Due to the asymmetries concerning the frequency origin&nbsp; $(f = 0)$&nbsp; the corresponding time functions are complex.
 +
#The solid-green spectral function&nbsp; $X_{\rm TP}(f)$&nbsp; is shifted to the left with respect to&nbsp; $X_{+}(f)$&nbsp; by the&nbsp; carrier frequency $f_{\rm T}$.
 +
#If&nbsp; $X(f)$&nbsp; is the modulation result of another source signal&nbsp; $q\hspace{0.05cm}'(t)$&nbsp; with a different carrier frequency&nbsp; ${f_{\rm T} }\hspace{0.05cm}'$, this would result in another equivalent low-pass spectrum&nbsp; ${X\hspace{0.05cm}'_{\rm TP} }(f)$.
 +
#An exemplary function&nbsp; ${X\hspace{0.05cm}'_{\rm TP} }(f)$&nbsp; is drawn in the graphic with green-dashed lines.}}
  
==Description in The Time Domain==
+
==Description in the time domain==
 
<br>
 
<br>
To simplify the representation we now assume a line spectrum, so that the analytical signal can be represented as&nbsp; '''pointer compound'' &nbsp; &rArr; &nbsp; sum of complex rotating pointers:
+
To simplify the presentation we now assume a line spectrum&nbsp; so that the analytical signal can be represented as&nbsp; &raquo;pointer group&laquo; &nbsp; &rArr; &nbsp; sum of complex rotating pointers:
 
   
 
   
 
:$$X_{+}(f) = \sum_{i=1}^{I} {A_i} \cdot {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}
 
:$$X_{+}(f) = \sum_{i=1}^{I} {A_i} \cdot {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}
Line 76: Line 77:
 
\hspace{0.05cm}-\hspace{0.05cm} \varphi_i)}.$$
 
\hspace{0.05cm}-\hspace{0.05cm} \varphi_i)}.$$
  
By shifting the frequency by&nbsp; $f_{\rm T}$&nbsp; to the left the equivalent low pass signal in frequency and time domain is thus:
+
*By shifting the frequency by $f_{\rm T}$&nbsp; to the left,&nbsp; the equivalent low-pass signal in frequency and time domain is:
 
 
 
   
 
   
 
:$$X_{\rm TP}(f) = \sum_{i=1}^{I} {A_i} \cdot {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}
 
:$$X_{\rm TP}(f) = \sum_{i=1}^{I} {A_i} \cdot {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}
Line 83: Line 83:
 
\nu_i \hspace{0.05cm}\cdot \hspace{0.05cm} t \hspace{0.05cm}-\hspace{0.05cm} \varphi_i)}.$$
 
\nu_i \hspace{0.05cm}\cdot \hspace{0.05cm} t \hspace{0.05cm}-\hspace{0.05cm} \varphi_i)}.$$
  
The following relation &nbsp; is valid between the frequency values &nbsp; $f_i$&nbsp; and&nbsp; $\nu_i$&nbsp;  $(i = 1, \ \text{...} \ , I)$:
+
*The following relation is valid between the frequency values&nbsp; $f_i$&nbsp; and&nbsp; $\nu_i$&nbsp;  $(i = 1, \ \text{...} \ , I)$:
 
   
 
   
 
:$$\nu_i =  f_i - f_{\rm T}  .$$
 
:$$\nu_i =  f_i - f_{\rm T}  .$$
  
These equations can be interpreted as follows:
+
*These equations can be interpreted as follows:
*At time&nbsp; $t = 0$&nbsp; the equivalent low-pass signal is identical to the analytical signal:
+
#At time&nbsp; $t = 0$&nbsp; the equivalent low-pass signal is identical to the analytical signal: &nbsp; &nbsp; &nbsp; &nbsp; $x_{\rm TP}(t = 0) = x_{\rm +}(t = 0)= \sum_{i=1}^{I} A_i \cdot {\rm e}^{{-\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} \varphi_i}.$
:$$x_{\rm TP}(t = 0) = x_{\rm +}(t = 0)= \sum_{i=1}^{I} A_i \cdot {\rm e}^{{-\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} \varphi_i}.$$
+
#At this time,&nbsp; the&nbsp; "pointer group"&nbsp; is defined by the&nbsp; $I$&nbsp; amplitude parameter&nbsp; $A_i$&nbsp; and the&nbsp; $I$&nbsp; phase positions&nbsp; $\varphi_i$&nbsp; alone.
*At this point in time, the pointer group is thus defined by the&nbsp; $I$&nbsp; amplitude parameter&nbsp; $A_i$&nbsp; and the&nbsp; $I$&nbsp; phase positions&nbsp; $\varphi_i$&nbsp; alone.
+
#All pointers of the analytical signal&nbsp; $x_+(t)$&nbsp; rotate for&nbsp; $t > 0$&nbsp; corresponding to the&nbsp; $($always positive$)$&nbsp; frequencies&nbsp; $f_i$&nbsp; counterclockwise.
*All pointers of the analytical signal&nbsp; $x_+(t)$&nbsp; rotate for&nbsp; $t > 0$&nbsp; corresponding to the (always positive) frequencies&nbsp; $f_i$&nbsp; counterclockwise.
+
#For the equivalent low-pass signal,&nbsp; the rotation speeds are lower.&nbsp;
*For the equivalent low-pass signal, the rotation speeds are lower. Hands with&nbsp; $\nu_i > 0$&nbsp; turn in mathematically positive direction (counterclockwise), those with&nbsp; $\nu_i < 0$&nbsp; in counterclockwise direction (clockwise).
+
#Pointers with&nbsp; $\nu_i > 0$&nbsp; turn in mathematically positive direction&nbsp; $($counterclockwise$)$,&nbsp; those with&nbsp; $\nu_i < 0$&nbsp; in opposite direction&nbsp; $($clockwise$)$.
*If the frequency parameter is &nbsp; $\nu_i = 0$ for a pointer, this pointer rests in the complex plane corresponding to its initial position.
+
#If the frequency parameter for a pointer is&nbsp; $\nu_i = 0$,&nbsp; this pointer rests in the complex plane corresponding to its initial position.
  
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
 
$\text{Example 2:}$&nbsp;
 
$\text{Example 2:}$&nbsp;
We consider a spectrum consisting of three spectral lines at&nbsp; $40\,\text{kHz}$,&nbsp; $50\,\text{kHz}$&nbsp; and $60\,\text{kHz}$&nbsp; consisting of spectrum&nbsp; $X_+(f)$. With the amplitude and phase parameters recognizable from the graphic you obtain the analytical signal&nbsp; $x_+(t)$&nbsp; corresponding to the lower left sketch.
+
We consider a spectrum&nbsp; $X_+(f)$ consisting of three spectral lines at&nbsp; $40\,\text{kHz}$,&nbsp; $50\,\text{kHz}$&nbsp; and $60\,\text{kHz}$.&nbsp; With the amplitude and phase parameters recognizable from the graph you obtain the analytical signal&nbsp; $x_+(t)$&nbsp; corresponding to the lower left sketch.
  
[[File:P_ID739__Sig_T_4_3_S3neu.png|center|frame|Construction of The Equivalent Low Pass Signals in The Time Domain]]
+
[[File:P_ID739__Sig_T_4_3_S3neu.png|right|frame|Construction of the equivalent low-pass signals in the time domain]]
  
The snapshot of the lower left graph &nbsp; &rArr; &nbsp; '''analytical signal''' &nbsp; $x_+(t)$&nbsp; applies to the time&nbsp; $t = 0$. All hands then turn counterclockwise at a constant angular velocity.
+
The snapshot of the lower left graph &nbsp; &rArr; &nbsp; &raquo;analytical signal&laquo; &nbsp; $x_+(t)$&nbsp; applies to the time&nbsp; $t = 0$.&nbsp; All pointers then turn counterclockwise at a constant circular velocity.
*The blue pointer rotates with&nbsp; $60000$&nbsp; rotations per second are fastest and the green pointer rotates with the angular frequency&nbsp; $\omega_{40} = 2\pi \cdot 40000 \hspace{0.1cm} 1/\text{s}$&nbsp; is the slowest.
+
*The blue pointer rotates with&nbsp; $60000$&nbsp; rotations per second&nbsp; $($it is the fastest pointer$)$.&nbsp; The green pointer is the slowest;&nbsp; it rotates with the circular frequency&nbsp; $\omega_{40} = 2\pi \cdot 40000 \hspace{0.1cm} 1/\text{s}$.
*The violet sum point of all three pointers moves for&nbsp; $t > 0$&nbsp; in the complex plane in a complicated manner, for the above numerical values first roughly in the direction drawn.
+
*The violet sum point of all three pointers moves for&nbsp; $t > 0$&nbsp; in the complex plane in a complicated manner,&nbsp; for the above numerical values first roughly in the drawn direction.
  
  
The graphics on the right describe the&nbsp; '''equivalent low-pass signal'''&nbsp; in the frequency domain (top) and in the time domain (bottom), valid for&nbsp; $f_{\rm T} = 50\,\text{kHz}$.
+
&rArr; &nbsp; The graphics on the right describe the&nbsp; &raquo;equivalent low-pass signal&laquo;&nbsp; in the frequency domain&nbsp; $($top$)$&nbsp; and in the time domain&nbsp; $($bottom$)$,&nbsp;  valid for the carrier frequency&nbsp; $f_{\rm T} = 50\,\text{kHz}$.
*The carrier is now at&nbsp; $f = 0$&nbsp; and the corresponding red rotating pointer does not move.
+
*The carrier is now at&nbsp; $f = 0$;&nbsp; the corresponding red pointer does not move.
*The blue pointer (OSB) rotates here with&nbsp; $\omega_{10} = 2\pi \cdot 10000 \hspace{0.1cm}1/\text{s}$&nbsp; counterclockwise.
 
*The green pointer (USB) rotates counterclockwise at the same speed&nbsp; ($-\omega_{10}$).}}
 
  
 +
*The blue pointer&nbsp; $($"upper sideband"$)$&nbsp; rotates counterclockwise with&nbsp; $\omega_{10} = 2\pi \cdot 10000 \hspace{0.1cm}1/\text{s}$.
  
==Definition of The Locus Curve==
+
*The green pointer&nbsp; $($"lower sideband"$)$&nbsp; rotates clockwise at the same angular velocity&nbsp; ($-\omega_{10}$).}}
 +
 
 +
 
 +
==Definition of the "Locality Curve"==
 
<br>
 
<br>
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
 
$\text{Definition:}$&nbsp;
 
$\text{Definition:}$&nbsp;
As &nbsp; '''locus curve'''&nbsp; we call the curve on which the&nbsp; '''equivalent low-pass signal'''&nbsp; $x_{\rm TP}(t)$&nbsp; moves in the&nbsp; ''' complex plane'''&nbsp; }}
+
As&nbsp; &raquo;'''locality curve'''&laquo;&nbsp; we call the curve on which the&nbsp; &raquo;equivalent low-pass signal&laquo;&nbsp; $x_{\rm TP}(t)$&nbsp; moves in the&nbsp; complex plane.&nbsp;  
  
 +
<u>Notes:</u> &nbsp;  In other technical literature the term&nbsp; "locality curve"&nbsp; is rarely used.&nbsp; Therefore, initially,&nbsp; an example is given.}}
  
''Notes:'' &nbsp;  In other technical literature this term is rarely used. Therefore, initially, an example is shown.
 
  
[[File:P_ID744__Sig_T_4_3_S4_neu.png|right|frame|Definition of The Locus Curve]]
+
{{GraueBox|TEXT=
{{GraueBox|TEXT=  
+
[[File:P_ID744__Sig_T_4_3_S4_neu.png|right|frame|Given locality curve<br><u>Note:</u> &nbsp; The green pointer has length&nbsp; $2$ ]]   
 
$\text{Example 3:}$&nbsp;
 
$\text{Example 3:}$&nbsp;
We consider the equivalent low-pass signal&nbsp; $x_{\rm TP}(t)$&nbsp; of&nbsp;  [[Signal_Representation/Equivalent_Low_Pass_Signal_and_Its_Spectral_Function#Beschreibung_im_Zeitbereich|$\text{Example 2}$]],  
+
We consider the equivalent low-pass signal&nbsp; $x_{\rm TP}(t)$&nbsp; of&nbsp;  [[Signal_Representation/Equivalent_Low-Pass_Signal_and_its_Spectral_Function#Description_in_the_time_domain|$\text{Example 2}$]],  
 
consisting of
 
consisting of
*the resting pointer of length&nbsp; $3$&nbsp; (red)
+
*the resting&nbsp;  $($red$)$&nbsp; pointer of length&nbsp; $3$,
*the pointer with&nbsp; $\omega_{10} = 2\pi \cdot 10000 \hspace{0.1cm} 1/\text{s}$&nbsp; in mathematical positive direction rotating blue pointer with the complex amplitude&nbsp; '''j''',
+
 
*the green pointer of length&nbsp; $2$, which is currently&nbsp; $t = 0$&nbsp; in the direction of the negative imaginary axis. This rotates with the same angular velocity&nbsp; $\omega_{10}$&nbsp; as the blue pointer, but in the opposite direction&nbsp; ($-\omega_{10}$).
+
*the&nbsp; $($blue$)$&nbsp; pointer rotating  with&nbsp; $\omega_{10} = 2\pi \cdot 10000 \hspace{0.1cm} 1/\text{s}$&nbsp; in mathematical positive direction,&nbsp; complex value&nbsp; $\rm j$,
 +
 
 +
*the&nbsp;  $($green)&nbsp; pointer of length&nbsp; $2$,&nbsp; which is currently&nbsp; $(t = 0)$&nbsp; in the direction of the negative imaginary axis;&nbsp; <br>this rotates with the same circular velocity&nbsp; $\omega_{10}$&nbsp; as the blue pointer,&nbsp; but in the opposite direction&nbsp; ($-\omega_{10}$).
  
  
The blue and the green pointer each require exactly one period duration&nbsp; $T_0 = 100 \,{\rm &micro;}\text{s}$ for one rotation. The further course of the process can be seen in the above illustration:
+
The blue and the green pointer each require exactly one period duration &nbsp; $T_0 = 100 \,{\rm &micro;}\text{s}$&nbsp; for one rotation.&nbsp; The further course of the process can be seen in the above illustration:
*The violet pointer sum is at time&nbsp; $t = 0$&nbsp; equals&nbsp; $3 - \text{j}$.
+
*The violet pointer sum at time&nbsp; $t = 0$&nbsp; is equal to&nbsp; $x_{\rm TP}(t=0) = 3 - \text{j}$.
*After&nbsp; $t = T_0/4 = 25 \,{\rm &micro;}\text{s}$&nbsp; the resulting pointer group has the value &bdquo;Null&rdquo;, since now the two rotating pointers lie in the opposite direction to the carrier and compensate it exactly.
 
*After a period&nbsp; $(t = T_0 = 100 \,{\rm &micro;}\text{s})$&nbsp; the initial state is reached again: &nbsp; $x_{\rm TP}(t = T_0) = x_{\rm TP}(t=0) = 3 - \text{j}$.}}
 
  
exactly.
+
*After&nbsp; $t = T_0/4 = 25 \,{\rm &micro;}\text{s}$&nbsp; the resulting pointer group has the value&nbsp; $0$,&nbsp; since now the two rotating pointers lie in the opposite direction to the carrier and compensate it exactly.
*After a period&nbsp; $(t = T_0 = 100 \,{\rm &micro;}\text{s})$&nbsp; the initial state is reached again: &nbsp; $x_{\rm TP}(t = T_0) = x_{\rm TP}(t=0) = 3 - \text{j}$.}}}
 
  
 +
*After one period&nbsp; $(t = T_0 = 100 \,{\rm &micro;}\text{s})$&nbsp; the initial state is reached again: &nbsp; $x_{\rm TP}(t = T_0) = x_{\rm TP}(t=0) = 3 - \text{j}$.}}
  
In this example the locus curve is an ellipse, which is traversed by the equivalent low pass signal once per period.
 
*The representation applies to the&nbsp; [[Modulation_Methods/Double Sideband Amplitude Modulation#ZSB-Amplitude Modulation_with_Tr.C3.A4ger|Double Sideband Amplitude Modulation with Carrier]]&nbsp; of a sinusoidal&nbsp; $10\ \rm kHz$ signal with a cosinusoidal carrier of any frequency, where the upper sideband (blue pointer) is attenuated.
 
*If the lengths of the blue and the green rotating pointer were equal, the locus curve would be a horizontal one on the real axis - see&nbsp; [[Tasks:Task_4.5:_Locus Curve_at_ZSB-AM|Task 4.5]].
 
*In the book&nbsp; [[Modulation_Methods/Evelope Demodulation|Modulation Methods]]&nbsp; the locus curves of different system variants are treated in detail.
 
  
In this example the locus curve is an ellipse, which is traversed by the equivalent low pass signal once per period.  
+
In this example the&nbsp; &raquo;locality curve&laquo;&nbsp; is an ellipse,&nbsp; which is traversed by the equivalent low-pass signal once per period.  
*The representation applies to the&nbsp;[[Modulation_Methods/Zweiseitenband-Amplitudenmodulation#ZSB-Amplitudenmodulation_mit_Tr.C3.A4ger|Double-Sideband–Amplitude Modulation with Carrier]]&nbsp; of a sinusoidal&nbsp; $10\ \rm kHz$ signal with a cosinusoidal carrier of any frequency, where the upper sideband (blue pointer) is attenuated.
+
#The representation applies to the&nbsp; [[Modulation_Methods/Double-Sideband_Amplitude_Modulation#Double-Sideband_Amplitude_Modulation_with_carrier|&raquo;Double Sideband Amplitude Modulation with carrier&laquo;]]&nbsp; of a sinusoidal&nbsp; $10\ \rm kHz$&nbsp; signal with a cosinusoidal carrier of any frequency,&nbsp; where the upper sideband&nbsp; $($blue pointer$)$&nbsp; is attenuated.
*If the lengths of the blue and the green rotating pointer were equal, the locus curve would be a horizontal one on the real axis - see&nbsp; [[Aufgaben:Aufgabe_4.5:_Ortskurve_bei_ZSB-AM|Task 4.5]].  
+
#If the lengths of the blue and the green rotating pointer were equal,&nbsp; the locality curve would be a horizontal one on the real axis &ndash; see&nbsp; [[Aufgaben:Exercise_4.5:_Locality_Curve_for_DSB-AM|$\text{Exercise 4.5}$]].  
*In the boo&nbsp; [[Modulation_Methods/Hüllkurvendemodulation|Modulation Methods]]&nbsp;,the locus curves of different system variants are treated in detail.
+
#In the chapter&nbsp; [[Modulation_Methods/Envelope_Demodulation|&raquo;Envelope Demodulation&laquo;]]&nbsp; the locality curves of different system variants are treated in detail.
  
  
==Representing with Magnitude and Phase==
+
 
 +
 
 +
==Representing with magnitude and phase==
 
<br>
 
<br>
 
The equivalent low-pass signal of the band-pass signal&nbsp; $x(t)$&nbsp; is generally complex and can therefore be expressed in the form  
 
The equivalent low-pass signal of the band-pass signal&nbsp; $x(t)$&nbsp; is generally complex and can therefore be expressed in the form  
 
:$$x_{\rm TP}(t) = a(t) \cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}
 
:$$x_{\rm TP}(t) = a(t) \cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}
\phi(t)}$$.
+
\phi(t)}.$$
  
Note the plus sign in the argument of the exponential function, which differs from the&nbsp; &nbsp; [[Signal_Representation/Fourier_Series#Komplexe_Fourierreihe|Complex Fourier Series]]&nbsp;. This is because the equation with the positive sign for the phase is usually used to describe the modulation method for the physical signal as well:
+
Note the plus sign in the argument of the exponential function,&nbsp; which differs from the&nbsp; [[Signal_Representation/Fourier_Series#Complex_Fourier_series|&raquo;complex Fourier series&laquo;]].&nbsp; This is because the equation with the positive sign for the phase is usually used to describe the modulation method for the physical signal as well:
 
   
 
   
 
:$$x(t) =  a(t) \cdot  {\cos} ( 2 \pi f_{\rm T} t + \phi(t)).$$
 
:$$x(t) =  a(t) \cdot  {\cos} ( 2 \pi f_{\rm T} t + \phi(t)).$$
  
In many textbooks this equation is used with plus or minus signs depending on the application, but always with the same &bdquo;phase identifier&rdquo;. By using two different symbols&nbsp; $(\varphi$&nbsp; and&nbsp; $\phi)$&nbsp; we try to avoid this ambiguity in our learning tutorial&nbsp; $\rm LNTww$.
+
#In many textbooks this equation is used with plus or minus signs depending on the application,&nbsp; but always with the same "phase identifier".&nbsp;  
 +
#By using two different symbols&nbsp; $(\varphi$&nbsp; and&nbsp; $\phi)$&nbsp; we try to avoid this ambiguity in our e&ndash;learning tool.
 +
 
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Example 4:}$&nbsp;The same prerequisites apply as in the&nbsp; [[Signal_Representation/Equivalent_Low_Pass_Signal_and_Its_Spectral_Function#Beschreibung_im_Zeitbereich|$\text{second example }$]]&nbsp; and in the&nbsp;  
+
$\text{Example 4:}$&nbsp; The same prerequisites apply as in&nbsp; [[Signal_Representation/Equivalent_Low-Pass_Signal_and_its_Spectral_Function#Description_in_the_time_domain|$\text{Example 2}$]]&nbsp; and in&nbsp;  
[[Signal_Representation/Equivalent_Low_Pass_Signal_and_Its_Spectral_Function#Definition_der_Ortskurve|$\text{third one}$]]. InHowever, instead of the complex function&nbsp; $x_{\rm TP}(t)$&nbsp; the two real functions&nbsp; $a(t)$&nbsp; and&nbsp; $\phi(t)$&nbsp; are now displayed in the graphic.
+
[[Signal_Representation/Equivalent_Low-Pass_Signal_and_its_Spectral_Function#Definition_of_the_.22Locality_Curve.22|$\text{Example 3}$]].&nbsp; However, instead of the complex function&nbsp; $x_{\rm TP}(t)$&nbsp; the two real functions&nbsp; $a(t)$&nbsp; and&nbsp; $\phi(t)$&nbsp; are now displayed in the graph.&nbsp; It should be noted with regard to this representation:
  
[[File:P_ID748__Sig_T_4_3_S5.png|center|frame|Magnitude and Phase of The Equivalent Lowpass-Signal]]
+
[[File:P_ID748__Sig_T_4_3_S5.png|right|frame|Magnitude&nbsp; $a(t)$&nbsp; and phase&nbsp; $\phi(t)$&nbsp; of the equivalent low-pass signal]]
  
It should be noted that this is a representation:
+
*The&nbsp; &raquo;magnitude function&laquo;&nbsp; shows the time-dependent pointer length:
*The&nbsp; '''Magnitude function'''&nbsp; shows the time dependence of the pointer length:
 
 
   
 
   
 
:$$a(t)= \vert x_{\rm TP}(t)\vert =\sqrt{ {\rm Re}\left[x_{\rm TP}(t)\right]^2 +
 
:$$a(t)= \vert x_{\rm TP}(t)\vert =\sqrt{ {\rm Re}\left[x_{\rm TP}(t)\right]^2 +
 
{\rm Im}\left[x_{\rm TP}(t)\right]^2 }.$$
 
{\rm Im}\left[x_{\rm TP}(t)\right]^2 }.$$
  
:The magnitude function&nbsp; $a(t)$&nbsp; is in this example like the complex equivalent low pass signal&nbsp; $x_{\rm TP}(t)$&nbsp; periodic with&nbsp; $T_0$&nbsp; and takes values between&nbsp; $0$&nbsp; and&nbsp; $6$&nbsp;.
+
:In this example the magnitude function&nbsp; $a(t)$&nbsp; is like the complex equivalent low-pass signal&nbsp; $x_{\rm TP}(t)$&nbsp; periodic with&nbsp; $T_0$&nbsp; and takes values between&nbsp; $0$&nbsp; and&nbsp; $6$.
  
*Die&nbsp; '''Phasenfunktion'''&nbsp; beschreibt den zeitabhängigen Winkel des äquivalenten Tiefpass-Signals&nbsp; $x_{\rm TP}(t)$, bezogen auf den Koordinatenursprung:
+
*The&nbsp; &raquo;phase function&laquo;&nbsp; describes the time-dependent angle of the equivalent low-pass signal&nbsp; $x_{\rm TP}(t)$,&nbsp; related to the coordinate origin:
 
   
 
   
 
:$$\phi(t)= {\rm arc} \left[x_{\rm TP}(t)\right]= {\rm arctan}
 
:$$\phi(t)= {\rm arc} \left[x_{\rm TP}(t)\right]= {\rm arctan}
Line 184: Line 185:
 
Re}\left[x_{\rm TP}(t)\right]}.$$
 
Re}\left[x_{\rm TP}(t)\right]}.$$
  
Hier noch einige numerische Ergebnisse für die Phasenwerte:
+
Here are some numerical results for the phase values:
*Die Phase im Startzeitpunkt ist&nbsp; $\phi (t = 0) =\hspace{0.1cm} -\arctan (1/3) ≈ \hspace{0.1cm} -18.43^{\circ} = \hspace{0.1cm}-0.32\,\text{rad}$.
+
#The phase at start time is&nbsp; $\phi (t = 0) =\hspace{0.1cm} -\arctan (1/3) ≈ \hspace{0.1cm} -18.43^{\circ} = \hspace{0.1cm}-0.32\,\text{rad}$.
*Bei&nbsp; $t = 25\,{\rm &micro;}\text{s}$&nbsp; sowie zu allen äquidistanten Zeiten davon im Abstand&nbsp; $T_0 = 100 \,{\rm &micro;}\text{s}$&nbsp; ist&nbsp; $x_{\rm TP}(t) = 0$, so dass zu diesen Zeitpunkten die Phase&nbsp; $\phi(t)$&nbsp; sprungartig von&nbsp; $-\pi /2$&nbsp; auf&nbsp; $+\pi /2$&nbsp; wechselt.
+
#At&nbsp; $t = 25\,{\rm &micro;}\text{s}$&nbsp; it holds &nbsp; $x_{\rm TP}(t ) = 0$, so that at this time the phase function&nbsp; $\phi(t)$&nbsp; changes abruptly from&nbsp; $-\pi /2$&nbsp; to&nbsp; $+\pi /2$&nbsp;.
*Zum violett eingezeichneten Zeitpunkt&nbsp; $t = 60\,{\rm &micro;}\text{s}$&nbsp; hat die Phase einen leicht positiven Wert.
+
#The same result is obtained for all equidistant times at distance&nbsp; $T_0 = 100 \,{\rm &micro;}\text{s}$.
 +
#At time&nbsp; $t = 60\,{\rm &micro;}\text{s}$&nbsp; the phase function has a slightly positive value.
 
<br>}}
 
<br>}}
  
  
==Zusammenhang zwischen äquivalentem TP-Signal und BP-Signal==
+
==Relation between equivalent low-pass signal and band-pass signal==
 
<br>
 
<br>
Ein bandpassartiges Signal&nbsp; $x(t)$, das sich aus der Modulation eines niederfrequenten Nachrichtensignals&nbsp; $q(t)$&nbsp; mit einem Trägersignal&nbsp; $z(t)$&nbsp; der Frequenz&nbsp; $f_{\rm T}$&nbsp; ergeben hat, kann wie folgt dargestellt werden:
+
A band-pass signal&nbsp; $x(t)$&nbsp; resulting from the modulation of a low-frequency source signal&nbsp; $q(t)$&nbsp; with a carrier signal&nbsp; $z(t)$&nbsp; of frequency&nbsp; $f_{\rm T}$&nbsp; can be represented as follows:
+
 
 
:$$x(t) = a(t) \cdot  {\cos} ( 2 \pi f_{\rm T} t + \phi(t))
 
:$$x(t) = a(t) \cdot  {\cos} ( 2 \pi f_{\rm T} t + \phi(t))
 
\hspace{0.3cm}\Rightarrow\hspace{0.3cm}
 
\hspace{0.3cm}\Rightarrow\hspace{0.3cm}
Line 200: Line 202:
 
\phi(t)}.$$
 
\phi(t)}.$$
  
Hierzu ist anzumerken:
+
It should be noted here:
* $a(t)$&nbsp; ist die&nbsp; ''zeitabhängige Amplitude'', die man oft auch als&nbsp; '''Hüllkurve'''&nbsp; bezeichnet. Diese ist gleich dem Betrag&nbsp; $|x_{\rm TP}(t)|$&nbsp; des äquivalenten Tiefpass–Signals.
+
# $a(t)$&nbsp; is the&nbsp; time-dependent amplitude &nbsp; &rArr; &nbsp; &raquo;magnitude  function&laquo;&nbsp; or&nbsp; &raquo;envelope curve&laquo;.&nbsp; This is equal to the magnitude&nbsp; $|x_{\rm TP}(t)|$&nbsp; of the equivalent low-pass signal.
* $\phi(t)$&nbsp; ist die&nbsp; '''Phasenfunktion''', also die&nbsp; ''zeitabhängige Phase'', die ebenfalls aus dem äquivalenten Tiefpass–Signal als der Winkel zum Koordinatenursprung der komplexen Ebene ermittelt werden kann.
+
# $\phi(t)$&nbsp; is the&nbsp; &raquo;phase function&laquo;, i.e. the&nbsp; time-dependent phase,&nbsp; which can also be determined from&nbsp; $x_{\rm TP}(t)$&nbsp; as angle to the coordinate origin of the complex plane.
*Im physikalischen Signal&nbsp; $x(t)$&nbsp; erkennt man die Phase&nbsp; $\phi(t)$&nbsp; an den&nbsp; '''Nulldurchgängen'''. Bei&nbsp; $\phi(t) > 0$&nbsp; tritt der Nulldurchgang in&nbsp; $x(t)$&nbsp; im Bereich der Zeit&nbsp; $t$&nbsp; früher auf als beim Trägersignal&nbsp; $z(t)$. Dagegen bedeutet&nbsp; $\phi(t) < 0$&nbsp; eine Verschiebung des Nulldurchgangs auf einen späteren Zeitpunkt.
+
#In the physical&nbsp; $($band-pass$)$&nbsp; signal&nbsp; $x(t)$,&nbsp; the phase function&nbsp; $\phi(t)$&nbsp; can be recognized by the&nbsp; &raquo;zero crossings&laquo;.&nbsp;
*Man spricht von&nbsp; '''Amplitudenmodulation''', wenn die gesamte Information über das Nachrichtensignal in der Hüllkurve&nbsp; $a(t)$&nbsp; steckt, während&nbsp; $\phi(t)$&nbsp; konstant ist.  
+
#With&nbsp; $\phi(t) > 0$&nbsp; the zero crossing occurs in&nbsp; $x(t)$&nbsp; $t$&nbsp; earlier than in the carrier signal&nbsp; $z(t)$.&nbsp; In contrast,&nbsp; $\phi(t) < 0$&nbsp; means a shift of the zero crossing to a later time.
*Dagegen beinhaltet bei&nbsp; '''Phasenmodulation'''&nbsp; die Phasenfunktion&nbsp; $\phi(t)$&nbsp; die gesamte Information über das Nachrichtensignal, während&nbsp; $a(t)$&nbsp; konstant ist.
+
 
 +
 
 +
{{BlaueBox|TEXT= 
 +
$\text{Definitions:}$&nbsp;
 +
*One speaks of&nbsp; &raquo;'''Amplitude Modulation'''&laquo;&nbsp; if all information about the source signal&nbsp; $q(t)$&nbsp; is contained in the magnitude function&nbsp; $a(t)$&nbsp; while&nbsp; $\phi(t)$&nbsp; is constant.  
 +
 
 +
*Conversely,&nbsp; with&nbsp; &raquo;'''Phase Modulation'''&laquo;&nbsp; the phase function&nbsp; $\phi(t)$&nbsp; contains all information about the source signal&nbsp; $q(t)$,&nbsp; while&nbsp; $a(t)$&nbsp; is constant.}}
 +
 
  
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 5:}$&nbsp;
+
$\text{Example 5:}$&nbsp;
Der obere Teil der folgenden Grafik beschreibt die&nbsp; [[Modulation_Methods/Zweiseitenband-Amplitudenmodulation#ZSB-Amplitudenmodulation_mit_Tr.C3.A4ger|Zweiseitenband–Amplitudenmodulation (ZSB-AM) mit Träger]]:
+
The upper part of the following figure describes the&nbsp; [[Modulation_Methods/Double-Sideband_Amplitude_Modulation#Double-Sideband_Amplitude_Modulation_with_carrier|&raquo;Double-Sideband Amplitude Modulation&nbsp; $\text{(DSB-AM)}$&nbsp; with carrier&laquo;]]:
*Das äquivalente TP–Signal&nbsp; $x_{\rm TP}(t)$&nbsp; ist hier stets reell &nbsp; &rArr; &nbsp; die Ortskurve ist eine horizontale Gerade.
+
[[File:EN_Sig_T_4_3_S6_neu_v2.png|right|frame|$x_{\rm TP}(t)$&nbsp; for&nbsp; &raquo;Double-Sideband Amplitude Modulation&laquo;&nbsp; and for&nbsp; &raquo;Phase Modulation&laquo;]]
*Deshalb stimmen die Nulldurchgänge des blauen ZSB–AM–Signals&nbsp; $x(t)$&nbsp; mit denen des roten Trägersignals&nbsp; $z(t)$&nbsp; exakt überein.  
+
*The equivalent low-pass signal&nbsp; $x_{\rm TP}(t)$&nbsp; is always real &nbsp; <br>&rArr; &nbsp; the locality curve is a horizontal straight line.
*Das heißt: &nbsp; Die Phasenfunktion&nbsp; $\phi(t)$&nbsp; ist identisch Null &nbsp; &rArr; &nbsp; die Hüllkurve&nbsp; $a(t)$&nbsp; beinhaltet die gesamte Information über das Nachrichtensignal.
+
 
 +
*Therefore the zero crossings of the blue DSB-AM signal&nbsp; $x(t)$&nbsp; correspond exactly to those of the red carrier signal&nbsp; $z(t)$.
 +
 +
*This means: &nbsp; The phase function&nbsp; $\phi(t)$&nbsp; is identical to zero &nbsp; &rArr; &nbsp; the magnitude function&nbsp; $a(t)$&nbsp; contains all information about&nbsp; $q(t)$.
 +
 
  
 +
The lower part of the graphic applies to the&nbsp; [[Modulation_Methods/Phasenmodulation_(PM)|&raquo;Phase Modulation&laquo;&nbsp; $\text{(PM)}$]]:
 +
*The PM signal&nbsp; $y(t)$&nbsp; always has a constant envelope&nbsp;  $($magnitude function$)$ &nbsp; &rArr; &nbsp; the locality curve is a circle.
  
[[File:EN_Sig_T_4_3_S6.png|center|frame|$x_{\rm TP}(t)$ bei Zweiseitenband-Amplitudenmodulation und Phasenmodulation]]
+
*At&nbsp; $t \approx 0$&nbsp; it holds&nbsp; $\phi (t) < 0$ &nbsp; &rArr; &nbsp; the zero crossings in &nbsp; $y(t)$&nbsp; occur later than those in&nbsp; $z(t)$ &nbsp; &rArr; &nbsp; here,&nbsp; the zero crossings are&nbsp; &raquo;trailers&laquo;.
  
Der untere Grafikteil gilt dagegen für die&nbsp; [[Modulation_Methods/Phasenmodulation_(PM)|Phasenmodulation (PM)]]:
+
*For&nbsp; $\phi (t) > 0$ &nbsp; &rArr; &nbsp; the zero crossings in &nbsp; $y(t)$&nbsp; occur earlier than those  in&nbsp; $z(t)$  &nbsp; &rArr; &nbsp; here,&nbsp; the zero crossings are&nbsp; &raquo;precursors&laquo;.
*Das PM-Signal&nbsp; $y(t)$&nbsp; hat stets eine konstante Einhüllende &nbsp; &rArr; &nbsp; die Ortskurve ist ein Kreisbogen.
+
   
*Der Phasenwert ist hier zunächst kleiner Null &nbsp; &rArr; &nbsp; die&nbsp; $y(t)$&ndash;Nulldurchgänge treten später auf als die des Trägers&nbsp; $z(t)$&nbsp; &nbsp; &rArr; &nbsp;   die Nulldurchgänge sind „nachlaufend”.
+
*Therefore,&nbsp; with phase modulation,&nbsp; all information about the source signal&nbsp; $q(t)$&nbsp; is contained in the positions of the zero crossings.}}
*Bei positiven Werten des Nachrichtensignals gilt auch&nbsp; $\phi (t) > 0$ &nbsp; &rArr; &nbsp;   die Nulldurchgänge treten früher auf als beim Trägersignal &nbsp; &rArr; &nbsp; sie sind  „vorlaufend”.
 
*Bei Phasenmodulation steckt also die gesamte Information über das Nachrichtensignal&nbsp; $q(t)$&nbsp; in den Lagen der Nulldurchgänge.}}
 
  
==Warum gibt es für das gleiche Signal drei Darstellungsformen?==
+
==Why multiple representations of the same signal exist ==
 
<br>
 
<br>
Abschließend – hoffentlich nicht zu spät – wollen wir uns noch der Frage zuwenden, warum die beiden komplexen und im Verständnis komplizierteren Signale&nbsp; $x_+(t)$&nbsp; und&nbsp; $x_{\rm TP}(t)$&nbsp; zur Beschreibung des tatsächlichen Bandpass–Signals&nbsp; $x(t)$&nbsp; eigentlich notwendig sind. Sie wurden nicht deshalb in der Nachrichtentechnik eingeführt, um Studierende zu verunsichern, sondern:
+
Finally,&nbsp; and hopefully not too late,&nbsp; we want to turn to the question why the two complex and less comprehensible signals&nbsp; $x_+(t)$&nbsp; and&nbsp; $x_{\rm TP}(t)$&nbsp; are necessary to describe the actual band-pass signal&nbsp; $x(t)$.&nbsp; They were not introduced in Communications Engineering in order to unsettle students,&nbsp; but:
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Fazit:}$&nbsp;
+
$\text{Conclusions:}$&nbsp;
*Die Hüllkurve&nbsp; $a(t)$&nbsp; und die Phasenfunktion&nbsp; $\phi (t)$&nbsp; können aus dem tatsächlichen, physikalischen BP–Signal&nbsp; $x(t)$&nbsp; nur in einigen Sonderfällen direkt und  in einfacher Weise extrahiert werden.
+
*The magnitude function&nbsp; $a(t)$&nbsp; and the phase function&nbsp; $\phi (t)$&nbsp; can be extracted directly and easily from the  physical band-pass signal&nbsp; $x(t)$&nbsp; <u>only in some special cases</u>.
*Das real nicht existierende äquivalente Tiefpass–Signal&nbsp; $x_{\rm TP}(t)$&nbsp; ist ein mathematisches Hilfsmittel, mit dem die Zeitverläufe&nbsp; $a(t)$&nbsp; und&nbsp; $\phi (t)$&nbsp; durch einfache geometrische Überlegungen bestimmt werden können. Im Buch&nbsp; [[Modulation_Methods]]&nbsp; werden wir darauf zurückkommen.
+
 
*Das analytische Signal&nbsp; $x_+(t)$&nbsp; ist ein Zwischenschritt beim Übergang von&nbsp; $x(t)$&nbsp; auf&nbsp; $x_{\rm TP}(t)$. Während&nbsp; $x_+(t)$&nbsp; stets komplex ist, kann&nbsp; $x_{\rm TP}(t)$&nbsp; in Sonderfällen reell sein, zum Beispiel bei idealer Amplitudenmodulation entsprechend dem Kapitel&nbsp; [[Modulation_Methods/Zweiseitenband-Amplitudenmodulation|Zweiseitenband-Amplitudenmodulation]]&nbsp; (ZSB-AM).
+
*The real non existing equivalent low-pass signal&nbsp; $x_{\rm TP}(t)$&nbsp; is a mathematical tool to determine the functions&nbsp; $a(t)$&nbsp; and&nbsp; $\phi (t)$&nbsp; by simple geometrical considerations.
 +
 +
*The analytical signal&nbsp; $x_+(t)$&nbsp; is an intermediate step in the transition from&nbsp; $x(t)$&nbsp; to&nbsp; $x_{\rm TP}(t)$.&nbsp; While&nbsp; $x_+(t)$&nbsp; is always complex,&nbsp; $x_{\rm TP}(t)$&nbsp; can be real in special cases,&nbsp; for example,&nbsp; with ideal amplitude modulation according to the chapter&nbsp;  [[Modulation_Methods/Zweiseitenband-Amplitudenmodulation|&raquo;Double-Sideband Amplitude Modulation&laquo;]]&nbsp; $\text{(DSB-AM)}$.
  
  
Es gilt das gleiche Prinzip wie häufig in den Naturwissenschaften und Technik:  
+
$\text{The same principle applies as often used in the natural sciences and technologies:}$&nbsp;
  
*Die Einführung von&nbsp; $x_+(t)$&nbsp; und&nbsp; $x_{\rm TP}(t)$&nbsp; bringt für einfache Probleme eher eine Verkomplizierung.  
+
*The introduction of&nbsp; $x_+(t)$&nbsp; and&nbsp; $x_{\rm TP}(t)$&nbsp; brings rather a complication for simple problems.
*Deren Vorteile erkennt man erst bei schwierigeren Aufgabenstellungen, die allein mit dem physikalischen Bandpass-Signal&nbsp; $x(t)$&nbsp; nicht gelöst werden könnten oder nur mit sehr viel größerem Aufwand.}}
+
 +
*The advantages of this approach can only be seen in more difficult problems,&nbsp; which could not be solved with the  signal&nbsp; $x(t)$&nbsp; alone or only with much more effort.}}
  
  
Zur weiteren Verdeutlichung stellen wir noch zwei interaktive Applets bereit:
+
For further clarification we provide two interactive applets:
 
    
 
    
*[[Applets:Physikalisches_Signal_%26_Analytisches_Signal|Physikalisches Signal & AnalytischesSignal]] &nbsp; &rArr; &nbsp; &bdquo;Zeigerdiagramm&rdquo;,
+
*[[Applets:Physical_Signal_%26_Analytic_Signal|&raquo;Physical and Analytical Signal&laquo;]] &nbsp; &rArr; &nbsp; "Pointer Diagram",
*[[Applets:Physikalisches_Signal_%26_Äquivalentes_TP-Signal|Physikalisches Signal & Äquivalentes TP-Signal]] &nbsp; &rArr; &nbsp; &bdquo;Ortskurve&rdquo;.
 
  
==Darstellung nach Real- und Imaginärteil==
+
*[[Applets:Physical_Signal_%26_Equivalent_Lowpass_Signal|&raquo;Physical and Equivalent Low-Pass Signal&laquo;]] &nbsp; &rArr; &nbsp; "Locality Curve".
 +
 
 +
==Representation according to real and imaginary part==
 
<br>
 
<br>
Insbesondere zur Beschreibung der&nbsp; [[Modulation_Methods/Quadratur–Amplitudenmodulation|Quadratur-Amplitudenmodulation]]&nbsp; (QAM) eignet sich die Darstellung des äquivalenten Tiefpass–Signals nach Real– und Imaginärteil:
+
Especially for the description of&nbsp; [[Modulation_Methods/Quadratur–Amplitudenmodulation|&raquo;Quadrature Amplitude Modulation&laquo;]]&nbsp; $\text{(QAM)}$,&nbsp; the representation of the equivalent low-pass signal according to real and imaginary part is suitable:
 
   
 
   
 
:$$x_{\rm TP}(t) = x_{\rm I}(t)+ {\rm j} \cdot x_{\rm Q}(t).$$
 
:$$x_{\rm TP}(t) = x_{\rm I}(t)+ {\rm j} \cdot x_{\rm Q}(t).$$
  
In dieser Darstellung bezeichnet
+
In this representation,
*der Realteil&nbsp; $x_{\rm I}(t)$&nbsp; die&nbsp; '''Inphasekomponente'''&nbsp; (Normalkomponente),
+
*the real part&nbsp; $x_{\rm I}(t)$&nbsp; describes the&nbsp; &raquo;in-phase component&laquo;&nbsp; $($"normal component"$)$&nbsp; of&nbsp; $x_{\rm TP}(t)$,&nbsp;  
*der Imaginärteil&nbsp; $x_{\rm Q}(t)$&nbsp; die&nbsp; '''Quadraturkomponente'''
 
  
 +
*whereas the imaginary part&nbsp; $x_{\rm Q}(t)$&nbsp; describes the&nbsp; &raquo;quadrature component&laquo;.
  
von&nbsp; $x_{\rm TP}(t)$. Mit der Betragsfunktion&nbsp; $a(t) = |x_{\rm TP}(t)|$&nbsp; und der&nbsp; Phasenfunktion&nbsp; $\phi (t) = \text{arc}\,x_{\rm TP}(t)$&nbsp; entsprechend den Definitionen auf den vorangegangenen Seiten gilt:
+
 
 +
With the magnitude  function function&nbsp; $a(t) = |x_{\rm TP}(t)|$&nbsp; and the&nbsp; phase function&nbsp; $\phi (t) = \text{arc}\,x_{\rm TP}(t)$&nbsp; according to the definitions in the previous sections:
  
 
:$$\begin{align*}x_{\rm I}(t) & =  {\rm Re}[x_{\rm TP}(t)] = a(t) \cdot \cos
 
:$$\begin{align*}x_{\rm I}(t) & =  {\rm Re}[x_{\rm TP}(t)] = a(t) \cdot \cos
Line 264: Line 282:
 
  (\phi(t)).\end{align*}$$
 
  (\phi(t)).\end{align*}$$
  
[[File:P_ID1150__Sig_T_4_3_S7a_neu.png|right|frame|Real- und Imaginärteil des äquivalenten Tiefpass-Signals]]
+
 
{{GraueBox|TEXT=  
+
{{GraueBox|TEXT=
$\text{Beispiel 6:}$&nbsp; Zum betrachteten Zeitpunkt&nbsp; $t_0$&nbsp; gilt für das äquivalente Tiefpass–Signal:
+
[[File:P_ID1150__Sig_T_4_3_S7a_neu.png|right|frame|Real and imaginary part of the equivalent low-pass signal]]   
 +
$\text{Example 6:}$&nbsp; At the considered time&nbsp; $t_0$&nbsp; applies to the equivalent low-pass signal:
 
   
 
   
 
:$$x_{\rm TP}(t = t_0) = 2\,{\rm V} \cdot {\rm e}^{- {\rm j \hspace{0.05cm}\cdot \hspace{0.05cm} 60
 
:$$x_{\rm TP}(t = t_0) = 2\,{\rm V} \cdot {\rm e}^{- {\rm j \hspace{0.05cm}\cdot \hspace{0.05cm} 60
 
  ^\circ} }.$$
 
  ^\circ} }.$$
  
Mit dem&nbsp;  [[Signal_Representation/Calculating_With_Complex_Numbers#Darstellung_nach_Betrag_und_Phase|Satz von Euler]]&nbsp; kann hierfür geschrieben werden:
+
*With&nbsp;  [[Signal_Representation/Calculating_with_Complex_Numbers#Representation_by_magnitude_and_phase|&raquo;Euler's Theorem&laquo;]],&nbsp; this can be written:
  
 
:$$x_{\rm TP}(t = t_0) =  2\,{\rm V} \cdot \cos(60 ^\circ) - {\rm j} \cdot 2\,{\rm V} \cdot \sin(60
 
:$$x_{\rm TP}(t = t_0) =  2\,{\rm V} \cdot \cos(60 ^\circ) - {\rm j} \cdot 2\,{\rm V} \cdot \sin(60
 
  ^\circ).$$
 
  ^\circ).$$
  
Damit gilt für die Inphasekomponente  und für die  Quadraturkomponente:  
+
*This applies to the&nbsp; "in-phase"&nbsp; and&nbsp; "quadrature component":  
  
 
:$$x_{\rm I}(t = t_0) = 2\,{\rm V} \cdot \cos(60 ^\circ) = 1\text{V}, $$
 
:$$x_{\rm I}(t = t_0) = 2\,{\rm V} \cdot \cos(60 ^\circ) = 1\text{V}, $$
Line 282: Line 301:
  
  
Durch Anwendung trigonometrischer Umformungen kann gezeigt werden, dass man das reelle, physikalische Bandpass–Signal auch in folgender Weise darstellen kann:
+
By applying trigonometric transformations it can be shown that the real&nbsp; $($physical$)$&nbsp; band-pass signal can also be represented in the following way:
 
   
 
   
 
:$$x(t)  =  a(t) \cdot \cos  (2 \pi \cdot f_{\rm T} \cdot t + \phi(t)) =  x_{\rm I}(t)\cdot \cos  (2 \pi \cdot f_{\rm T} \cdot t )-x_{\rm Q}(t)\cdot \sin  (2 \pi \cdot f_{\rm T} \cdot t ). $$
 
:$$x(t)  =  a(t) \cdot \cos  (2 \pi \cdot f_{\rm T} \cdot t + \phi(t)) =  x_{\rm I}(t)\cdot \cos  (2 \pi \cdot f_{\rm T} \cdot t )-x_{\rm Q}(t)\cdot \sin  (2 \pi \cdot f_{\rm T} \cdot t ). $$
  
Das Minuszeichen ergibt sich wegen der Verwendung der Phasenfunktion&nbsp; $\phi (t)$. Ein Vergleich mit der Seite&nbsp; [[ Signal_Representation/Harmonic_Oscillation#Darstellung_mit_Cosinus-_und_Sinusanteil|Darstellung mit Cosinus- und Sinusanteil]]&nbsp; im zweiten Hauptkapitel zeigt, dass sich anstelle der Differenz die Summe ergibt, wenn man sich auf&nbsp; $\varphi (t) = -\phi (t)$&nbsp; bezieht. Angepasst auf unser Beispiel erhält man dann:
+
*The minus sign results from the use of the phase function&nbsp; $\phi (t)$.&nbsp; A comparison with the section&nbsp; [[ Signal_Representation/Harmonic_Oscillation#Representation_with_cosine_and_sine_components|&raquo;Representation with cosine and sine components&laquo;]]&nbsp; in the second main chapter shows that instead of the difference,&nbsp; the sum results when referring to&nbsp; $\varphi (t) = -\phi (t)$.&nbsp; Adapted to our example,&nbsp; you then get
 
   
 
   
 
:$$x(t)  =  a(t) \cdot \cos  (2 \pi \cdot f_{\rm T} \cdot t - \varphi(t)) =  x_{\rm I}(t)\cdot \cos  (2 \pi \cdot f_{\rm T} \cdot t )+x_{\rm Q}(t)\cdot \sin  (2 \pi \cdot f_{\rm T} \cdot t ).$$
 
:$$x(t)  =  a(t) \cdot \cos  (2 \pi \cdot f_{\rm T} \cdot t - \varphi(t)) =  x_{\rm I}(t)\cdot \cos  (2 \pi \cdot f_{\rm T} \cdot t )+x_{\rm Q}(t)\cdot \sin  (2 \pi \cdot f_{\rm T} \cdot t ).$$
  
Die Quadraturkomponente&nbsp; $x_{\rm Q}(t)$&nbsp; unterscheidet sich gegenüber der oberen Gleichung also im Vorzeichen.
+
*The quadrature component&nbsp; $x_{\rm Q}(t)$&nbsp; thus differs from the above equation in the sign.
  
==Ermittlung des  äquivalenten TP-Signals aus dem BP-Signal==
+
==Determination of the equivalent low-pass signal from the band-pass signal==
 
<br>
 
<br>
Die folgende Grafik zeigt zwei Anordnungen, um aus dem reellen Bandpass–Signal&nbsp; $x(t)$&nbsp; das komplexe Tiefpass–Signal aufgespalten nach Inphase– und Quadraturkomponente zu ermitteln, beispielsweise zur Darstellung auf einem Oszilloskop. Betrachten wir zuerst das obere Modell:
+
The figure shows two arrangements to determine the complex low-pass signal split into inphase and quadrature components from the real band-pass signal&nbsp; $x(t)$,&nbsp; for example for display on an oscilloscope.&nbsp; Let us first look at the upper model:
 
+
[[File:P_ID1151__Sig_T_4_3_S7b_neu.png|right|frame|Division of the equivalent low-pass signal into In-phase and Quadrature components]]
*Hier wird zunächst das analytische Signal&nbsp; $x_+(t)$&nbsp; durch Hinzufügen der&nbsp; [[Signal_Representation/Analytical_Signal_and_Its_Spectral_Function#Darstellung_mit_der_Hilberttransformation|Hilberttransformierten]]&nbsp; erzeugt.
 
*Durch Multiplikation mit der komplexen Exponentialfunktion (mit negativem Exponenten!) kommt man zum äquivalenten Tiefpass–Signal&nbsp; $x_{\rm TP}(t)$.
 
*Die gesuchten Komponenten&nbsp; $x_{\rm I}(t)$&nbsp; und&nbsp; $x_{\rm Q}(t)$&nbsp; erhält man dann durch Real– bzw. Imaginärteilbildung.
 
  
 +
#The analytical signal&nbsp; $x_+(t)$&nbsp; is first generated here by adding the&nbsp; [[Signal_Representation/Analytical_Signal_and_its_Spectral_Function#Representation_with_Hilbert_transform|&raquo;Hilbert Transform&laquo;]].
 +
#Multiplication with the complex exponential function&nbsp; $($with negative exponent!$)$&nbsp; yields the equivalent low-pass signal&nbsp; $x_{\rm TP}(t)$.
 +
#The sought components&nbsp; $x_{\rm I}(t)$&nbsp; and&nbsp; $x_{\rm Q}(t)$&nbsp; are then obtained by forming the real and the imaginary part.
  
[[File:P_ID1151__Sig_T_4_3_S7b_neu.png|center|frame|Aufteilung des äquivalenten Tiefpass-Signals in Inphase- und Quadraturkomponente]]
 
  
Bei der unteren (praxisrelevanteren) Anordnung erhält man für den oberen bzw. unteren Zweig nach den jeweiligen Multiplikationen:
+
&rArr; &nbsp; With the lower&nbsp; $($more practical$)$&nbsp; arrangement,&nbsp; you get for the upper and the  lower branch after the respective multiplications:
 
   
 
   
:$$a(t)\cdot \cos  (\omega_{\rm T} \cdot t + \phi(t)) \cdot 2 \cdot \cos  (\omega_{\rm T} \cdot t ) = a(t)\cdot \cos  ( \phi(t)) +  \varepsilon_{\rm oben}(t),$$
+
$$a(t)\cdot \cos  (\omega_{\rm T} t + \phi(t)) \cdot 2 \cdot \cos  (\omega_{\rm T} t ) = a(t)\cdot \cos  ( \phi(t)) +  \varepsilon_{\rm 1}(t),$$
:$$a(t)\cdot \cos  (\omega_{\rm T} \cdot t + \phi(t)) \cdot (-2) \cdot \sin  (\omega_{\rm T} \cdot t ) = a(t)\cdot \sin  ( \phi(t)) + \varepsilon_{\rm unten}(t)).$$
+
$$a(t)\cdot \cos  (\omega_{\rm T} t + \phi(t)) \cdot (-2) \cdot \sin  (\omega_{\rm T} t ) = a(t)\cdot \sin  ( \phi(t)) + \varepsilon_{\rm 2}(t)).$$
  
Die jeweils zweiten Anteile liegen im Bereich um die doppelte Trägerfrequenz und werden durch die Tiefpässe mit jeweiliger Grenzfrequenz&nbsp; $f_{\rm T}$&nbsp; entfernt:
+
&rArr; &nbsp; The respective second parts are in the range around twice the carrier frequency and are removed by low-pass filters with cut-off frequency&nbsp; $f_{\rm T}$&nbsp;:
 
   
 
   
:$$\varepsilon_{\rm oben}(t)  = a(t)\cdot \cos  (2\omega_{\rm T} \cdot t +
+
:$$\varepsilon_{\rm 1}(t)  = a(t)\cdot \cos  (2\omega_{\rm T} \cdot t +
  \phi(t)),\hspace{0.8cm}
+
  \phi(t)),$$
\varepsilon_{\rm unten}(t) = -  a(t)\cdot \sin  (2\omega_{\rm T} \cdot t +
+
:$$\varepsilon_{\rm 2}(t) = -  a(t)\cdot \sin  (2\omega_{\rm T} \cdot t +
 
  \phi(t)).$$
 
  \phi(t)).$$
  
Ein Vergleich mit obigen Gleichungen zeigt, dass am Ausgang die gewünschten Komponenten&nbsp; $x_{\rm I}(t)$&nbsp; und&nbsp; $x_{\rm Q}(t)$&nbsp; abgegriffen werden können:
+
&rArr; &nbsp; A comparison with the above equations shows that the desired components&nbsp; $x_{\rm I}(t)$&nbsp; and&nbsp; $x_{\rm Q}(t)$&nbsp; can be tapped at the output:
 
   
 
   
 
:$$x_{\rm I}(t)  = a(t)\cdot \cos  ( \phi(t)) ,$$
 
:$$x_{\rm I}(t)  = a(t)\cdot \cos  ( \phi(t)) ,$$
Line 321: Line 339:
  
  
==Leistung und Energie eines Bandpass-Signals==
+
==Power and energy of a band-pass signal==
 
<br>
 
<br>
Wir betrachten das (blaue) Bandpass-Signal&nbsp; $x(t)$&nbsp; gemäß der Grafik, das sich zum Beispiel bei&nbsp; [[Modulation_Methods/Lineare_digitale_Modulationsverfahren#ASK_.E2.80.93_Amplitude_Shift_Keying|Binary Amplitude Shift Keying]]&nbsp; ergibt. Dieses digitale Modulationsverfahren ist auch bekannt unter dem Namen&nbsp; '''On–Off–Keying'''.
+
We look at the&nbsp;  $($blue$)$&nbsp; band-pass signal&nbsp; $x(t)$&nbsp; according to the graph,&nbsp; which results e.g. from&nbsp; [[Modulation_Methods/Linear_Digital_Modulation#ASK_.E2.80.93_Amplitude_Shift_Keying|&raquo;Binary Amplitude Shift Keying&laquo;]]&nbsp; $\text{(2ASK)}$.&nbsp; This digital modulation method is also known as&nbsp; &raquo;On-Off keying&laquo;.
 
   
 
   
[[File:P_ID1152__Sig_T_4_3_S8a.png|right|frame|Leistung und Energie eines Bandpass-Signals]]  
+
[[File:P_ID1152__Sig_T_4_3_S8a.png|right|frame|Power and energy of a band-pass signal]]  
  
Die auf&nbsp; $1 \,\Omega$&nbsp; bezogene Signalleistung ergibt sich nach den Ausführungen auf der Seite&nbsp; [[Signal_Representation/Signal_classification#Energiebegrenzte_und_leistungsbegrenzte_Signale|Energiebegrenzte und leistungsbegrenzte Signale]]&nbsp; zu
+
*The signal power related to&nbsp; $1 \,\Omega$&nbsp; is given by the explanations in section&nbsp; [[Signal_Representation/Signal_classification#Energy.E2.80.93limited_and_power.E2.80.93limited_signals|&raquo;Energy–limited and power–limited signals&laquo;]]&nbsp; as
 
   
 
   
 
:$$P_x = \lim_{T_{\rm M} \to \infty} \frac{1}{T_{\rm M}} \cdot \int^{+T_{\rm M}/2} _{-T_{\rm M}/2}\hspace{-0.1cm} x^2(t)\,{\rm d}t.$$
 
:$$P_x = \lim_{T_{\rm M} \to \infty} \frac{1}{T_{\rm M}} \cdot \int^{+T_{\rm M}/2} _{-T_{\rm M}/2}\hspace{-0.1cm} x^2(t)\,{\rm d}t.$$
  
Sind die binären Nullen und Einsen gleichwahrscheinlich, so kann man auf den unendlichen Integrationsbereich und den Grenzübergang verzichten, und man erhält für das oben skizzierte Mustersignal&nbsp; $x(t)$:
+
*If the binary&nbsp; "zeros"&nbsp; and&nbsp; "ones"&nbsp; are equally probable,&nbsp; then the infinite integration range and the boundary crossing can be omitted,&nbsp; and you get for the above sketched pattern signal:  
 
   
 
   
 
:$$P_x = \frac{1}{2T} \cdot \int ^{2T} _{0} x^2(t)\,{\rm d}t =
 
:$$P_x = \frac{1}{2T} \cdot \int ^{2T} _{0} x^2(t)\,{\rm d}t =
 
  \frac{4\,{\rm V}^2}{2T} \cdot \int^{T} _{0} \cos^2(\omega_{\rm T} \cdot t)\,{\rm d}t= 1\,{\rm V}^2.$$
 
  \frac{4\,{\rm V}^2}{2T} \cdot \int^{T} _{0} \cos^2(\omega_{\rm T} \cdot t)\,{\rm d}t= 1\,{\rm V}^2.$$
<br clear=all>
+
 
Aus der unteren Skizze ist zu erkennen, dass man durch Mittelung über die quadrierte Hüllkurve&nbsp; $a^2(t)$&nbsp; – also über das Betragsquadrat des äquivalenten Tiefpass–Signals&nbsp; $x_{\rm TP}(t)$&nbsp; – ein doppelt so großes Ergebnis erhält. Deshalb gilt in gleicher Weise:
+
*From the sketch below you can see that by averaging over the squared envelope&nbsp; $a^2(t)$&nbsp; &ndash; i.e. over the&nbsp; &raquo;magnitude square of the equivalent low-pass signal&laquo;&nbsp; $x_{\rm TP}(t)$&nbsp; &ndash; you get a result twice as large.  
 +
 
 +
*Therefore the same holds here likewise:
 
   
 
   
 
:$$P_x = { {1}/{2} \hspace{0.08cm}\cdot }\lim_{T_{\rm M} \to \infty} \frac{1}{T_{\rm M}}
 
:$$P_x = { {1}/{2} \hspace{0.08cm}\cdot }\lim_{T_{\rm M} \to \infty} \frac{1}{T_{\rm M}}
Line 344: Line 364:
 
  \cdot \int^{T_{\rm M}/2} _{-T_{\rm M}/2} a^2(t)\,{\rm d}t.$$
 
  \cdot \int^{T_{\rm M}/2} _{-T_{\rm M}/2} a^2(t)\,{\rm d}t.$$
  
Dieses Resultat lässt sich verallgemeinern und es auch auf energiebegrenzte Signale anwenden. In diesem Fall gilt für die Energie entsprechend der Seite&nbsp; [[Signal_Representation/Signal_classification#Energiebegrenzte_und_leistungsbegrenzte_Signale|Energiebegrenzte und leistungsbegrenzte Signale]]:
+
*This result can be generalized and applied to energy limited signals.&nbsp; In this case,&nbsp; the energy according to section&nbsp; [[Signal_Representation/Signal_classification#Energy.E2.80.93limited_and_power.E2.80.93limited_signals|&raquo;Energy–limited and power–limited signals&laquo;]]:
 
   
 
   
 
:$$E_x =  \int ^{+\infty} _{-\infty} x^2(t)\,{\rm
 
:$$E_x =  \int ^{+\infty} _{-\infty} x^2(t)\,{\rm
Line 351: Line 371:
 
  d}t.$$
 
  d}t.$$
  
Diese Gleichung gilt allerdings nur dann exakt, wenn die Trägerfrequenz&nbsp; $f_{\rm T}$&nbsp; sehr viel größer als die Bandbreite&nbsp; $B_{\rm BP}$&nbsp; des Bandpasses  ist.
+
However,&nbsp; this equation only applies exactly if the carrier frequency&nbsp; $f_{\rm T}$&nbsp; is much larger than the bandwidth&nbsp; $B_{\rm BP}$&nbsp; of the band-pass.
 
 
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 7:}$&nbsp;
+
$\text{Example 7:}$&nbsp;
Wir betrachten das in der Grafik links oben blau skizzierte Bandpass–Signal&nbsp; $x(t)$&nbsp; mit&nbsp; $A = 2\,\text{V}$,&nbsp; $B = 1\,\text{kHz}$&nbsp; und&nbsp; $f_{\rm T} = 10\,\text{kHz}$:
+
We look at the band-pass signal&nbsp; $x(t)$&nbsp; with&nbsp; $A = 2\,\text{V}$,&nbsp; $B = 1\,\text{kHz}$&nbsp; and&nbsp; $f_{\rm T} = 10\,\text{kHz}$:
  
[[File:P_ID1154__Sig_T_4_3_S8b_neu.png|right|frame|Leistungsberechnung im äquivalenten Tiefpass-Bereich]]
+
[[File:P_ID1154__Sig_T_4_3_S8b_neu.png|right|frame|Power calculation in the equivalent low-pass range]]
 
   
 
   
:$$x(t) = A \cdot {\rm si}(\pi \cdot B \cdot t) \cdot \cos(2 \pi \cdot f_{\rm T}\cdot \hspace{0.05cm}t + \phi(t)).$$
+
:$$x(t) = A \cdot {\rm sinc}(B \cdot t) \cdot \cos(2 \pi \cdot f_{\rm T}\cdot \hspace{0.05cm}t + \phi(t)).$$
  
Oben rechts ist das zum Signal&nbsp; $x(t)$&nbsp; gehörige Betragsspektrum&nbsp; $\vert X(f) \vert$&nbsp; dargestellt. Es gilt die blaue Beschriftung:
+
The magnitude spectrum&nbsp; $\vert X(f) \vert$&nbsp; belonging to the signal&nbsp; $x(t)$&nbsp; is displayed in the upper right corner.&nbsp; The blue label applies:
* $X(f)$&nbsp; ist aufgrund der Symmetrieverhältnisse rein reell:  
+
* $X(f)$&nbsp; is purely real due to the symmetry relations:
 
:$$\vert X(f) \vert  = X(f).$$
 
:$$\vert X(f) \vert  = X(f).$$
  
* $\vert X(f) \vert$&nbsp; setzt sich also aus zwei Rechtecken um&nbsp; $\pm f_{\rm T}$&nbsp; zusammen.
+
* $\vert X(f) \vert$&nbsp; is thus composed of two rectangles around&nbsp; $\pm f_{\rm T}$&nbsp;. In the range around the carrier frequency applies:
 +
:$$\vert X(f) \vert = A/(2B) = 10^{-3}\text{V/Hz}.$$
  
* Im Bereich um die Trägerfrequenz gilt:
+
&rArr; &nbsp; The energy of this band-pass signal could in principle be calculated by the following equation:
:$$\vert X(f) \vert = A/(2B) = 10^{-3}\text{V/Hz}.$$
 
<br clear=all>
 
Die Energie dieses Bandpass–Signals könnte prinzipiell nach folgender Gleichung berechnet werden:
 
 
   
 
   
:$$E_x =  \int^{+\infty} _{-\infty} A^2 \cdot \frac{ {\rm
+
$$E_x =  \int^{+\infty} _{-\infty} A^2 \cdot \frac{ {\rm
 
sin}^2(\pi \cdot B \cdot t)}{ (\pi \cdot B \cdot t)^2}\cdot
 
sin}^2(\pi \cdot B \cdot t)}{ (\pi \cdot B \cdot t)^2}\cdot
 
\cos^2(2 \pi \cdot f_{\rm T}\cdot \hspace{0.05cm}t +
 
\cos^2(2 \pi \cdot f_{\rm T}\cdot \hspace{0.05cm}t +
 
\phi(t))\,{\rm
 
\phi(t))\,{\rm
 
  d}t .$$
 
  d}t .$$
 
+
According to the above equations,&nbsp; however,&nbsp; with the envelope curve&nbsp; $a(t)$&nbsp; drawn in red at the top left also applies:
Entsprechend den obigen Gleichungen gilt mit der oben links rot eingezeichneten Hüllkurve&nbsp; $a(t)$&nbsp; aber auch:
 
 
   
 
   
:$$E_x  = { {1}/{2} \hspace{0.08cm}\cdot }\int^{+\infty} _{-\infty} a^2(t)\,{\rm
+
$$E_x  = { {1}/{2} \hspace{0.08cm}\cdot }\int^{+\infty} _{-\infty} a^2(t)\,{\rm
  d}t=  { {1}/{2} \hspace{0.08cm}\cdot }\int^{+\infty} _{-\infty} \vert A \cdot {\rm si}(\pi \cdot B \cdot t)\vert^2\,{\rm
+
  d}t=  { {1}/{2} \hspace{0.08cm}\cdot }\int^{+\infty} _{-\infty} \vert A \cdot {\rm sinc}(B \cdot t)\vert^2\,{\rm
 
  d}t $$
 
  d}t $$
:$$\Rightarrow \hspace{0.3cm} E_x  =  A^2\cdot \int^{+\infty} _{0} {\rm si}^2(\pi \cdot B \cdot t)\,{\rm
+
:$$\Rightarrow \hspace{0.3cm} E_x  =  A^2\cdot \int^{+\infty} _{0} {\rm sinc}^2(B \cdot t)\,{\rm
 
  d}t =A^2\cdot \frac {\pi}{2}\cdot \frac {1}{\pi B} = \frac {A^2}{2 B}= 2 \cdot 10^{-3}\,{\rm V}^2/{\rm Hz}.$$
 
  d}t =A^2\cdot \frac {\pi}{2}\cdot \frac {1}{\pi B} = \frac {A^2}{2 B}= 2 \cdot 10^{-3}\,{\rm V}^2/{\rm Hz}.$$
  
Aus dieser Gleichung erkennt man sofort, dass die Signalenergie&nbsp; $E_x$&nbsp; unabhängig von der Trägerphase&nbsp; $\phi$&nbsp; ist.
+
&rArr; &nbsp; A second solution with the same result is offered by&nbsp; [https://en.wikipedia.org/wiki/Parseval%27s_theorem &raquo;Parseval's theorem&laquo;]:
 
 
Eine zweite Lösungsmöglichkeit mit gleichem Ergebnis bietet schließlich der&nbsp; [https://de.wikipedia.org/wiki/Satz_von_Parseval Satz von Parseval]:
 
  
 
:$$\int ^{+\infty} _{-\infty} a^2(t)\,{\rm  d}t= \int
 
:$$\int ^{+\infty} _{-\infty} a^2(t)\,{\rm  d}t= \int
Line 396: Line 410:
 
B).$$
 
B).$$
 
   
 
   
Hierbei ist berücksichtigt:
+
This is taken into account:
*Es gilt&nbsp; $\vert A(f) \vert = \vert X_{\rm TP}(f) \vert $.  
+
#The following applies&nbsp; $\vert A(f) \vert = \vert X_{\rm TP}(f) \vert $.  
*Innerhalb der Bandbreite&nbsp; $B$&nbsp; um die Frequenz&nbsp; $f = 0$&nbsp; ist&nbsp; $X_{\rm TP}(f)$&nbsp; doppelt so groß wie&nbsp; $X(f)$&nbsp; um die Frequenz&nbsp; $f = f_{\rm T}$, nämlich&nbsp; $A/B$.  
+
#Inside the bandwidth&nbsp; $B$&nbsp; around the frequency&nbsp; $f = 0$&nbsp; &rArr; &nbsp; $X_{\rm TP}(f)$&nbsp; is twice as large as&nbsp; $X(f)$&nbsp; around the frequency&nbsp; $f = f_{\rm T}$,&nbsp; namely&nbsp; $A/B$.  
*Dies hängt mit der Definition des Spektrums&nbsp; $X_+(f)$&nbsp; des analtischen Signals zusammen, aus dem&nbsp; $X_{\rm TP}(f)$&nbsp; durch Verschiebung entsteht.}}
+
#This is related to the definition of the spectrum&nbsp; $X_+(f)$&nbsp; of the analytical signal from which&nbsp; $X_{\rm TP}(f)$&nbsp; is created by shifting.}}
  
  
  
==Exercises for The Chapter==
+
==Exercises for the chapter==
 
<br>
 
<br>
[[Aufgaben:Exercise 4.5: Locus Curve for DSB-AM|Exercise 4.5: Locus Curve for DSB-AM]]
+
[[Aufgaben:Exercise_4.5:_Locality_Curve_for_DSB-AM|Exercise 4.5: Locality Curve for DSB-AM]]
  
 
[[Aufgaben:Exercise 4.5Z: Simple Phase Modulator|Exercise 4.5Z: Simple Phase Modulator]]
 
[[Aufgaben:Exercise 4.5Z: Simple Phase Modulator|Exercise 4.5Z: Simple Phase Modulator]]
  
[[Aufgaben:Exercise 4.6: Loot Curve for ESB-AM|Exercise 4.6: Loot Curve for ESB-AM]]
+
[[Aufgaben:Exercise_4.6:_Locality_Curve_for_SSB-AM|Exercise 4.6: Locality Curve for SSB-AM]]
  
[[Aufgaben:Exercise 4.6Z: Loot Curve  for Phase Modulation|Exercise 4.6Z: Loot Curve  for Phase Modulation]]
+
[[Aufgaben:Exercise_4.6Z:_Locality_Curve_for_Phase_Modulation|Exercise 4.6Z: Locality Curve  for Phase Modulation]]
  
  
 
{{Display}}
 
{{Display}}

Latest revision as of 16:11, 21 June 2023

Motivation for describing in the equivalent low-pass range


The following figure shows a possible structure of a transmission system:

Block diagram of a band-pass transmission system
  • Often the low-frequency source signal  $q(t)$  is converted into a band-pass signal  $s(t)$    ⇒   »modulation«.
  • After transmission,  the received signal  $r(t)$  – compared to the transmitted signal  $s(t)$  possibly distorted and with interference  $($noise$)$  applied – must be reset to the original frequency range   ⇒   »demodulation«.
  • The sink signal  $v(t)$, which should match the source signal  $q(t)$  as closely as possible,  is then again a low-pass signal.


Modulation and demodulation are therefore fundamental components of a transmission system,  which are dealt in detail in the book  »Modulation Methods«.  A short summary can be found in the first chapter  »Principles of Communication«  of this book.

The investigation,  simulation,  optimization,  and dimensioning of band-pass systems are mostly done in the  »equivalent low-pass range}«,  for which the following reasons can be given:

  • If quality characteristics  $($bandwidth efficiency,  signal-to-noise ratio,  bit error rate,  etc.$)$  of a low-pass system are known,  the corresponding values of related band-pass systems can be derived from them relatively easily.  Examples are the digital modulation methods  »Amplitude Shift Keying«  $\text{(ASK)}$  and  »Binary Phase Shift Keying«  $\text{(BPSK)}$,  whose performance variables can be  "extrapolated"  from the comparable  »baseband system»  $($i.e.,  without modulator and demodulator$)$.
  • Individual subchannels in a so-called  »Frequency Division Multiplex«  system,  which differ by different carrier frequencies,  can often be considered qualitatively equivalent.  Therefore,  it is sufficient to limit the calculation and dimensioning to a single channel and to perform these investigations in the equivalent low-pass range – i.e. without considering the specific carrier frequency.
  • It is often the case that the bandwidth of a communication connection is orders of magnitude smaller than the carrier frequency.  For example,  in the  »GSM standard«  the individual channels are located in the frequency range around  $900\ \rm MHz$  $($»D-Network«$)$  and   $1800\ \rm MHz$  $($»E-Network«$)$,  while each channel has only a small bandwidth of  $200\ \rm kHz$.  Therefore a simulation in the equivalent low-pass range is much less complex than a simulation of the corresponding band-pass signals.


Definition in the frequency domain


We consider a real band-pass signal  $x(t)$  with the spectrum  $X(f)$.  Furthermore,  the following shall apply:

  • The band-pass signal  $x(t)$  is said to result from the modulation of a low-frequency source signal  $q(t)$  with the carrier signal  $z(t)$  of frequency  $f_{\rm T}$.  The type of modulation  $($whether analog or digital,  amplitude or angle modulation,  single-sideband or double-sideband$)$  is not specified.
  • The spectral function  $X_+(f)$  of the corresponding analytical signal  $x_+(t)$  exists only for positive frequencies and is twice as large as  $X(f)$.  For the derivation of  $X_+(f)$  the carrier frequency  $f_{\rm T}$  $($German:  "Trägerfrequenz"   ⇒   "$\rm T$"$)$  of the system does not need to be known.


$\text{Definition:}$  If the spectrum of the analytical signal  $x_+(t)$  is shifted to the left by  $f_{\rm T}$,  the result is called the  »equivalent low-pass spectrum«:

$$X_{\rm TP}(f) = X_{\rm +}(f + f_{\rm T}).$$

Note:

  1. The identifier "$\rm TP$"  stands for  "low-pass"  $($German:  "Tiefpass"$)$  and the identifier  "$\rm T$"  stands for  "carrier"  $($German:  Träger$)$.
  2. In general:   $X(f)$,  $X_+(f)$  and  $X_{\rm TP}(f)$  are complex-valued. 
  3. However,  if  $X(f)$  is real,  then the spectral functions  $X_+(f)$  and  $X_{\rm TP}(f)$  are real too,  because they result from  $X(f)$  only with the linear operations  »truncate«,  »double«,  and  »frequency shift«.
  4. In contrast to  $X_+(f)$,  for the calculation of the equivalent low-pass spectrum  $X_{\rm TP}(f)$  the knowledge of the carrier frequency $f_{\rm T}$  is absolutely necessary.  For other values of $f_{\rm T}$  other low-pass spectra will result.


If one transforms the above equation into the time domain,  one obtains after applying the  »Shifting Theorem«:

$$x_{\rm TP}(t) = x_{\rm +}(t)\cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi \cdot f_{\rm T}\cdot \hspace{0.05cm}t}.$$

The relation  $x(t) = \text{Re}\big[x_+(t)\big]$  yields the procedure to determine the actual physical band-pass signal from the equivalent low-pass signal:

$$x(t) = {\rm Re}\big [x_{\rm +}(t)\big] = {\rm Re}\big[x_{\rm TP}(t)\cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm} \cdot 2\pi \hspace{0.05cm}\cdot\hspace{0.05cm} f_{\rm T}\hspace{0.05cm} \cdot \hspace{0.05cm} \hspace{0.05cm}t}\big].$$

$\text{Example 1:}$  The upper figure shows the real spectral function  $X(f)$  of a band-pass signal  $x(t)$  which is the result of modulating a low-frequency signal  $q(t)$  with the carrier frequency  $f_{\rm T}$.

Construction of the equivalent low-pass spectrum

Below the two likewise real spectral functions  $X_+(f)$  and  $X_{\rm TP}(f)$ are shown: 

  1. Due to the asymmetries concerning the frequency origin  $(f = 0)$  the corresponding time functions are complex.
  2. The solid-green spectral function  $X_{\rm TP}(f)$  is shifted to the left with respect to  $X_{+}(f)$  by the  carrier frequency $f_{\rm T}$.
  3. If  $X(f)$  is the modulation result of another source signal  $q\hspace{0.05cm}'(t)$  with a different carrier frequency  ${f_{\rm T} }\hspace{0.05cm}'$, this would result in another equivalent low-pass spectrum  ${X\hspace{0.05cm}'_{\rm TP} }(f)$.
  4. An exemplary function  ${X\hspace{0.05cm}'_{\rm TP} }(f)$  is drawn in the graphic with green-dashed lines.

Description in the time domain


To simplify the presentation we now assume a line spectrum  so that the analytical signal can be represented as  »pointer group«   ⇒   sum of complex rotating pointers:

$$X_{+}(f) = \sum_{i=1}^{I} {A_i} \cdot {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} \varphi_i}\cdot\delta (f - f_i) \hspace{0.3cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.3cm} x_{+}(t) = \sum_{i=1}^{I} A_i \cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}( 2 \pi \hspace{0.05cm}\cdot \hspace{0.05cm}f_i\hspace{0.05cm}\cdot \hspace{0.05cm} t \hspace{0.05cm}-\hspace{0.05cm} \varphi_i)}.$$
  • By shifting the frequency by $f_{\rm T}$  to the left,  the equivalent low-pass signal in frequency and time domain is:
$$X_{\rm TP}(f) = \sum_{i=1}^{I} {A_i} \cdot {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} \varphi_i}\cdot\delta (f - \nu_i)\hspace{0.3cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.3cm} x_{\rm TP}(t) = \sum_{i=1}^{I} A_i \cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}( 2 \pi \hspace{0.05cm}\cdot \hspace{0.05cm} \nu_i \hspace{0.05cm}\cdot \hspace{0.05cm} t \hspace{0.05cm}-\hspace{0.05cm} \varphi_i)}.$$
  • The following relation is valid between the frequency values  $f_i$  and  $\nu_i$  $(i = 1, \ \text{...} \ , I)$:
$$\nu_i = f_i - f_{\rm T} .$$
  • These equations can be interpreted as follows:
  1. At time  $t = 0$  the equivalent low-pass signal is identical to the analytical signal:         $x_{\rm TP}(t = 0) = x_{\rm +}(t = 0)= \sum_{i=1}^{I} A_i \cdot {\rm e}^{{-\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} \varphi_i}.$
  2. At this time,  the  "pointer group"  is defined by the  $I$  amplitude parameter  $A_i$  and the  $I$  phase positions  $\varphi_i$  alone.
  3. All pointers of the analytical signal  $x_+(t)$  rotate for  $t > 0$  corresponding to the  $($always positive$)$  frequencies  $f_i$  counterclockwise.
  4. For the equivalent low-pass signal,  the rotation speeds are lower. 
  5. Pointers with  $\nu_i > 0$  turn in mathematically positive direction  $($counterclockwise$)$,  those with  $\nu_i < 0$  in opposite direction  $($clockwise$)$.
  6. If the frequency parameter for a pointer is  $\nu_i = 0$,  this pointer rests in the complex plane corresponding to its initial position.


$\text{Example 2:}$  We consider a spectrum  $X_+(f)$ consisting of three spectral lines at  $40\,\text{kHz}$,  $50\,\text{kHz}$  and $60\,\text{kHz}$.  With the amplitude and phase parameters recognizable from the graph you obtain the analytical signal  $x_+(t)$  corresponding to the lower left sketch.

Construction of the equivalent low-pass signals in the time domain

The snapshot of the lower left graph   ⇒   »analytical signal«   $x_+(t)$  applies to the time  $t = 0$.  All pointers then turn counterclockwise at a constant circular velocity.

  • The blue pointer rotates with  $60000$  rotations per second  $($it is the fastest pointer$)$.  The green pointer is the slowest;  it rotates with the circular frequency  $\omega_{40} = 2\pi \cdot 40000 \hspace{0.1cm} 1/\text{s}$.
  • The violet sum point of all three pointers moves for  $t > 0$  in the complex plane in a complicated manner,  for the above numerical values first roughly in the drawn direction.


⇒   The graphics on the right describe the  »equivalent low-pass signal«  in the frequency domain  $($top$)$  and in the time domain  $($bottom$)$,  valid for the carrier frequency  $f_{\rm T} = 50\,\text{kHz}$.

  • The carrier is now at  $f = 0$;  the corresponding red pointer does not move.
  • The blue pointer  $($"upper sideband"$)$  rotates counterclockwise with  $\omega_{10} = 2\pi \cdot 10000 \hspace{0.1cm}1/\text{s}$.
  • The green pointer  $($"lower sideband"$)$  rotates clockwise at the same angular velocity  ($-\omega_{10}$).


Definition of the "Locality Curve"


$\text{Definition:}$  As  »locality curve«  we call the curve on which the  »equivalent low-pass signal«  $x_{\rm TP}(t)$  moves in the  complex plane. 

Notes:   In other technical literature the term  "locality curve"  is rarely used.  Therefore, initially,  an example is given.


Given locality curve
Note:   The green pointer has length  $2$

$\text{Example 3:}$  We consider the equivalent low-pass signal  $x_{\rm TP}(t)$  of  $\text{Example 2}$, consisting of

  • the resting  $($red$)$  pointer of length  $3$,
  • the  $($blue$)$  pointer rotating with  $\omega_{10} = 2\pi \cdot 10000 \hspace{0.1cm} 1/\text{s}$  in mathematical positive direction,  complex value  $\rm j$,
  • the  $($green)  pointer of length  $2$,  which is currently  $(t = 0)$  in the direction of the negative imaginary axis; 
    this rotates with the same circular velocity  $\omega_{10}$  as the blue pointer,  but in the opposite direction  ($-\omega_{10}$).


The blue and the green pointer each require exactly one period duration   $T_0 = 100 \,{\rm µ}\text{s}$  for one rotation.  The further course of the process can be seen in the above illustration:

  • The violet pointer sum at time  $t = 0$  is equal to  $x_{\rm TP}(t=0) = 3 - \text{j}$.
  • After  $t = T_0/4 = 25 \,{\rm µ}\text{s}$  the resulting pointer group has the value  $0$,  since now the two rotating pointers lie in the opposite direction to the carrier and compensate it exactly.
  • After one period  $(t = T_0 = 100 \,{\rm µ}\text{s})$  the initial state is reached again:   $x_{\rm TP}(t = T_0) = x_{\rm TP}(t=0) = 3 - \text{j}$.


In this example the  »locality curve«  is an ellipse,  which is traversed by the equivalent low-pass signal once per period.

  1. The representation applies to the  »Double Sideband Amplitude Modulation with carrier«  of a sinusoidal  $10\ \rm kHz$  signal with a cosinusoidal carrier of any frequency,  where the upper sideband  $($blue pointer$)$  is attenuated.
  2. If the lengths of the blue and the green rotating pointer were equal,  the locality curve would be a horizontal one on the real axis – see  $\text{Exercise 4.5}$.
  3. In the chapter  »Envelope Demodulation«  the locality curves of different system variants are treated in detail.



Representing with magnitude and phase


The equivalent low-pass signal of the band-pass signal  $x(t)$  is generally complex and can therefore be expressed in the form

$$x_{\rm TP}(t) = a(t) \cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} \phi(t)}.$$

Note the plus sign in the argument of the exponential function,  which differs from the  »complex Fourier series«.  This is because the equation with the positive sign for the phase is usually used to describe the modulation method for the physical signal as well:

$$x(t) = a(t) \cdot {\cos} ( 2 \pi f_{\rm T} t + \phi(t)).$$
  1. In many textbooks this equation is used with plus or minus signs depending on the application,  but always with the same "phase identifier". 
  2. By using two different symbols  $(\varphi$  and  $\phi)$  we try to avoid this ambiguity in our e–learning tool.


$\text{Example 4:}$  The same prerequisites apply as in  $\text{Example 2}$  and in  $\text{Example 3}$.  However, instead of the complex function  $x_{\rm TP}(t)$  the two real functions  $a(t)$  and  $\phi(t)$  are now displayed in the graph.  It should be noted with regard to this representation:

Magnitude  $a(t)$  and phase  $\phi(t)$  of the equivalent low-pass signal
  • The  »magnitude function«  shows the time-dependent pointer length:
$$a(t)= \vert x_{\rm TP}(t)\vert =\sqrt{ {\rm Re}\left[x_{\rm TP}(t)\right]^2 + {\rm Im}\left[x_{\rm TP}(t)\right]^2 }.$$
In this example the magnitude function  $a(t)$  is like the complex equivalent low-pass signal  $x_{\rm TP}(t)$  periodic with  $T_0$  and takes values between  $0$  and  $6$.
  • The  »phase function«  describes the time-dependent angle of the equivalent low-pass signal  $x_{\rm TP}(t)$,  related to the coordinate origin:
$$\phi(t)= {\rm arc} \left[x_{\rm TP}(t)\right]= {\rm arctan} \hspace{0.1cm}\frac{ {\rm Im}\left[x_{\rm TP}(t)\right]}{ {\rm Re}\left[x_{\rm TP}(t)\right]}.$$

Here are some numerical results for the phase values:

  1. The phase at start time is  $\phi (t = 0) =\hspace{0.1cm} -\arctan (1/3) ≈ \hspace{0.1cm} -18.43^{\circ} = \hspace{0.1cm}-0.32\,\text{rad}$.
  2. At  $t = 25\,{\rm µ}\text{s}$  it holds   $x_{\rm TP}(t ) = 0$, so that at this time the phase function  $\phi(t)$  changes abruptly from  $-\pi /2$  to  $+\pi /2$ .
  3. The same result is obtained for all equidistant times at distance  $T_0 = 100 \,{\rm µ}\text{s}$.
  4. At time  $t = 60\,{\rm µ}\text{s}$  the phase function has a slightly positive value.



Relation between equivalent low-pass signal and band-pass signal


A band-pass signal  $x(t)$  resulting from the modulation of a low-frequency source signal  $q(t)$  with a carrier signal  $z(t)$  of frequency  $f_{\rm T}$  can be represented as follows:

$$x(t) = a(t) \cdot {\cos} ( 2 \pi f_{\rm T} t + \phi(t)) \hspace{0.3cm}\Rightarrow\hspace{0.3cm} x_{\rm TP}(t) = a(t) \cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} \phi(t)}.$$

It should be noted here:

  1. $a(t)$  is the  time-dependent amplitude   ⇒   »magnitude function«  or  »envelope curve«.  This is equal to the magnitude  $|x_{\rm TP}(t)|$  of the equivalent low-pass signal.
  2. $\phi(t)$  is the  »phase function«, i.e. the  time-dependent phase,  which can also be determined from  $x_{\rm TP}(t)$  as angle to the coordinate origin of the complex plane.
  3. In the physical  $($band-pass$)$  signal  $x(t)$,  the phase function  $\phi(t)$  can be recognized by the  »zero crossings«. 
  4. With  $\phi(t) > 0$  the zero crossing occurs in  $x(t)$  $t$  earlier than in the carrier signal  $z(t)$.  In contrast,  $\phi(t) < 0$  means a shift of the zero crossing to a later time.


$\text{Definitions:}$ 

  • One speaks of  »Amplitude Modulation«  if all information about the source signal  $q(t)$  is contained in the magnitude function  $a(t)$  while  $\phi(t)$  is constant.
  • Conversely,  with  »Phase Modulation«  the phase function  $\phi(t)$  contains all information about the source signal  $q(t)$,  while  $a(t)$  is constant.


$\text{Example 5:}$  The upper part of the following figure describes the  »Double-Sideband Amplitude Modulation  $\text{(DSB-AM)}$  with carrier«:

$x_{\rm TP}(t)$  for  »Double-Sideband Amplitude Modulation«  and for  »Phase Modulation«
  • The equivalent low-pass signal  $x_{\rm TP}(t)$  is always real  
    ⇒   the locality curve is a horizontal straight line.
  • Therefore the zero crossings of the blue DSB-AM signal  $x(t)$  correspond exactly to those of the red carrier signal  $z(t)$.
  • This means:   The phase function  $\phi(t)$  is identical to zero   ⇒   the magnitude function  $a(t)$  contains all information about  $q(t)$.


The lower part of the graphic applies to the  »Phase Modulation«  $\text{(PM)}$:

  • The PM signal  $y(t)$  always has a constant envelope  $($magnitude function$)$   ⇒   the locality curve is a circle.
  • At  $t \approx 0$  it holds  $\phi (t) < 0$   ⇒   the zero crossings in   $y(t)$  occur later than those in  $z(t)$   ⇒   here,  the zero crossings are  »trailers«.
  • For  $\phi (t) > 0$   ⇒   the zero crossings in   $y(t)$  occur earlier than those in  $z(t)$   ⇒   here,  the zero crossings are  »precursors«.
  • Therefore,  with phase modulation,  all information about the source signal  $q(t)$  is contained in the positions of the zero crossings.

Why multiple representations of the same signal exist


Finally,  and hopefully not too late,  we want to turn to the question why the two complex and less comprehensible signals  $x_+(t)$  and  $x_{\rm TP}(t)$  are necessary to describe the actual band-pass signal  $x(t)$.  They were not introduced in Communications Engineering in order to unsettle students,  but:

$\text{Conclusions:}$ 

  • The magnitude function  $a(t)$  and the phase function  $\phi (t)$  can be extracted directly and easily from the physical band-pass signal  $x(t)$  only in some special cases.
  • The real non existing equivalent low-pass signal  $x_{\rm TP}(t)$  is a mathematical tool to determine the functions  $a(t)$  and  $\phi (t)$  by simple geometrical considerations.
  • The analytical signal  $x_+(t)$  is an intermediate step in the transition from  $x(t)$  to  $x_{\rm TP}(t)$.  While  $x_+(t)$  is always complex,  $x_{\rm TP}(t)$  can be real in special cases,  for example,  with ideal amplitude modulation according to the chapter  »Double-Sideband Amplitude Modulation«  $\text{(DSB-AM)}$.


$\text{The same principle applies as often used in the natural sciences and technologies:}$ 

  • The introduction of  $x_+(t)$  and  $x_{\rm TP}(t)$  brings rather a complication for simple problems.
  • The advantages of this approach can only be seen in more difficult problems,  which could not be solved with the signal  $x(t)$  alone or only with much more effort.


For further clarification we provide two interactive applets:

Representation according to real and imaginary part


Especially for the description of  »Quadrature Amplitude Modulation«  $\text{(QAM)}$,  the representation of the equivalent low-pass signal according to real and imaginary part is suitable:

$$x_{\rm TP}(t) = x_{\rm I}(t)+ {\rm j} \cdot x_{\rm Q}(t).$$

In this representation,

  • the real part  $x_{\rm I}(t)$  describes the  »in-phase component«  $($"normal component"$)$  of  $x_{\rm TP}(t)$, 
  • whereas the imaginary part  $x_{\rm Q}(t)$  describes the  »quadrature component«.


With the magnitude function function  $a(t) = |x_{\rm TP}(t)|$  and the  phase function  $\phi (t) = \text{arc}\,x_{\rm TP}(t)$  according to the definitions in the previous sections:

$$\begin{align*}x_{\rm I}(t) & = {\rm Re}[x_{\rm TP}(t)] = a(t) \cdot \cos (\phi(t)),\\ x_{\rm Q}(t) & = {\rm Im}[x_{\rm TP}(t)] = a(t) \cdot \sin (\phi(t)).\end{align*}$$


Real and imaginary part of the equivalent low-pass signal

$\text{Example 6:}$  At the considered time  $t_0$  applies to the equivalent low-pass signal:

$$x_{\rm TP}(t = t_0) = 2\,{\rm V} \cdot {\rm e}^{- {\rm j \hspace{0.05cm}\cdot \hspace{0.05cm} 60 ^\circ} }.$$
$$x_{\rm TP}(t = t_0) = 2\,{\rm V} \cdot \cos(60 ^\circ) - {\rm j} \cdot 2\,{\rm V} \cdot \sin(60 ^\circ).$$
  • This applies to the  "in-phase"  and  "quadrature component":
$$x_{\rm I}(t = t_0) = 2\,{\rm V} \cdot \cos(60 ^\circ) = 1\text{V}, $$
$$x_{\rm Q}(t = t_0) = \hspace{0.05cm} - {\rm j} \cdot 2\,{\rm V} \cdot \sin(60^\circ) =\hspace{0.05cm}-1.733\text{V}.$$


By applying trigonometric transformations it can be shown that the real  $($physical$)$  band-pass signal can also be represented in the following way:

$$x(t) = a(t) \cdot \cos (2 \pi \cdot f_{\rm T} \cdot t + \phi(t)) = x_{\rm I}(t)\cdot \cos (2 \pi \cdot f_{\rm T} \cdot t )-x_{\rm Q}(t)\cdot \sin (2 \pi \cdot f_{\rm T} \cdot t ). $$
  • The minus sign results from the use of the phase function  $\phi (t)$.  A comparison with the section  »Representation with cosine and sine components«  in the second main chapter shows that instead of the difference,  the sum results when referring to  $\varphi (t) = -\phi (t)$.  Adapted to our example,  you then get
$$x(t) = a(t) \cdot \cos (2 \pi \cdot f_{\rm T} \cdot t - \varphi(t)) = x_{\rm I}(t)\cdot \cos (2 \pi \cdot f_{\rm T} \cdot t )+x_{\rm Q}(t)\cdot \sin (2 \pi \cdot f_{\rm T} \cdot t ).$$
  • The quadrature component  $x_{\rm Q}(t)$  thus differs from the above equation in the sign.

Determination of the equivalent low-pass signal from the band-pass signal


The figure shows two arrangements to determine the complex low-pass signal split into inphase and quadrature components from the real band-pass signal  $x(t)$,  for example for display on an oscilloscope.  Let us first look at the upper model:

Division of the equivalent low-pass signal into In-phase and Quadrature components
  1. The analytical signal  $x_+(t)$  is first generated here by adding the  »Hilbert Transform«.
  2. Multiplication with the complex exponential function  $($with negative exponent!$)$  yields the equivalent low-pass signal  $x_{\rm TP}(t)$.
  3. The sought components  $x_{\rm I}(t)$  and  $x_{\rm Q}(t)$  are then obtained by forming the real and the imaginary part.


⇒   With the lower  $($more practical$)$  arrangement,  you get for the upper and the lower branch after the respective multiplications:

$$a(t)\cdot \cos (\omega_{\rm T} t + \phi(t)) \cdot 2 \cdot \cos (\omega_{\rm T} t ) = a(t)\cdot \cos ( \phi(t)) + \varepsilon_{\rm 1}(t),$$ $$a(t)\cdot \cos (\omega_{\rm T} t + \phi(t)) \cdot (-2) \cdot \sin (\omega_{\rm T} t ) = a(t)\cdot \sin ( \phi(t)) + \varepsilon_{\rm 2}(t)).$$

⇒   The respective second parts are in the range around twice the carrier frequency and are removed by low-pass filters with cut-off frequency  $f_{\rm T}$ :

$$\varepsilon_{\rm 1}(t) = a(t)\cdot \cos (2\omega_{\rm T} \cdot t + \phi(t)),$$
$$\varepsilon_{\rm 2}(t) = - a(t)\cdot \sin (2\omega_{\rm T} \cdot t + \phi(t)).$$

⇒   A comparison with the above equations shows that the desired components  $x_{\rm I}(t)$  and  $x_{\rm Q}(t)$  can be tapped at the output:

$$x_{\rm I}(t) = a(t)\cdot \cos ( \phi(t)) ,$$
$$x_{\rm Q}(t) = a(t)\cdot \sin ( \phi(t)) .$$


Power and energy of a band-pass signal


We look at the  $($blue$)$  band-pass signal  $x(t)$  according to the graph,  which results e.g. from  »Binary Amplitude Shift Keying«  $\text{(2ASK)}$.  This digital modulation method is also known as  »On-Off keying«.

Power and energy of a band-pass signal
$$P_x = \lim_{T_{\rm M} \to \infty} \frac{1}{T_{\rm M}} \cdot \int^{+T_{\rm M}/2} _{-T_{\rm M}/2}\hspace{-0.1cm} x^2(t)\,{\rm d}t.$$
  • If the binary  "zeros"  and  "ones"  are equally probable,  then the infinite integration range and the boundary crossing can be omitted,  and you get for the above sketched pattern signal:
$$P_x = \frac{1}{2T} \cdot \int ^{2T} _{0} x^2(t)\,{\rm d}t = \frac{4\,{\rm V}^2}{2T} \cdot \int^{T} _{0} \cos^2(\omega_{\rm T} \cdot t)\,{\rm d}t= 1\,{\rm V}^2.$$
  • From the sketch below you can see that by averaging over the squared envelope  $a^2(t)$  – i.e. over the  »magnitude square of the equivalent low-pass signal«  $x_{\rm TP}(t)$  – you get a result twice as large.
  • Therefore the same holds here likewise:
$$P_x = { {1}/{2} \hspace{0.08cm}\cdot }\lim_{T_{\rm M} \to \infty} \frac{1}{T_{\rm M}} \cdot \int^{T_{\rm M}/2} _{-T_{\rm M}/2} |x_{\rm TP}(t)|^2\,{\rm d}t = {{1}/{2} \hspace{0.08cm}\cdot }\lim_{T_{\rm M} \to \infty} \frac{1}{T_{\rm M}} \cdot \int^{T_{\rm M}/2} _{-T_{\rm M}/2} a^2(t)\,{\rm d}t.$$
$$E_x = \int ^{+\infty} _{-\infty} x^2(t)\,{\rm d}t = { {1}/{2} \hspace{0.08cm}\cdot }\int ^{+\infty} _{-\infty} |x_{\rm TP}(t)|^2\,{\rm d}t = { {1}/{2} \hspace{0.08cm}\cdot }\int ^{+\infty} _{-\infty} a^2(t)\,{\rm d}t.$$

However,  this equation only applies exactly if the carrier frequency  $f_{\rm T}$  is much larger than the bandwidth  $B_{\rm BP}$  of the band-pass.

$\text{Example 7:}$  We look at the band-pass signal  $x(t)$  with  $A = 2\,\text{V}$,  $B = 1\,\text{kHz}$  and  $f_{\rm T} = 10\,\text{kHz}$:

Power calculation in the equivalent low-pass range
$$x(t) = A \cdot {\rm sinc}(B \cdot t) \cdot \cos(2 \pi \cdot f_{\rm T}\cdot \hspace{0.05cm}t + \phi(t)).$$

The magnitude spectrum  $\vert X(f) \vert$  belonging to the signal  $x(t)$  is displayed in the upper right corner.  The blue label applies:

  • $X(f)$  is purely real due to the symmetry relations:
$$\vert X(f) \vert = X(f).$$
  • $\vert X(f) \vert$  is thus composed of two rectangles around  $\pm f_{\rm T}$ . In the range around the carrier frequency applies:
$$\vert X(f) \vert = A/(2B) = 10^{-3}\text{V/Hz}.$$

⇒   The energy of this band-pass signal could in principle be calculated by the following equation:

$$E_x = \int^{+\infty} _{-\infty} A^2 \cdot \frac{ {\rm sin}^2(\pi \cdot B \cdot t)}{ (\pi \cdot B \cdot t)^2}\cdot \cos^2(2 \pi \cdot f_{\rm T}\cdot \hspace{0.05cm}t + \phi(t))\,{\rm d}t .$$ According to the above equations,  however,  with the envelope curve  $a(t)$  drawn in red at the top left also applies:

$$E_x = { {1}/{2} \hspace{0.08cm}\cdot }\int^{+\infty} _{-\infty} a^2(t)\,{\rm d}t= { {1}/{2} \hspace{0.08cm}\cdot }\int^{+\infty} _{-\infty} \vert A \cdot {\rm sinc}(B \cdot t)\vert^2\,{\rm d}t $$

$$\Rightarrow \hspace{0.3cm} E_x = A^2\cdot \int^{+\infty} _{0} {\rm sinc}^2(B \cdot t)\,{\rm d}t =A^2\cdot \frac {\pi}{2}\cdot \frac {1}{\pi B} = \frac {A^2}{2 B}= 2 \cdot 10^{-3}\,{\rm V}^2/{\rm Hz}.$$

⇒   A second solution with the same result is offered by  »Parseval's theorem«:

$$\int ^{+\infty} _{-\infty} a^2(t)\,{\rm d}t= \int ^{+\infty} _{-\infty} \vert A(f) \vert ^2\,{\rm d}f \hspace{0.3cm} \Rightarrow \hspace{0.3cm} E_x = {1}/{2}\cdot ( {A}/{B})^2 \cdot B = {A^2}/(2 B).$$

This is taken into account:

  1. The following applies  $\vert A(f) \vert = \vert X_{\rm TP}(f) \vert $.
  2. Inside the bandwidth  $B$  around the frequency  $f = 0$  ⇒   $X_{\rm TP}(f)$  is twice as large as  $X(f)$  around the frequency  $f = f_{\rm T}$,  namely  $A/B$.
  3. This is related to the definition of the spectrum  $X_+(f)$  of the analytical signal from which  $X_{\rm TP}(f)$  is created by shifting.


Exercises for the chapter


Exercise 4.5: Locality Curve for DSB-AM

Exercise 4.5Z: Simple Phase Modulator

Exercise 4.6: Locality Curve for SSB-AM

Exercise 4.6Z: Locality Curve for Phase Modulation